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Surface and interfacial creases induced by biological growth are common types of instability in 

soft biological tissues. This study focuses on the criteria for the onset of surface and interfacial 

creases as well as its morphological evolution in a growing bilayer soft tube within a confined 

environment. Critical growth ratios for triggering surface and interfacial creases are 

investigated both analytically and numerically. Analytical interpretations provide preliminary 

insights into critical stretches and growth ratios for the onset of instability and formation of 

both surface and interfacial creases. However, the analytical approach cannot predict the 

evolution pattern of the model after instability, therefore non-linear finite element simulations 

are carried out to replicate the post-stability morphological patterns of the structure. Analytical 

and computational simulation results demonstrate that the initial geometry, growth ratio, and 

shear modulus ratio of the layers are the most influential factors to control surface and 

interfacial crease formation in this soft tubular bilayer. The competition between the stretch 

ratios in the free and interfacial surfaces is one of the key driving factors to determine the 

location of the first crease initiation. These findings may provide some fundamental 

understanding in the growth modeling of tubular biological tissues such as esophagi and 

airways as well as offering useful clues into normal and pathological functions of these tissues.  
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1. Introduction 

Growth and remodeling of a developing soft biological tissue are two highly complex processes 

which have crucial effects in the normal development and pathological status of a biological 

tissue [1]. It has been shown that mechanical factors have considerable influence on the growth 

and remodeling of growing structures beside the biological and genetic factors [1-4]. Generally, 

biological tissues are composed of multiple layers of different thicknesses, material properties, 

and growth rates; e.g. the skin [5], brain [6], artery [7], gut [8], and esophagus [9]. Non-uniform 

growth results in the appearance of strain mismatch among the layers and leads to the advent 

of residual stresses [10]. This stress is created due to the integrity of the biological structures 

preventing self-overlap or overlap between tissues [11-14]. Residual stress is also believed to 

play a crucial role in morphogenesis and regulation of the material properties of biological 

systems [12,15-17]. It has been proven that once the compressive residual stress exceeds a 

critical value, in order to release its potential energy the tissue buckles into a new configuration 

[12]. Beyond the critical condition, three common types of morphological instability can be 

observed: wrinkling, folding, and creasing [1]. In contrast to wrinkling and folding phenomena, 

creasing in soft biological tissues (especially the interfacial creasing) has not been well studied 

and addressed appropriately. Therefore, it is necessary to find a systematic approach to 

analytically and numerically quantify crease formation in the soft biological tissues.  

Creases with sharp edges usually form in soft materials without a hard skin when beyond a 

certain critical value of compression, depending on material properties [18-21]. One of the main 

characteristics of creases is the development of self-contact phenomenon after instability. 

Creases bifurcate locally in space and are large in amplitude, in contrast to wrinkles which 

bifurcate non-locally in space and are comparatively minuscule in amplitude. Studies show that 

a flat and soft slab, after having a critical compressive strain applied, starts to develop creases, 

and the anisotropy of applied strains controls the pattern of creases [22]. Critical strain for the 

onset of surface creases in a single layer is lower than that for the onset of surface wrinkles 

[23]. However, it should be mentioned that, for a bilayer structure with comparable elastic 

moduli for both layers, the critical strain required for the onset of creases can be either smaller 

or larger than that for the onset of wrinkles. It depends on ratios of the moduli and thicknesses 



of both layers [24]. It has been shown that during growth, multilayer hyperelastic soft tissues 

with considerable differences in the shear moduli of each layer tend to develop wrinkles [1,9], 

while the same structures using layers with material properties more similar to each other 

prefer to develop creases [25-27]. Beyond the simple sinusoidal wrinkling, new complex 

morphologies emerge in a multilayer structure being compressed or grown, e.g. period- 

doubling and period- quadrupling [9]. Recent study showed that this kind of instability can be 

also observed in a low stiffness regime and that pattern formation is highly sensitive to small 

imperfections [28]. It is worthwhile to mention that classical linear perturbation analysis is able 

to predict the critical condition for the onset of wrinkles, whereas it fails to determine the 

critical condition for the onset of creases [29]. Generally, creases may be divided into two 

types: surface creases and interfacial creases. Although the formation mechanisms of both 

kinds of creases are almost the same, there are still a few differences between the critical strain 

and shape selection [30]. A surface with a neo-Hookean incompressible material under 

compression can generate creases on its free surface when the stretch ratio (normal to the 

tangential) reaches a critical amount; and this critical value does not depend on the shear 

modulus of the material [29]. But for the onset of an interfacial crease between two bonded 

neo-Hookean materials, the critical compressive strain depends on the shear modulus ratio of 

the two layers [30]. In a surface crease, the material develops a self-contact pattern, but in an 

interfacial crease the presence of two materials prevents the interface from self-contact, so this 

kind of crease is V-shaped [30]. A recent experimental study has shown that interfacial creases 

always form at a lower compression than interfacial wrinkles do [30]. Fig. 1 shows mucosal 

wrinkling of a bovine esophagus. Since the mucosa is much stiffer than the submucosa, the 

mucosa forms a wrinkled pattern on the submucosa. Interfacial creases also can be detected in 

the interface between the submucosa and muscle which has been not addressed before. 

Indeed, it is worth exploring the mechanism and shape selection of interfacial creases in soft 

tissues.    

Few types of research have been done related to surface creases, especially in the case of 

interfacial creases in the biological tissues, whereas wrinkling and folding phenomena in growing 

multilayer biological tissues have been studied widely [31-35]. The main goal of this study is to 



develop a computational mechanical model to seek answers to what factors contribute to the 

formation of surface and interfacial creases in a developing bilayer biological tissue. In what 

follows, we also strive to answer these two intriguing questions: how do contributing factors 

control the priority of the structure morphology to produce surface or interfacial creases and why 

are surface creases more common than interfacial creases in biological tissues?  In order to 

answer these, we will construct plane-strain tubular bilayer structures with varying thicknesses, 

growth ratios, and material properties. Both theoretical and computational approaches will be 

utilized to determine deformation and stress fields of the growing structure and present the 

surface morphology after instability. Findings from this study are applicable to interpret the 

interfacial creases in the tubular multilayer organs like esophagi or invagination of a soft tissue in 

an elastic environment and the creation of villi in the gut of various species [8]. 

2. Methods 

A. Theoretical method 

Due to biological growth, the final state of the tissue system is different from the initial one. 

Theoretical models have attempted to relate this type of growth to the deformation and stress 

fields [13]. Any point ࢄ in the reference state will be mapped by transformation to the point ࢞ 

in the current state. For modeling volumetric growth we consider the most popular theory, 

namely, multiplicative decomposition of the deformation gradient [14]. In this theory the 

deformation gradient, ࡲሺࢄሻ, is decomposed into a growth tensor ࡳሺࢄሻ indicating the addition 

of materials and an elastic deformation tensor ሺࢄሻ describing pure deformation resulting 

from stress, as shown in Fig. 2. The growth tensor maps the stress-free, ungrown reference 

configuration to a grown stress-free state, then the elastic deformation tensor maps the grown 

and unstressed state to a stressed and final current state [14]. The deformation gradient ࡲ 

maps the tissue from a stress-free state before growth to a stressed state after growth.    

ࡲ  ൌ . (1) ࡳ

where ࡲ ൌ ߲࢞ ⁄ࢄ߲ . While both ࡳ and  tensors may be incompatible deformations, their 

multiplication, ࡲ, should be a compatible deformation [14]. In general, the elastic deformation 

of living soft tissues yields little volume change; therefore, the nonlinear response of these 



materials can be described by an isotropic incompressible hyperelastic material. The 

incompressibility implies the determinant of the elastic deformation tensor should be equal to 

unit, i.e. ݀݁ݐ ൌ 1. In general, the growth tensor depends on the stress state, deformation, and 

some other factors. For simplicity, we assume the growth process with a known spatial 

distribution, insinuating that all the biological information is independent of stresses [12]. 

Many biological soft tissues can be modeled by a hyperelastic material with a strain energy 

function ܹሺሻ.  The Cauchy stress σ is related to the strain energy function by [12] 

࣌  ൌ  ߲ܹ߲ െ  (2) ࡵ

where  is the Lagrangian multiplier to ensure incompressibility condition and ࡵ is a second-

order unit vector. In the absence of any body force, mechanical equilibrium imposes 

 div ࣌ ൌ 0 (3) 

where “div” stands for the divergence operator in the current configuration. There are several 

proposed material behaviors for hyperelastic materials [36]; here a simple and common model, 

isotropic nonlinear Neo-Hookean, is implemented.  

 ܹ ൌ 2ߤ ሺߣଶ  ఏଶߣ  ௭ଶߣ െ 3ሻ (4) 

 where μ is the shear modulus and ߣ, ߣ  and ߣ௭  are the radial, circumferential and axial principal 

stretches, respectively.  

Consider a tubular soft bilayer with layers of different material properties growing within a rigid 

confinement. The outer layer of the tissue is considered to be fixed as shown in Fig. 2. This ideal 

assumption is considered to mimic the confining effect of a surrounding environment. The 

inside and outside radii of the inner layer are ܣ and ܤ, and the inside and outside radii of the 

outer layer are ܤ and ܥ. The initial and undeformed configuration for the tube is defined by ࢄ ൌ ሺܴ, ,߆ ܼሻ  

ܣ   ܴ  ,ܥ 0  ߆  ,ߨ2 0  ܼ  (5) ,ܮ

where ܴ, ߆ and ܼ are cylindrical coordinates in the reference state. ܮ is the longitudinal length 

of the tube. ܤ is the interface radius between the two bonded layers. Due to the biological 

growth, the tube deforms axisymmetrically before the occurrence of instability. Growth may 



occur in the inner layer, outer layer or both of them. The new and current configuration after 

growth is defined by ࢞ ൌ ሺݎ, ,ߠ ݈ሻ 

 ܽ  ݎ  ܿ, 0  ߠ  ,ߨ2 0  ݖ  ݈, (6) 

where ߠ ,ݎ and ݖ are cylindrical coordinates in the deformed state and ݈ is the deformed axial 

length of the tube. ܾ is the interface radius after the growth and deformation. In the case of 

axisymmetric and plane-strain deformation, the deformation field after growth is just a function 

of the radius, ݎ ൌ  ሺܴሻ. So, the circumferential and longitudinal coordinates in bothݎ

undeformed and deformed states keep the same.   

For isotropic growth, the growth tensor can be characterized by ࡳ ൌ  where ݃  1 is for ,ࡵ݃

growth, 0 ݃  1 represents atrophy, and ࡵ is the unit tensor. But by the assumption of plane-strain 

conditions without deformation or growth in the axial direction, ݃௭ is considered to be unit. 

B. Numerical method 

A layered computational model based on the non-linear finite element method with isotropic 

growth is implemented to capture realistic morphologies of a biological structure after the 

onset of instability. The model of both the inner and outer layers is considered to be a neo-

Hookean hyperelastic material, and growth is simulated via thermal expansion [18,37]. The free 

surface of the inner layer is allowed to self-contact. The fixed boundary condition is applied in 

the outer radius of the outer layer. Dynamic-Explicit solver in the commercial software ABAQUS 

(version6.13), which is suitable for large deformation, nonlinear, and quasi-static problems is 

implemented to depict patterns changes in the model. Both layers mesh with the plane-strain 

elements where different mesh sizes are used to ensure the robustness of the simulation 

results and mesh independence. Following the incompressibility we used in this biological 

structure, the growth ratio of the layer (݃) can be defined as the square root of the ratio of the 

deformed surface area ܵ  to the initial surface area ܵ, ݃ଶ ൌ ܵ/ܵ, where ݅ ൌ 1 represents 

the inner layer and ݅ ൌ 2 the outer layer.  

3. Results and Discussions 

A. Deformation field and residual stress  



By applying the deformation gradient in a cylindrical coordinate for the presented model in Fig. 

2  and from Eq. (1), the elastic deformation tensor can be extracted 

 ൌ ݀݅ܽ݃ሺߣ, ,ఏߣ ߣ            ௭ሻߣ ൌ ݃ିଵ߲ܴ߲ݎ , ఏߣ ൌ ݃ିଵܴݎ , ௭ߣ ൌ 1 
(7)

which ߣ is the principal stretch. With the incompressibility constraint ݀݁ݐ ൌ 1, we have  

ݎܴ  ܴ߲ݎ߲ ൌ ݃ଶ 
(8)

Integration of Eq. (8) on the boundary of two layers with imposed boundary conditions gives 

the deformation field of the structure 

which ଵ݃and ݃ଶ are isotropic growth ratios for the inner layer and outer layer, respectively. 

Boundary conditions are fixed boundary in the ܥ and continuity in the interfacial radius 

between two layers (ܴ ൌ  By continuation in the interface, the deformed inner radius ܽ of .(ܤ

the structure is  

ܽ ൌ ቂܥଶ െ ݃ଶଶሺܥଶ െ ଶሻܤ െ ଵ݃ଶሺܤଶ െ ଶሻቃଵ/ଶܣ
   

(11)

and the deformed interface radius ܾ is 

ܾ ൌ ቂܥଶሺ1 െ ݃ଶଶሻ  ݃ଶଶܤଶቃଵ/ଶ
                                      

(12)

Eqs. (9-12) describe the deformation of the tubular structure induced by growth. For preventing 

self-contact at the inner radius of the structure after growth, the isotropic growth ratios should 

satisfy ܽ  0.  

Stretch ratios have been demonstrated as a determining factor to trigger instability in soft 

materials [18,29]. For the sake of further implementation, it is necessary here to detail their 

derivations. Let ߣ ൌ ݐ݁݀ ఏ, the assumptionߣ ൌ 1 leads to  ߣ ൌ  ,ଵ. Based on Eqs. (7, 9, 10ିߣ

and 11), ߣ in both layers can be derived 

ଶെܽଶݎ  ൌ ଵ݃ଶሺܴଶ െ ଶሻܣ        for     ܣ  ܴ  (9) ܤ

ଶܥଶെݎ  ൌ ݃ଶଶሺܴଶ െ ଶሻܥ        for     ܤ  ܴ  (10) ܥ



ଵߣ  ൌ ሾ1 െ ሺܣ/ܴሻଶ  ሺܽ/ ଵܴ݃ሻଶሿଵ/ଶ ܣ                 ܴ  ଶߣ (13)   ܤ ൌ ሾ1 െ ሺܥ/ܴሻଶ  ሺܥ/݃ଶܴሻଶሿଵ/ଶ ܤ             ܴ  (14)   ܥ

where the subscript 1 is for the inner layer and 2 for the outer layer. ߣଶ  is just a function of the 

growth ratio in the outer layer, whereas  ߣଵ is a function of both growth ratios in the inner and 

outer layers. Based on Eqs. (2) and (4) the Cauchy stress components are derived as 

ߪ  ൌ ଶିߣߤ െ , ఏఏߪ ൌ ଶߣߤ െ (15) 

The equilibrium equation, Eq. (3), is derived as 

ݎ߲ߪ߲   ߪ െ ݎఏఏߪ ൌ 0 
(16)

After derivations, with Eqs. (13-16) the stress distribution can be expressed for the inner layer 

as ߪଵ ൌ  ఓభଶ ଵିଶߣ ൣ െ ଵିଶߣ   ݈݊ሺ ଵଶߣ ⁄ଵଶߣ ሻ൧          ܣ  ܴ  ఏఏଵߪ (17)        ܤ ൌ ଵߪ  ଵଶߣ ଵሺߤ  െ ܣ          ଵିଶሻߣ  ܴ   (18)        ܤ

where  ߤଵ is the shear modulus of the inner layer and  ߣଵ ൌ ܽ/݃ଵܣ. Using the same approach 

for the outer layer gives ߪଶ ൌ ଵห ఒభୀ ఒ್భߪ   ఓమଶ ଶିଶߣ ൣ െ ଶିଶߣ   ݈݊ሺ ଶଶߣ ⁄ଶଶߣ ሻ൧     for     ܤ  ܴ  ఏఏଶߪ (19)    ܥ ൌ ଶߪ  ଶଶߣ ଶሺߤ  െ ܤ  ଶିଶሻ        forߣ  ܴ   (20)      ܥ

where  ߤଶ is the shear modulus of the outer layer,  ߣଵ ൌ ܾ/݃ଵܤ, and  ߣଶ ൌ ܾ/݃ଶܤ.  

The thickness of layers is variable so as to be able to parametrically capture thickness effects on 

the growth, instability, and remodeling of the tubular bilayer. For a special case, ܣ ൌ ܤ ,1 ൌ 1.2 

and ܥ ൌ 2,  Fig. 3 shows the deformation field and stretches (ߣ) for a growing bilayer structure 

with two different growth cases.   

For the sake of simplicity, results are mapped to the initial configuration of the structure. As can 

be noticed from Fig. 3, the deformation field between the inner and outer layers is continuous 

as expected, but stretches at the interface are not continuous and have jumps. The higher 



growth ratio in the outer layer leads to more deformation and higher stretches in both layers. It 

is also noteworthy to mention that stretch is not a function of the material properties of the 

layers but rather a function of its geometry and growth.   

Fig. 4 illustrates that in the absence of external loads, growth induces residual stresses in both 

layers. Representative parameters are ߤଶ ⁄ଵߤ  ൌ ܣ ,10 ൌ ܤ ,1 ൌ ܥ ,1.2 ൌ 2, ଵ݃ ൌ 1, and ݃ଶ ൌ 1.05. Cauchy radial and circumferential stresses are normalized by the modulus ratio of 

the inner layer; ߪത ൌ തఏఏߪ ଵ andߤ /ߪ ൌ   . ଵߤ /ఏఏߪ

Due to the biological growth, the maximum circumferential stress occurs on the free surface of 

the inner layer [19]. Compressive circumferential stress is observed to be discontinuous at the 

interface with a lower magnitude in contrast to the stress at the free surface. Several previous 

studies have revealed that beyond a critical point, compressive stresses in the free surface or 

interface of soft materials may lead to the formation of creases [18,25,26,29,30,38]. These 

compressive stresses may play an important role in the instability and shape evolution of the 

model. 

 

B. Stretch ratio and instability  

In order to find the critical strain for the onset of surface or interfacial creases in an 

incompressible neo-Hookean material, creasing instability has been analyzed by comparing the 

elastic energy in a creased elastomer and that in a smooth elastomer [29,30]. Results of these 

studies show that the critical strain for onset of creases on the free surface is ߝ ൎ 0.35 and for 

the interfacial creases it is a function of the modulus ratio of the layers. In both surface and 

interfacial creases, critical strains are independent of any length scale. In fact, the surface 

crease is a special case of interfacial crease in which the modulus ratio of the stiff layer to the 

soft layer is infinite. The critical strain for the onset of interfacial creasing decreases as the 

modulus ratio of the stiff layer to the soft layer increases [30]. Calculation has shown that when 

an incompressible neo-Hookean material in the plane-strain condition is compressed to a 

critical point, the normal to tangential stretch ratio is close to 2.4 [29] equivalent to the critical 

strain ߝ ൎ 0.35. This beneficial number has been used in several studies to predict critical 

growth ratios for the onset of surface creases in growing structures [18,19,39]. However, the 



mechanism and criteria for the onset of surface and interfacial creases in biological tissues have 

not been addressed very well. In what follows, we are going to unravel these issues.   

Following the idea of the critical stretch ratio, in our model for the onset of surface creases in 

the inner layer, the radial to circumferential stretch ratio should satisfy  ߣ ⁄ఏߣ  2.4. But for the onset of interfacial creases between the inner and outer layer this 

critical stretch ratio is assumed to be a function of their modulus ratio, i.e.  ߣ ⁄ఏߣ  ൌ ݂ሺ ߤଶ/ ߤଵሻ. Fig. 5 shows the dependency of the critical stretch ratio (  ߣ ⁄ఏߣ  |௧ ) on the shear 

modulus ratio of the two bonded layers for the onset of interfacial creases which it has been 

derived from Ref [30]. Here we will focus on models with a higher shear modulus in the outer 

layer than in the inner layer. If the inner layer of a structure has a higher shear modulus ratio 

than the outer layer, it will typically generate wrinkles in a stiff layer on a soft substrate; a 

phenomenon which has been well reported in many literatures [31,34,40,41].  

Fig. 5 shows that the critical stretch ratio for the onset of interfacial creases decreases as the 

modulus ratio of the bilayer increases. In the limiting case  ߤଶ ⁄ଵߤ  ൌ ∞, the critical stretch ratio 

approaches to the critical one in surface creases,  ߣ ⁄ఏߣ  ൎ 2.4. When the shear modulus ratio 

is close to unit, two layers can be considered as a uniform hyperelastic material in which it is 

difficult to initiate the interfacial crease even in high compressive strains,   ൎ 1. The presence 

of the surface creases on the inner layer or interfacial creases depends on the competition of 

the critical stretch ratio ( ߣ ⁄ఏߣ  ) between the inner surface and the interface of the bilayer 

structure. With the definition  ߣ ൌ ߣ ఏ andߣ ൌ ߣ  ିଵ the radial to circumferential stretch ratio isߣ ⁄ఏߣ  ൌ  .ଶ where λ for both inner and outer layers have been derived in Eqs. (13) and (14)ߣ/1

Fig. 6 depicts the radial and circumferential stretches and their ratio in a growing structure with ܣ ൌ ܤ ,1 ൌ ܥ ,1.2 ൌ 2, and ݃ଶ ൌ 1.05. The competition between the stretch ratios in the free 

and interfacial surfaces is one of the key driving factors to determine the location of the first 

crease initiation. The modulus ratio between two layers also plays an important role in the 

determination of the crease formation. By comparing the data from Fig. 6 with the critical 

values from Fig. 5, we can find the critical growth ratios for specific cases to start instability and 

crease formation as well as the location of crease formation.   



Eqs. (13) and (14) imply that the initial interfacial geometry in each layer can affect the stretch 

ratio during the deformation. Fig. 7 shows the dependency of the stretch ratio for each layer on 

their geometry with the structural parameters  ܣ ൌ 1 and  ܥ ൌ 2 as well as the growth ratios 

ଵ݃ ൌ 1 and ݃ଶ ൌ 1.1. There are two different cases: one with the interface at ܤ ൌ 1.5 and the 

other one at ܤ ൌ 1.8.  

From Fig. 7, it can be noticed that as the position of the interface changes, the stretch ratio 

respond accordingly in both layers. A higher thickness of the outer layer leads to more 

deformation and higher stretch ratio of the structure under biological growth. Also, it is 

interesting to see that the maximum stretch ratio may occur either on the free surface or the 

interface.  

In order to clearly find the maximum stretch ratio in the structure, Fig. 8 depicts the maximum 

stretch ratio in the free and the interfacial surfaces under different interface radii with the 

growth ratio ݃ଶ ൌ 1.1 in the outer layer. From Fig. 8, there is a competition of the maximum 

stretch ratio between the free surface and the interface of the structure. By comparing each 

maximum stretch ratio with the corresponding critical one for the onset of surface or interfacial 

creases, the position of the first crease can be determined. For a lower thickness of the inner 

layer (ܤ  1.7 for this case), the maximum stretch ratio occurs in the free surface while for a 

higher thickness of the inner layer (ܤ  1.7) the maximum stretch ratio occurs in the outer 

layer. In addition to the interface radius, growth ratios ଵ݃ in the inner layer and ݃ଶ in the outer 

layer may have crucial effects on the stretch ratio in the free and interfacial surfaces. Fig. 9 

shows three cases with different growth ratios in the structure: (a) growth in the inner layer, (b) 

growth in the outer layer, and (c) growth in both layers. These three cases are able to cover all 

possibilities in the formation of surface, interfacial, or both types of creases.  

Fig. 9(a) clearly states that if growth just occurs in the inner layer of the structure, there are no 

stretches in the outer layer. This result shows that growth in the inner layer only has the 

potential to create surface creases but not interfacial creases. The higher the growth ratio of 

the inner layer, the higher the stretch ratio the free surface experiences. Fig. 9(b) illustrates 



that if growth just takes place in the outer layer, a significant stretch ratio can be observed even 

on the free surface of the inner layer. Therefore, it is expected that by the growth of the outer 

layer, surface creases can be produced on the free surface. Moreover, the interface may also 

experience a considerable stretch ratio which can lead to the formation of interfacial creases. 

Fig. 9(c) shows an example of the case which growth takes place in both layers, wherein high 

stretch ratio can be observed in both free and interfacial surfaces. The dotted line in Fig.9(c) 

indicates that both the inner and outer layers have the same growth ratio which makes the 

stretch ratio continuous across the interface. The behaviors of the third case in Fig. 9(c) can 

roughly be mimicked by the second case through considering more growth in the outer layer. 

Also, the second case can cover both surface and interfacial creases which just depend on a 

single variable, the growth ratio in the outer layer, ݃ଶ. Therefore, for simplicity we would like to 

focus on the model based on the second case from Fig. 9(b) to investigate the critical growth 

ratio and the morphological evolution after instability in the following sections.  

C. Crease formation and critical growth ratio  

It was found that the stretch ratio and the material properties of the layers are determining 

factors to initiate surface and interfacial creases in a soft tubular bilayer. The maximum value of 

the stretch ratio in the free or the interfacial surface is determined by the initial geometry and 

growth ratio of the bilayer structure. It is not easy to calculate the growth ratio of layers in vivo, 

therefore we dynamically increase the growth ratio from a unit to the value where the system 

initiates instability and creasing. Pathological disorders affect the growth ratio and overgrowth 

of layers may lead to obstruction in organs such as airways and esophagi [9,32,33]. 

Here we want to show how surface and interfacial creases are developed step by step through 

a special case. Fig. 10 shows the dependency of the stretch ratio ( ߣ ⁄ఏߣ  ) at the free surface 

and interface on the growth ratio of the outer layer. For this case the interface radius is ܤ ൌ 1.2 

and both free surface and interface stretches are unity at the starting point of growth. When 

the bilayer structure starts to grow, the stretch ratios at both the free and interfacial surface 

increase while the stretch ratio in the free surface grows faster than that in the interface. When 

the stretch ratio of the free surface reaches 2.4, creases start to form on the free surface of the 

inner layer. At this point, the maximum stretch ratio at the interface has not reached the critical 



point yet, therefore the interface does not experience any interfacial creases. However, as the 

growth continues we can eventually observe the onset of creases in the interface when the 

critical stretches ratio of the interface reaches ߣ ⁄ఏߣ  |௧ ൌ 3.23. Since the critical interfacial 

stretch ratio is a function of the shear modulus ratio of the bilayer as shown in Fig. 5, a lower 

shear modulus ratio of the bilayer structure leads to a higher growth ratio needed for the onset 

of interfacial creasing.   

It is very interesting to relate the initiation of creases with the critical growth ratio of the 

structure, which can provide insights into the growth and dynamic morphological changes of 

the structure. Following Eqs. (13) and (14), the critical growth ratio for the onset of surface and 

interfacial creases can be derived based on the initial geometry of the structure. The stretch 

ratio (  ߣ ⁄ఏߣ  or 1/ߣଶ) at the free surface is 

ߣ   ⁄ఏߣ  ൌ ҧଶሺ1ܥҧଶ/ሺܣ െ ݃ଶଶሻ  ҧଶܣ  ݃ଶଶ െ 1ሻ                   (21) 

where  ܣҧ ൌ ҧܥ and ܤ/ܣ ൌ ߣ ) If the stretch ratio is set equal to the critical value .ܤ/ܥ ⁄ఏߣ  ൎ2.4), the critical growth ratio for the formation of the surface creases in the inner layer is 

obtained 

 ݃ଶଶ௧ ൌ ሺܥҧଶ  ҧଶܣ0.583 െ 1ሻ/ሺܥҧଶ െ 1ሻ                       (22) 

Similarly, we can have the critical growth ratio for interfacial crease formation 

 ݃ଶଶ௧ ൌ ҧଶܥߙҧଶ/ሺܥߙ െ ߙ  1ሻ                                (23) 

where ߙ is the critical stretch ratio for a given shear modulus ratio as shown in Fig. 5. Fig. 11 is a 

“phase diagram” showing the critical growth ratios for the onset of surface and interfacial 

creases with different initial geometries. The shear modulus ratio is set to  ߤଶ ⁄ଵߤ  ൌ 10 which 

implies ߙ ൌ 3.23 from Eq. (23). Based on the geometry and growth ratio of the outer layer, four 

highlighted regions can be determined.  After growth, the structure could be in a flat state or 

develop surface creases and then form interfacial creases, or develop interfacial creases and 

then surface creases.  

It is evident that, from Fig. 11, when the inner layer thickness is below ൎ 1.9 creasing always 

occurs in the free surface first, accompanied by interfacial creasing later. Another intriguing 



observation is that an unusually high biological growth in a structure with a very thin outer 

layer is needed to trigger creases in the free surface while interfacial creases may happen 

earlier. It should be mentioned that all findings so far are related to the initiation of the creases 

based on the theoretical approach in which the growing bilayer structure is assumed to keep its 

axisymmetric pattern under any growth ratio. In the next section, non-linear finite element 

analysis will be performed to show the post-secondary morphological evolution after the 

system reaches the critical growth ratio predicted from the theoretical method. 

D. Computational results 

Fig. 12 shows the morphological evolution of a growing bilayer structure with ܤ ൌ 1.4. As 

discussed in Fig. 11, with the growth in the outer layer the stretch ratio in both layers grow and 

change the pattern of the structure. Fig. 12(a) shows the initial geometry of the model without 

growth. With growth in the outer layer, the structure starts to expand symmetrically (Fig. 12(b)) 

and after a certain value of growth ratio, the model loses its stability and develops surface 

creases first as shown in Fig. 12(c). With the continuation of growth, interfacial creases are 

observed at the interface of the two layers, as depicted in Fig. 12(d). Since the strain is identical 

at any place on the free surface under the axisymmetric deformation, any point on the free 

surface can attain the critical conditions necessary to start creasing. Therefore, the position and 

number of creases at the free surface cannot be perfectly determined by the critical condition 

for the initiation of creases, which is also valid for interfacial creases. However, pattern 

selection and the number of creases on the free surface or in the interfacial surface can be 

attributed to the process of minimizing the strain energy in the structure [18].  In Fig. 12, the 

free surface develops eight creases and with the continuation of growth they become deeper 

and sharper. After a certain amount of growth, four interfacial creases develop on the interface 

and then evolve into eight. This biological structure can continue to grow until the inner layer 

completely fills the free space of the structure.  

Previous studies on the compressed flat bilayer structure show that beyond the critical strain 

ߝ) ൌ 0.35) a flat surface develops creases with wavelength ߱௦: 

 ߱௦ ݐ ൎ 3.5ሺ1 െ ሻ⁄ (24)



where ݐ is the thickness of the film on the substrate before compression and � is the compressive 

strain beyond the critical value [27,42]. By replacing � with λ, Eq. (24) is represented by ߱௦/ݐ ൌ  So, the wavelength of creases on the free surface can be calculated .ߣ3.5

approximately and compared with numerical results. Eq. (24) is applicable when a uniform 

compressive strain is applied through the thickness of the film, whereas in the model of interest 

the strain and stretch through the thickness of inner layer is non-uniform as shown in Fig. 3. 

Compressive strain in the free surface of the inner layer is higher than the one at the interface. 

Since strain at the free surface is a more effective factor in determining the formation of surface 

creases, it can be estimated from Eq. (24). From Eq. (13) and with ݃ଶ ൌ 1.2, the stretch (ߣ) in the 

free surface can be determined as 0.320 which implies the dimensionless crease wavelength is ߱௦/ݐ ൎ 1.12. From the computational model in Fig.12(c), this ratio is calculated as ߱௦/ݐ ൎ 1.10. In the computational model the wavelength of creases is considered as a 

distance between two walls of a crease and measured from their middle line. The theoretical 

estimated value and computational result are in good agreement with each other, but it should 

be mentioned that the stretch (ߣ) from Eq. (13) is valid until the initiation of instability and after 

that critical point or at higher growth ratios it is no longer applicable. When the growth ratio 

increases, compressive strain builds up consequently in the inner layer and the wavelength of 

creases decreases as depicted in Fig. 12(e). Eq. (24) is just extracted for surface creases and 

cannot be used for the calculation of the interfacial crease wavelength. Depth of the creases is 

also a linear function of the applied compressive strain [27], a large strain corresponding to a 

deep crease as seen in Fig.12(e). It is intriguing to see that the sharp crease in the interfacial 

creases are formed towards the outer layer where the material is stiffer compared with the 

inner layer [30]. Our model proves that surface creases develop a self-contact pattern, but the 

presence of two materials in an interfacial crease prevents the interface from self-contact, 

therefore it forms a V-shape.  

Fig. 13 shows the dynamic steps of morphological changes of a growing bilayer structure with 

different initial geometries. It can be implied that the thickness of the inner layer plays an 

important role in determining the creasing patterns of this biological structure. As expected 

from theoretical results and Fig. 11, the structure with a thin inner layer, e.g. ܤ ൌ 1.1, can 



easily develop both surface and interfacial creases at almost the same time as shown in the 

bottom row of Fig. 13. The number of creases for both surface and interfacial creases is four. 

Before crease formation, the free surface deviates from the circular pattern which has not been 

predicted in the analytical approach. With the increase of the inner layer thickness, e.g. ܤ ൌ 1.4 or 1.7 surface creases come into the picture first followed by interfacial creases, which 

is consistent with the previous findings in Fig. 11. The number of creases is a function of both 

geometry and growth ratio. Competition between geometrical factors and growth ratios leads 

to the dynamic evolution of the number of creases in the structure which minimizes the strain 

energy of the growing structure. For the structure with a high thickness of the inner layer, e.g. ܤ ൌ 1.9, interfacial creases initially developed, followed by the free surface creases as shown in 

the top row of Fig. 13. At the beginning the number of interfacial creases is four, but with 

further growth more creases can be observed at the interface.  

Critical growth ratios for the onset of both surface and interfacial creases extracted from FE 

analysis are compared with the theoretical findings in Fig. 11. Generally, there is a good 

agreement between theoretical and finite element results. Since the outer layer of the 

structure is stiffer than the inner layer, before crease formation the structure keeps symmetric 

in the FE analysis as the theoretical assumption states. This explains why good agreement is 

achieved between the theoretical and numerical results of the structure with a thin inner layer. 

For the structure with a thick inner layer, after a certain amount of growth the shape of its FE 

models deviates from circular. This deviation causes the discrepancy of the critical growth ratios 

between the theoretical value and the one from computational models.  

Another factor which may affect the critical stretch ratio at the interface for creases is the shear 

modulus ratio between the two layers. Fig. 14 shows the morphological evolution of biological 

tubes with the same geometry but different shear modulus ratios. As expected from Fig. 10, the 

model with higher shear modulus ratio tends to develop interfacial creases earlier than the 

ones with lower shear modulus ratio. When the shear moduli of two layers are close to each 

other it is difficult to observe interfacial creases but there is evidence of a wrinkled pattern as 

shown in the bottom row of Fig. 14. Since the thickness ratio of the inner layer to the outer 

layer is the same for all three cases, the number of surface creases in all cases also remains the 



same as evidenced in other papers [1,18]. But for interfacial creasing, the number of creases is 

also related to the shear modulus ratio. As expected, in Fig. 14 the number of interfacial creases 

is different for these three cases, and the model with a higher shear modulus ratio shows 

deeper and sharper creases than the model with a lower shear modulus does. For the ideal 

model with infinite shear modulus ratio, interfacial creases will be in a self-contact pattern as 

surface creases.  Our results showed that when a soft layer grows on a stiffer layer, interfacial 

creases may be observed. As a proof to the results, a recent study in a flat bilayer structure with 

close stiffness of layers showed that when a soft layer grows on a substrate, at the first step 

and near the critical threshold the structure develops surface creases, while at a higher growth 

ratio and far from the threshold the structure develops interfacial creases while deepening 

surface creases [43]. Another experimental work backed by 3D numerical simulations for a 

multilayer cylindrical tube mimicking growth and villi formation of the gut also showed that 

growth in a constrained condition triggers instability and leads to the formation of different 

folding patterns [8]. A study to mimic the avascular development of thin solid tumors also 

showed that in a circular bilayer structure formed by the growth of the outer layer (ring) on a 

supporting core different kind of instabilities and patterns can be observed based on the 

stiffness ratio of the core to ring and thickness of the ring. With a high thickness of the growing 

ring and under special conditions interfacial wrinkles also were detected in the model [44]. Back 

to the bovine esophagi shown in Fig. 1, a muscle layer is much stiffer than the submucosal 

layer; after growth this causes interfacial creases are detected on the interface towards the 

muscle layer. As predicted and modeled, interfacial creases are usually growing into the stiffer 

materials. These findings show that mechanical parameters play a critical role in controlling 

surface patterns, although the development of these patterns are believed to be the 

consequence of the integrated and complex interactions among genetic, biochemical, and 

biological processes.  

4. Conclusions  

This paper explores surface and interfacial crease formation in a bilayer tubular biological tissue 

from an integrated theoretical and computational viewpoint. Both the stress distribution and 

the critical growth ratio for instability of the model and the formation of surface and interfacial 



creases are determined. Results show that the initial geometry, growth ratio, and shear 

modulus ratio of the layers are the most determinant factors for tuning the starting point and 

patterns of surface or interfacial creases. Usually, a growing bilayer structure prefers to develop 

surface creases before interfacial creases. However in some special cases, for example with a 

very thin outer layer, interfacial creases can be observed to develop before surface creases. 

These findings can provide some fundamental understanding in the growth modeling of tubular 

biological tissues such as esophagi and airways, therefore offering useful insights into the 

diagnosis and prevention of pathological conditions. 

No research, however, provides a perfect study; with this work being no exception to the rule. 

More endeavors should be devoted to expanding the realm of other types of instability in the 

tubular structure. For example, sometimes delamination phenomenon can be observed in 

layered biological tissues in the same manner as soft actuators or composite materials [45]. 

Also, besides biological soft tissues, the analytical and computational method presented here 

may be used as a tool to the quantification and calibration of soft multilayer artificial structures 

such as soft actuators in different environment conditions before and after the initiation of 

instability [46,47]. More endeavors should be devoted to exploring other various self-organized 

surface patterns in soft materials; these studies may open new windows towards advanced 

functional structure as an emerging technology [48], thereby leading to a simple but 

fundamental platform to design and measure the different surface instability in soft materials.   
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Figures  

 

 

FIG. 1. Wrinkling of mucosa and interfacial creases in the esophagi of the bovine. Arrows show the sites of 

interfacial creases. Figure reprinted from Ref [9] with permission. 

 

FIG. 2. Initial and current states of a growing structure. The deformation gradient (F)  

is decomposed into a growth tensor (G) and an elastic tensor (A). 



 

FIG. 3. Deformation field and stretches. ܣ ൌ ܥ ,1 ൌ 2 and the interface is at B=1.2. 

 

 
FIG. 4. Normalized radial and circumferential stresses in the growing structure. ܣ ൌ ܥ ,1 ൌ 2 and the interface 

layer is at B=1.2. Growth only takes place in the outer layer, ݃ଶ ൌ 1.05. 

 

  



 

 

FIG. 5. The critical stretch ratio ( ߣ ⁄ఏߣ  ) for the onset of creases as a function of the shear modulus ratio,  ߤଶ ⁄ଵߤ   .ଵߤ  ଶ is considered to be higher thanߤ  .

 

 

FIG. 6. Radial and circumferential stretches and their ratios for both inner and outer layer. ܣ ൌ ܥ ,1 ൌ 2 and the 
interface layer is at B=1.2. Growth only takes place in the outer layer, ݃ଶ ൌ 1.05. 



 

FIG. 7. Stretch ratios ( ߣ ⁄ఏߣ  ) for a growing structure with two different interfacial radii. ܣ ൌ ܥ ,1 ൌ 2  and growth 
just takes place in the outer layer, ݃ଶ ൌ 1.1. 

 

FIG. 8. Maximum stretch ratios at the free and interfacial surfaces. Growth only takes place in the outer layer, ݃ଶ ൌ 1.1 and ܣ ൌ ܥ ,1 ൌ 2. 

  



  

(a) (b) (c)

FIG. 9. Stretch ratios ( ߣ ⁄ఏߣ  ) for a structure with different growth ratios in the layers. (a) Growth only takes place 
in the inner layer; (b) growth only takes place in the outer layer; (c) growth takes place in both layers. For all cases ܣ ൌ ܤ ,1 ൌ 1.2, and ܥ ൌ 2. 

 

 

FIG. 10. Dependency of stretch ratios in the free and interfacial surfaces on the growth ratio. Growth only takes 

place in the outer layer.  ܣ ൌ ܤ ,1 ൌ ܥ ,1.2 ൌ 2.  

  



 

FIG. 11. Critical growth ratio for onset of surface and interfacial creases for the different inner layer thicknesses. 

Growth only takes place in the outer layer and  ܣ ൌ ܥ ,1 ൌ ଶߤ  ,2 ⁄ଵߤ  ൌ 10.  

 

 

FIG. 12. (a)-(e); Step by step morphological evolution of a growing bilayer. Growth just takes place in the outer 

layer and ܣ ൌ ܤ ,1 ൌ ܥ ,1.4 ൌ ଶߤ  ,2 ⁄ଵߤ  ൌ 10. 

  



 

Fig. 13. Morphological evolution of a growing bilayer structure with different initial interface radiuses. Time step 

from 1 to 4 shows the evolution of morphology of the model (growth ratios are not same in columns). Growth only 

takes place in the outer layer and ܣ ൌ ܥ ,1 ൌ ଶߤ  ,2 ⁄ଵߤ  ൌ 10. 

 

  



 

 

Fig. 14. Effect of the shear modulus ratio on the formation of interfacial creases. Growth only takes place in the 

outer layer and A ൌ ܤ ,1 ൌ 1.4, C ൌ 2.  

 

 

 


