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We study pattern-forming dissipative systems in growing domains. We characterize classes of
boundary conditions that allow for defect-free growth and derive universal scaling laws for the
wavenumber in the bulk of the domain. Scalings are based on a description of striped patterns in
semi-bounded domains via strain-displacement relations. We compare predictions with direct sim-
ulations in the Swift-Hohenberg, the Complex Ginzburg-Landau, the Cahn-Hilliard, and reaction-

diffusion equations.
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Pattern-forming systems such as fluid convection prob-
lems, reaction-diffusion systems near Turing instabilities,
diblock copolymers, or phase separation problems often
exhibit striped phases, that is, stable or metastable peri-
odic structures with wavenumbers in an admissible band
k € (k—,k4). In large aspect-ratio systems, one typically
sees a mixture of patches evolve from random initial con-
ditions with different wavenumbers, that may be sepa-
rated by defects or mix slowly via diffusive repair [1, 2].
On the other hand, it has long been known that growth
processes tend to select specific wavenumbers kg, from
the admissible band, leading to perfect, defect-free peri-
odic structures [3—7]. Such growth of periodic structures
is fairly well understood when patterns grow by spread-
ing into an unstable state [8-10], in the wake of a free
invasion front with speed cqe. Here, we are interested
in situations when growth is externally imposed. We
therefore consider systems on time-depending domains
x € [=L(t), L(t)], or with a parameter p(x,t) that drives
pattern formation in [—L(t), L(t)].

For growth speeds L'(t) = ¢ > 1, one often observes a
spatially homogeneous equilibrium state near the bound-
ary that is subsequently invaded by a pattern-forming
front with speed cgree. For L'(t) = ¢ < oo, the pat-
terns selected are close to patterns selected by the free
invasion front [11-14]. Our aim here is to derive asymp-
totic expressions for the selected wavenumber k = k(c)
when ¢ < 1, applicable to a variety of pattern-forming
systems.

The Swift-Hohenberg equation
ut = _(8mm + 1)2U + pu = u37 (1)

is a prototypical example for the formation of striped pat-
terns. For fixed p, there exists a family of periodic, even
solutions, parameterized by the wavenumber, ug (kx; k),
use (& + 2m; k) = ust (5 k) = use(—&; k). We consider (1)
with “free” boundary conditions

induced by the L?-gradient flow to the free energy

E(u) = / ((um +u)? — pu® + %u‘l) dx. (3)
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FIG. 1. Apical growth in SH (1) with u = 1.5(a): ¢ = 0.01,
k ~0.928) and (b): ¢ =1 (right, k ~ 0.981).

Direct simulations in a growing domain show a depen-
dence of the wavenumber in the bulk of the domain on
the speed of growth. For slow speeds, the dynamics near



the edge are governed by long transients where patterns
“lock” to the boundary, separated by sudden snapping
where the phase at the boundary jumps (Fig. 1).
Neglecting the effect of the second, far-away boundary,
we consider (1) on z € (—ct, 00). Seeking to perturb from
¢ = 0, we start with the description of “boundary layer”
type equilibria of (1) on the half line x € (0,00) that
satisfy boundary conditions and that are asymptotic to
periodic solutions. Such equilibria arise as intersections
of the 2d-subspace in 4d-phase space (u, Uz, Ugsy, Ugzs)
that satisfies the boundary conditions, with the 3d-stable
manifold of periodic solutions. One therefore expects
equilibria to occur in one-parameter families u, (z; 7),

lm |ug(z;7) — use (k(7)z — o(7); k(7)) = 0.
xT—r0o0

Following boundary layers in the parameter 7, one
notices, far away from the boundary, variations in
wavenumber (strain) and an effective phase shift (dis-
placement) relative to the boundary (Fig. 2). We there-
fore refer to the curves k(7), ¢(7) as strain-displacement
(SD) relations [15]. SD relations can be computed ex-
plicitly at small amplitudes, exploiting integrability of
amplitude equations, and numerically at finite ampli-
tude using numerical continuation [15]. For p not too
large, SD-relations turn out to be wavenumber selecting,
k = K(p) € (k_,ky), within the Eckhaus-stable band.
At minima and maxima of K, boundary layers undergo
a saddle-node bifurcation and branches with K’ > 0 are
stable. Equilibria in bounded domains can be readily
constructed from displacement-strain relations by impos-
ing a simple phase- and wavenumber matching in the cen-
ter of the domain with exponentially small corrections
from the boundary layers. Restricting, for simplicity, to
even solutions, we may impose Neumann boundary con-
ditions at x = 0, which gives

K(p)L =¢ mod 2. (4)

The wavenumber-selecting SD-relations associated with
free boundary conditions then yields a snaking bifurca-
tion diagram in the domain size L (Fig. 3). Adiabatic
growth, that is, letting the system relax to equilibrium
each time after increasing the domain size, induces snap-
ping as observed in Fig. 1 near the turning point values
ktp. These can be computed from phase matching (4)
solving dgp/dL = 0, which gives K'(¢) = K(¢)/¢ = 1/L,
and for large L

1
kp = K(Omin) + —L 2+ ...,
= K (min) + = L7+ (5)

where we used an expansion ¢ Implementing adiabatic
growth numerically or experimentally therefore allows
one to directly measure K (¢) on stable branches of SD-
relations. Growth at constant speed is however non-
adiabatic, since the relaxation to equilibrium is diffu-
sive in large domains, eventually slower than the linear
growth.
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FIG. 2. Schematic illustration of the shooting problem, con-
necting boundary conditions to periodic orbits (a); strain-
displacement curve of (1) with free b.c. and p = 1.5, specific
boundary layer profiles as insets in the figure (b).

Based on SD relations, we now derive an asymptotic
formula for k(c) in the case of constant rate growth
¢ = L/(t). Since patterns during the growth process are
well approximated by boundary layers near the minimum
© ~ ©min, leading-order expansions can be derived from
a phase-diffusion approximation with effective diffusivity
degr evaluated at kmin = K (©min)s

z > 0;
z =0,

{ 1915 = deff'l?;uﬂ - 019;37 (6)

where effective boundary conditions are induced by the
strain-displacement relation [16]. The growth process is
described by time-periodic solutions to (6) with linear
asymptotics, J(t,x) = 9(t + 22, z), I(t,x) ~ kx for x —
00, with temporal frequency w = ck. Substituting ¢ =
0 + kx — wt gives

x> 0;

x=0. (7

~—

et = deHHLELE - CGLE7
0, = K(0—wt)— k,

Requiring pinning of the phase at the boundary except
at snapping points implies 0 — wt = 0,5, mod 27 at the
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FIG. 3. Equilibria of (1) continued in the domain size L,
with select saddle-nodes marked as orange stars; saddle-nodes
approach extrema of K (5). L*-norm shown in (a) and
wavenumber shown in (b).

boundary. Neglecting the higher-order term cf, yields

ot - dcﬁorcxv
0 = wt+ Omin

x> 0;
z =0,

(®)

mod 27,

with explicit, leading-order outer solution

Oout (£, ) = Omin + »_(—1)*(i6) "lei@tmVile/deerz (g

)

where we used the branch cut Re(\/iw/deg) > 0. Sub-
stituting into the boundary conditions of (7) shows that
the approximation by 6,y holds until snapping, when
Obout (tsnap, 0) = kmin — k. For periodicity, we require
tsnap = 27/ (ck), and obtain

2m 1 1/2
k — knin = _aweout(c_kao) ~ —<(§)\/§Cpé ) (10)
where ( is the Riemann (-function, C(%) ~ —1.460, and

Cpe = Ckmin /degr is a non-dimensionalized speed similar to
a Péclet number. The (-function arises through the limit

Re{limy_~(27 /ck) Oxbout (t,0)} which is obtained from the
analytic continuation to s = 1/2 of the polylogarithms

Ly(z) = >0, Efl))z as z approaches 1 along the unit-
circle counter-clockwise. The next order of the expansion

is determined by the passage through the minimum of K.
Expanding K (6) = kmin + K260% + ..., we find

et = deﬂewma
9;E = K292 - atmeout|i§:27'r/ck . ta

z > 0;
xz =0,

(11)

for the next order. Scaling yields a Riccati-type flux,

1 D

y >0
y =0,

{ T = 9~yya

y =02+,
Unlike the analysis of a slow passage through a saddle-
node, where the blowup time in the Riccati equations
uniquely determines the bifurcation delay, solutions with
Oly—0 ~ +/—7 for 7 — —o0o0 here come in a one-
parameter family. We sampled initial-value problems
with 0|;=r, z=0 ~ /=70 for —79 > 1 numerically, com-
puting the blowup time 7y, by extrapolation, and consis-
tently found values 7, € (2,7). Compatibility with the
periodicity w = ck then gives the expansion

(12)

k(C) = kﬁmin + kl/QC;é2 + k53/403é4 + ... y (13)

kyjo = —2Y2¢(1/2), kaja = — 2Y/4(¢(=1/2)) V2K, 2.

The snapping itself is described by a global heteroclinic
orbit connecting 0(x) = Opin to () = Opin — 27 in
(7) with ¢ = 0. Converting the heat equation into a
boundary integral equation,

=

9(t):/0 (m(t=s5))"2 (K(0(s)) = Fmin — fo(s)) ds, (14)

where 0y accounts for initial conditions, one finds a frac-
tional differential equation with saddle-node equilibrium
Omin- Exploiting monotonicity and asymptotics near the
saddle-node [17], one can readily establish the existence
of such a heteroclinic in this case of the phase-diffusion
equation. We emphasize however that the global hetero-
clinic solution is not universally described by the phase-
diffusion approximation since it occurs on an O(1) time-
scale. Indeed, we observed in the Complex Ginzburg-
Landau equation that snapping events may at times in-
volve nucleation of defects.

Note that the transition from stationary boundary lay-
ers, ¢ = 0, to periodic nucleation with large period
T = 2r/w = 27/(ck(c)) ~ 1/c cannot be viewed as a
saddle-node bifurcation on a limit cycle which would in
fact predict a much smaller period, T~ 1/4/c. The anal-
ysis here, through the presence of the memory kernel %

in the boundary-integral equation (14), exhibits the slow
diffusive transport in the healing process as the main con-
tributor to this very slow oscillation. This is also visible
through the slow spatial decay of the deformation caused



by the snapping events. The expansion of the solution
in (9) shows exponential decay towards the periodic pat-

tern with rate v = Re /iw/deg ~ %c})?, suggesting a
healing length scaling
Lyeal ~ \/5071/2-

pe

We corroborated the asymptotics (13) numerically (Fig.
4), converting (7) into a boundary integral equation

Doy = K(0 — wt) — k, (15)

with pseudo-differential operator D.j defined by its
Fourier multiplier D x(£) = (1 — /T — 4degrickl) /2deg.
Adding a phase condition f 6 = 0 with associated La-
grange multiplier k£, we used pseudo-arclength continua-
tion to continue periodic solutions in ¢ down to ¢ = 1072,
using 2'7 Fourier modes for various SD-relations. Bound-
ary profiles show the characteristic snapping behavior.
Extrapolating a plot of k vs |/Cpe gives intercept Amin
and slope ki3 ~ 2.0653 within 1072 accuracy. We fit-
ted the next-order coefficient to values 7y, € (2,7) in
good agreement with direct computations of the blowup
times in (12) and obtained improved approximations of
the asymptotic expansions.
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FIG. 4. (a): asymptotically linear relation of k — kmin vs

/Cpe with slope v/2¢(1/2); (b): plot exhibiting 1/4 exponent
in corrections; (c) sample plots of 0(¢,0) for range of ¢ values
(¢); K(0) =14 0.3sin(0), deg = 1.

Since the leading-order expansions can be derived from
slow variations near a phase § = 0,,;,, one expects the
asymptotics to be universally valid. We tested our pre-
dictions in several pattern-forming systems. We first
considered the Swift-Hohenberg equation (1) with free
boundary conditions and g = 1.5. In order to obtain
predictions from (13), we computed strain-displacement
relations and effective diffusivities numerically [15]. Fig.
5 compares asymptotics and data from direct simula-
tions [18]. We note that Amin < Kenergy, the wavenum-
ber that minimizes the energy density; that is, patterns

formed in slow growth processes are stretched relative to
the energy-minimizing equilibrium strain. We note that
since energy minimization also marks the onset of zigzag-
instability in two dimensions, patterns with k& ~ kupin
are in fact zigzag unstable in two-dimensionally extended

systems. We also compared results for the Complex
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FIG. 5. Measured (blue crosses) vs predicted (orange line)
wavenumber with associated strain-displacement relations for
(a): CGL (16), (ux = 0.4,p0 = 0.1, deg = 0.830), (b): SH
(1) (u = 1.5,dess ~ 3.531), (c): RD (17) (uo = 0.95,d, =
0.1,dy = 2,7 = 0.2,degg ~ 0.872), and (d): CH (18) (ux =
0.6, 10 = 0.15, u2 = 0.2, desr & 0.8275). Errors in the lead-
ing order coefficient ki, = —+/2¢(1/2) are 0.0061, —0.0033,
0.0914, and —0.1970 respectively.

Ginzburg-Landau equation (Fig. (5)),

x> 0;

z =0, (16)

{ Ay = Age + A— A|A?,
Ay = priA + po,
SD-relations can be computed explicitly since the steady-
state equation 0 = A, + A — A|A|? is integrable [15].

Instead of imposing boundary conditions at x = —ct,
one can also envision situations when a parameter p =
pu(x+ct) allows for periodic patterns when £ = z+ct > 0,
large, but possesses a trivial stable state when & < 0.
We explored such situations in (1) and in an activator-
inhibitor reaction-diffusion system

Ut = dyUpe +u —yv, TR, (17)

{ up = dytge + p(z — ct)u —ud — v
where p(§) = o for € Z 0. The convergence to a trivial
state as £ — —oo imposes an effective boundary condi-
tion on patterns in & > 0, for which one can compute SD-
relations at ¢ = 0. For |uo| not too large, SD-relations
select wavenumbers and one encounters similar asymp-
totics for small speeds ¢ (Fig. 5). Our last example is
the (integrated) Cahn-Hilliard equation

9t - _(ozzz + 9m - 92)1‘;
9m = UK + 1o Sin(e); emm = K2,

x> 0;

vCo 09



Again, SD-relations can be computed explicitly and are
wavenumber selecting for a large class of parameters
Lk, fo, 2 (Fig 5). We note that our study here is confined
to wavenumber-selecting SD-relations. Decreasing puy in
CH, one can explore limitations: SD-relations touch the
Eckhaus boundary and one observes nucleation of kink
defects.
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FIG. 6. Selected wavenumbers plotted on a log scale for

small and large speeds, (a): phase-diffusion (6), K(0) =
1+ 0.3sin(f), (b): CGL (16). Blue curves show direct sim-
ulations, orange and gold curves show small and large speed
predictions.

In the phase-diffusion approximation, for large speeds,
one can neglect diffusion to find ¥; = c¥,, reducing the
problem on the boundary to an ODE with wavenumber
given as the harmonic average of K,

9y = cK(9), kn= ( K(ﬁ)‘ldﬁ>_l.

At next order, one finds k(c) = ky — koc 2, ky =
F((K")?/K)(f K~2)72. Those asymptotics are not uni-
versal since the modulation approximation breaks down
at intermediate speeds. Nevertheless, we numeri-
cally found similar asymptotics in CGL (16) and
in SH with free boundary conditions. In CGL,
one finds explicit theoretical predictions k = ur +
2. =5 (7,2 _ 5,2 4\ -2 _ -2 _
MG (2u0 2uk+2uk)c ~ 0.4 —0.228¢™~ for ux =

0.4, up = 0.1; see Fig. 6 for comparisons. We note how-
ever that for speeds larger than the free invasion speed
Cfree, ONE can typically also observe un-patterned, un-
stable states created at the boundary, which are subse-
quently invaded by the patterned state, albeit at a speed
slower than the growth speed. In other words, at large
speeds the wavenumber selecting boundary conditions
studied here allow for multi-stability between pattern for-
mation at the boundary and creation of a trivial unstable
state.

Summarizing, we derived asymptotics for the
wavenumber selected in the bulk of pattern forming
systems through apical growth at uniform rate. While
in our results growth is imposed externally, somewhat
similar phenomena have also been observed in self-
organized apical growth, in particular when driven by
nonlinearity through pushed fronts [19]. Our predictions
are based on SD-relations, which characterize patterns
in fixed, semi-infinite domains.  Defect-free growth
is possible for wavenumber selecting SD relations,
where kpin lies within the Eckhaus-stable band. We
obtained good comparison between predictions and
direct numerical simulations in a variety of pattern-
forming systems, including a reaction-diffusion system,
the Swift-Hohenberg, Cahn-Hilliard, and Complex
Ginzburg-Landau equations. SD-relations can be mea-
sured directly in experiments when growth is adiabatic.
We therefore envision that our predictions would com-
pare well with experiments such as Bénard convection.
Our approach should also give quantitative predictions
for the distortion of higher-dimensional patterns, such
as hexagonal lattices created in apical growth.
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