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We introduce concepts from optimal estimation to the stabilization of precision frequency stan-
dards limited by noisy local oscillators. We develop a theoretical framework casting various measures
for frequency standard variance in terms of frequency-domain transfer functions, capturing the ef-
fects of feedback stabilization via a time-series of Ramsey measurements. Using this framework
we introduce a novel optimized hybrid predictive feedforward measurement protocol which employs
results from multiple past measurements and transfer-function-based calculations of measurement
covariance to improve the accuracy of corrections within the feedback loop. In the presence of com-
mon non-Markovian noise processes these measurements will be correlated in a calculable manner,
providing a means to capture the stochastic evolution of the LO frequency during the measurement
cycle. We present analytic calculations and numerical simulations of oscillator performance under
competing feedback schemes and demonstrate benefits in both correction accuracy and long-term
oscillator stability using hybrid feedforward. Simulations verify that in the presence of uncompen-
sated dead time and noise with significant spectral weight near the inverse cycle time predictive
feedforward outperforms traditional feedback, providing a path towards developing a new class of
stabilization “software” routines for frequency standards limited by noisy local oscillators.

High-performance passive frequency standards play a
major role in technological applications such as network
synchronization and GPS [1] as well as many fields of
physical inquiry, including radioastronomy (very-long-
baseline interferometry) [2], tests of general relativity [3],
and particle physics [4]. Atomic clocks exploiting the
stability of Cs [5–8] or other atomic references [9–13]
to stabilize an oscillator are known as the most precise
timekeeping devices available, but constant performance
gains are sought for technical and scientific applications.

In many settings, such as miniaturized deployable fre-
quency standards or in GPS-denied environments, a ma-
jor performance limitation aries from the quality of the
local oscillator (LO) that probes and is locked to the
atomic transition. The LO frequency may evolve ran-
domly in time due to intrinsic noise processes in the un-
derlying hardware [10, 11], leading to time-varying devi-
ations of the LO frequency from that of the stable atomic
reference. These instabilities are partially compensated
through use of a feedback protocol designed to transfer
the stability of the reference to the LO, but their effects
cannot be mitigated completely.

Early work characterizing the so-called Dick effect [14]
demonstrated that no matter how good the reference be-
comes, LO noise will still produce residual instabilities in
the locked LO (LLO) through the feedback protocol it-
self. The dominant mechanism for this is evolution of the
LO’s frequency on timescales rapid compared with the
shortest measurement and feedback cycle. Major con-
tributors to this phenomenology relate to the presence
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of uncompensated LO evolution during initialization and
readout stages of the measurement cycle (dead time), as
well as aliasing of LO noise at harmonics of the feedback-
loop period – the Dick effect [14–16]. Accordingly, signif-
icant research focus in the frequency standards commu-
nity has been placed on improving LO performance, using
e.g. ultra-low-phase-noise cryogenic sapphire oscillators
or similar [17, 18], with concomitant increases in hard-
ware infrastructure requirements and complexity. Other
approaches to mitigating the impact of LO instabilities
involve significant modification of the relevant reference
hardware, for instance employing multiple atomic refer-
ences [10, 19].

In this Manuscript we devise and analyze a method
by which both the accuracy of the LLO relative to the
atomic reference, and the stability of the composite pas-
sive frequency standard, can be improved without the
need for hardware modification. We develop new an-
alytic tools casting time-domain statistical measures of
frequency-standard performance in terms of analytically
calculable transfer functions [20], exploiting recent re-
lated work in quantum information [21–24]. This ap-
proach allows improvement in feedback stabilization by
bringing optimal estimation inside the feedback loop of
the LO in order to exploit non-Markovianity in the dy-
namics of LO frequency fluctuations.

Our method expresses the properties of the LLO in
terms of the statistics of the unlocked LO at differ-
ent times as well as correlations between those mea-
surements. We present the relevant transfer functions
for time-series measurements of arbitrary-duration Ram-
sey measurements, and introduce the pair-covariance
transfer function explicitly capturing correlations be-
tween measurement outcomes at different times. Thus,
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given statistical knowledge of the LO noise characteris-
tics, we craft a new form of hybrid feedforward stabi-
lization incorporating the results of an arbitrary number
of past measurements with variable duration to calcu-
late an improved predictive correction to the LO. This
approach shares concepts with techniques of optimal es-
timation [25] commonly used in engineering to predict
the evolution of a dynamical system – here the noisy LO.

In cases where dead time is significant and there is
substantial uncompensated LO evolution, we use numer-
ical simulations to show that this approach allows cor-
rections of improved accuracy to be applied to the LO.
Simulations also demonstrate that long-term stability of
the LLO is improved through a feedforward correction
scheme, where corrections are made based on weight-
ing values determined analytically in the same hybrid
feedforward approach. The method described here is
a technology-independent software-oriented approach to
improving the performance of frequency standards de-
rived from locked local oscillators. It may be freely used
in conjunction with hardware modifications targeted at
reducing the same limitations identified, such as inter-
leaving the cycles of two clocks to reduce dead time
[10, 19].

The remainder of this manuscript is organized as fol-
lows. In Section I we provide an analytic description
of the deleterious effects of LO noise on frequency stan-
dards, introducing the relevant metrics for performance
of interest. This includes presentation of novel ana-
lytic expressions explicitly capturing the effects of feed-
back stabilization on the aggregate system performance
through a recursive formulation. Section II demonstrates
how to convert these time-domain statistical measures of
frequency-standard performance to the Fourier domain,
introducing both transfer functions for individual mea-
surements and the pair-covariance transfer function cap-
turing the correlations between arbitrary-duration Ram-
sey measurements conducted at arbitrary times. We then
exploit these tools in Sec. III in order to devise a new
hybrid-feedforward correction scheme similar in spirit to
concepts from optimal estimation in order to maximize
the accuracy of corrections applied to the LO. We demon-
strate improvements in correction accuracy and LLO sta-
bility via this approach using numerical simulations with
realistic LO noise power spectra. Finally, we conclude
with a summary and discussion in Sec. IV.

I. THE EFFECT OF LOCAL OSCILLATOR
NOISE ON FREQUENCY STANDARD

STABILITY

Our primary objective is to suppress the impact of LO
frequency noise on the ultimate performance of the locked
LO, which is stabilized to a reference (e.g. an atomic
transition). Accordingly, throughout this analysis we do
not consider systematic shifts or uncertainties in the ref-
erence and explicitly assume that the reference is per-
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FIG. 1. Effect of LO noise on the performance of a locked os-
cillator. Simulated evolution for a noisy LO, unlocked (black)
and locked with traditional feedback (red). The dotted hor-
izontal bars indicate the measurement outcomes (samples)
over each cycle, ȳk, which are applied as correction at the end
of the cycle, indicated by the bent arrow in the first cycle.
Measurement period of duration TR (white background) is
followed by dead time with duration TD (grey background).
Total cycle time Tc = TD + TR, and here we represent a 50%
duty factor, d. Undetected evolution of the LO during the
dead time leads corrections to incompletely cancel frequency
offsets at the time of correction. The arrows on the far right
schematically indicate how locking reduces the variance of
y(t) though it does not eliminate it.

fect. This limit provides a reasonable approximation to
the performance of many deployable frequency standards
where LO stability is far worse than that of the associated
atomic reference.

A. Time-domain description of Ramsey
measurements and feedback stabilization

We represent the fractional frequency offset of the LO
relative to an ontologically perfect reference at time t,
y(t) ≡ (ν(t)−ν0)/ν0, where ν0 is the reference frequency
and ν(t) is the LO frequency. In such a setting, Ramsey
spectroscopy provides a means to determine the average
value of y(t) over a period TR. Point-like realisations
of the stochastic process y(t) cannot be obtained experi-
mentally; instead, the LO frequency error produces inte-
grated samples, denoted ȳk and indexed in time by k:

ȳk ≡
1

T
(k)
R

∫ tek

tsk

y(t)g(t− tsk)dt (1)

where T
(k)
R ≡ tek − tsk, [tsk, t

e
k] is the time interval over

which the kth sample is taken (“s” and “e” indicating
“start” and “end” respectively), and g(t) is a sensitivity
function capturing the extent to which LO fluctuations
at some instant t contribute to the measured outcome
for that sample [26]. The range of g(t) is [0, 1] and its
domain over the k interval is t ∈ [tsk, t

e
k]. The ideal case

is the rectangular window case, where
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g(t) =

{
1 for t ∈ [tsk, t

e
k]

0 otherwise
(2)

in which case ȳk reduces to the time-average of y(t) over
the interval [tsk, t

e
k].

In traditional feedback stabilization, the samples, ȳk,
are used to determine corrections to be applied to the
LO in order to reduce frequency differences from the ref-
erence (Fig. 1). Consider the trajectory of the same fre-
quency noise realisation y(t) in the cases of no correction,
denoted yLO(t) and correction, yLLO(t). The relation be-
tween these two cases of y(t) is

yLLO(t) = yLO(t) +

n∑
k=1

Ck (3)

where Ck refers to the value of the kth frequency correc-
tion applied to the LO, n of which have occurred before
time t.

Under traditional feedback stabilization, each correc-
tion is directly proportional to the immediately preced-
ing measurement outcome: Ck = wkȳ

LLO
k , where wk is

correction gain. Since ȳLLO
k is calculated by convolv-

ing yLLO(t) with a sensitivity function pertaining to the
measurement parameters, (3) is a recursive equation in
general. It is possible to cancel all but one of the re-
cursive terms by setting the correction gain equal to the

inverse of the average sensitivity ḡk ≡
∫ T

(k)
R

0
g(t)/T

(k)
R dt

of the preceding measurement, i.e. wk = −ḡ−1k , where
the minus sign indicates negative feedback. With this
constraint we can write

ȳLLO
k = ȳLO

k − ḡk
ḡk−1

ȳLO
k−1 (4)

and for a Ramsey interrogation and measurement with
negligibly short pulses, ḡk = 1. Applying feedback cor-
rections sequentially after each measurement is able to
effectively reduce the fractional frequency offset of the
locked oscillator, yLLO(t), over many cycles, thus im-
proving long-term stability.

We may now consider the limitations of this general ap-
proach. In the limit of a static frequency offset in time,
a single (perfect) correction will set the frequency offset
error of the LLO to zero; however, such perfect correction
is in general not achieved. The primary reason for this in
the limit of perfect measurements and corrections is dy-
namic evolution of the LO on timescales rapid compared
to the measurements which cannot be fully compensated
by the feedback loop possessing cycle time Tc.

In Fig. 1 we demonstrate how evolution of the LO
frequency during TR leads the feedback protocol to in-
completely correct the offset y(t). From the formalism
presented above we see that incomplete feedback arises
because the corrections are based only on the average

value of the frequency offset as measured over the kth
period, ȳk (horizontal solid lines in Fig. 1), rather than
the instantaneous value of the LO frequency offset at the
time of correction which cannot be known. The difference
between these two values leads to incomplete compensa-
tion of time-varying frequency offsets, and hence residual
fractional instability in the quantity y(LLO)(t). In fact,
LO evolution due to noise components evolving rapidly
on the timescale of Tc contribute to effective aliasing of
the noise in the measurement-feedback routine, and ul-
timately giving rise to the Dick effect. The impact of
these effects on the ultimate stability of the LLO is ex-
acerbated in circumstances where there is nonzero dead
time, TD, during which the LO may evolve, but this evo-
lution is not captured by a measurement. Dead time
arises due to e.g. the need to reinitialize the reference
between measurements, or perform classical processing
of the measurement outcome before a correction can be
applied.

The net impact of this uncompensated evolution is a
reduction in the long-term stability of the locked local os-
cillator. We now move on to describe the relevant quan-
titative metrics for LLO variance in both free-running
and feedback-locked settings.

B. Measures of frequency standard stability for
unlocked and locked LOs

The performance of the frequency standard is statis-
tically characterized by various time-domain measures
capturing the evolution of LO frequency as a function
of time.

The variance of ȳk, denoted σ2
y(k) and often called true

variance [26] is,

σ2
y(k) =

(
〈ȳ2k〉 − 〈ȳk〉2

)
→ E[ȳ2k] (5)

= E

[(
1

T
(k)
R

∫ tek

tsk

y(t)g(t− tsk)dt

)2]
(6)

where in the first line we assume that the true variance
is simply equal to the expected value, E, of ȳ2k, since y(t)
is assumed to be a zero-mean process. The true variance
captures the spread of measurement outcomes due to dif-
ferent noise realizations in an infinite ensemble, over a
single timestep. However, in a measurement context one
does not have immediate access to an infinite ensemble
of noise realizations, but rather a single time-series of
measurement outcomes accumulated sequentially over a
single noise realization. As a result we rely on a measure
more conducive to this setting, the sample variance for
N sequential finite-duration measurements {ȳk} [26]

σ2
y[N ] =

1

N − 1

N∑
k=1

(ȳk −
1

N

N∑
l=1

ȳl)
2. (7)
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In this work we will rely on such measures of frequency
stability, rather than the more commonly employed Al-
lan variance, in line with recent experiments [27]. Our
decision to avoid the Allan variance is deliberate, as its
form – effectively a moving average – specifically masks
the effect of LO noise components with long correlation
times. In fact the Allan variance is employed by the com-
munity in part because it does not diverge at long inte-
gration times τ due to LO drifts, as would the sample or
true variance [26, 28–30]. In the limit where the stability
of a frequency reference is dominated by LO noise (and
the reference can be treated as perfect) this approach
gives physically meaningful results. For completeness we
introduce the formal definition of the Allan variance, cal-
culated by finding the variance of the difference between
consecutive pairs of measurement outcomes:

Aσ2
y(y) =

1

2
〈(ȳk+1 − ȳk)2〉 (8)

where ȳk is the kth measurement outcome and 〈· · · 〉 may
indicate a time average or an ensemble average, depend-
ing on whether y(t) is assumed to be ergodic.

The standard measures for oscillator performance con-
sider either a free-running LO or provide a means only
to statistically characterize measurement outcomes under
black-box conditions. We may derive explicit analytic
forms for different measurements of variance in the pres-
ence of feedback locking in order to provide insights into
opportunities to improve net LLO performance through
modification of the stabilization protocol.

We write time-domain expressions for variance using
the relevant definitions provided above and the link be-
tween corrections in feedback and the history of the
LLO’s evolution. For the true variance we substitute
Eq. 4 to find

σ2
yLLO(k) = Var[ȳLLO

k ] = σ2
yLO(k) +

(
ḡk
ḡk−1

)2

σ2
yLO(k − 1)− 2ḡk

ḡk−1
σ(ȳLO

k−1, ȳ
LO
k ) (9)

and calculate the expected value of the LLO sample variance in a similar manner using Eq. 3

E[σ2
yLLO[N ]] =

1

N − 1

N∑
k=1

{(
σ2
yLO(k) + ḡ2k

k−1∑
r=1

k−1∑
s=1

σ(Cr, Cs)− 2ḡk

k−1∑
u=1

σ(ȳLO
k , Cu)

)

+
1

N2

N∑
p=1

N∑
q=1

(
σ(ȳLO

p , ȳLO
q ) + ḡpḡq

p−1∑
w=1

q−1∑
x=1

σ(Cx, Cy)

)
− 2

N

N∑
l=1

(
σ(ȳLO

k , ȳLO
l ) + ḡkḡl

k−1∑
y=1

l−1∑
z=1

σ(Cy, Cz)

)}
(10)

We see that the characteristics of the locked LO can
be expressed in terms of the unlocked LO and the co-
variance between two quantities, σ(x, y), capturing cor-
relations between them. This may include the covari-
ance of different measurement outcomes on the LO (e.g.
σ(ȳLO

k , ȳLO
l )), or different corrections applied to the LO

(e.g. σ(Cr, Cs)). It is this observation – that we may ex-
press relevant statistical quantities surrounding the per-
formance of locked local oscillators in terms of measure-
ment covariances – that will provide a path towards the
development of new stabilization routines exploiting tem-
poral correlations in the LO noise (and hence measure-
ment outcomes).

II. PERFORMANCE MEASURES FOR
FREQUENCY STANDARDS IN THE FOURIER

DOMAIN

We require an efficient theoretical framework in which
to capture these effects, and hence transition to the fre-
quency domain, making use of the power spectral density
of the LO’s fractional frequency error, Sy(ω), in order
to characterize average performance over a hypothetical
statistical ensemble. In this description residual LLO in-
stability persists because the feedback is insensitive to
LO noise at high frequencies relative to the inverse mea-
surement time. Additional instability due to the Dick
effect comes from aliasing of noise at harmonics of, T−1c ,
the effective loop bandwidth.

We may analytically calculate the effects of measure-
ment, dead time, and the feedback protocol itself on fre-
quency standard performance in the frequency domain as
follows. Defining a normalised, time-reversed sensitivity
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function ḡ(tmk −t) = g(t−tsk)/T
(k)
R , where g(t) is assumed

to be time-reversal symmetric about tmk , the midpoint of
the kth interval [tsk, t

e
k], we can express the true variance

as a convolution σ2
y(k) = E

[( ∫∞
−∞ y(t)ḡ(tmk − t)dt

)2]
.

Expanding this expression gives

σ2
y(k) =

∫ ∞
−∞

∫ ∞
−∞

E[y(t)y(t′)]ḡ(tmk − t)ḡ(tmk − t′)dt′dt

(11)

=

∫ ∞
−∞

∫ ∞
−∞

RTS
y (∆t)ḡ(tmk − t)ḡ(tmk − t′)dt′dt

(12)

where RTS
y (∆t) is the two-sided (TS) autocorrelation

function and ∆t ≡ t′ − t. Using the Wiener-Khinchin
theorem we write RTS

y (∆t) = F−1{STS
y (ω)}, relating the

autocorrelation function to the Fourier transform of the
power spectral density of the LO noise. Defining the
Fourier transform of ḡ(tmk − t):

Gk(ω) ≡
∫ ∞
−∞

ḡ(tmk − t)eiωtdt (13)

Here |Gk(ω)|2 is called the transfer function for the
kth sample, describing the spectral properties of the
measurement protocol itself. For measurements per-
formed using Ramsey interrogation with π/2 pulses of
negligible duration and zero dead time, the transfer
function has a sinc-squared analytic form |Gk(ω)|2 =

(sin (ωT
(k)
R /2)/(ωT

(k)
R /2))2.

We may then express the true variance

σ2
y(k) =

1

2π

∫ ∞
0

Sy(ω) |Gk(ω)|2 dω (14)

where the substitution of the one-sided PSD Sy(ω) is pos-

sible because |Gk(ω)|2 is even. This result is similar to
the convolution theorem, which states that F{f ? g} =
F{f} · F{g}, where ? denotes a convolution and f and g
are Fourier-invertible functions. This framework, which
expresses the true variance as the overlap integral of
the noise power spectrum and the transfer function for
the measurement protocol has recently seen broad adop-
tion in the quantum information community where time-
varying dephasing noise is a major concern for the sta-
bility of quantum bits [21–24, 31–34].

Recalling that statistical measures of LLO variance
rely not only on expressions for the true variance over
noise ensembles, but also of covariances between mea-
surements or corrections, we must equivalently express
the covariance in terms of transfer functions. Using the
identity σ2(A±B) = σ2(A) + σ2(B)± 2σ(A,B), we de-
fine a sum and a difference sensitivity function: g+k,l(t)

and g−k,l(t), with respect to two measurements indexed k

and l. These expressions are general functions of time
with two regions of high sensitivity corresponding to the
individual measurement periods.

g±k,l(t) ≡


g(t− tsk), for t ∈ [tsk, t

e
k]

±g(t− tsl ), for t ∈ [tsl , t
e
l ]

0, otherwise

(15)

These time-domain sum and difference sensitivity func-
tions have their corresponding frequency-domain transfer
functions, defined as their Fourier transforms normalised

by T
(k,l)
R :

G±k,l(ω) ≡
∫ ∞
−∞

(
g(tmk − t)
T

(k)
R

± g(tml − t)
T

(l)
R

)
eiωtdt (16)

Substituting this and the form of the true variance (14)
into the variance identity above and rearranging terms
gives the covariance of the two measurement outcomes

σ(ȳk, ȳl) =
1

2π

∫ ∞
0

Sy(ω)

4

( ∣∣∣G+
k,l(ω)

∣∣∣2 − ∣∣∣G−k,l(ω)
∣∣∣2)dω

(17)

≡ 1

2π

∫ ∞
0

Sy(ω)G2
k,l(ω)dω (18)

whereby G2
k,l(ω) is defined to be the pair covariance

transfer function. For the case of flat-top Ramsey mea-
surements over the intervals [tsk,l, t

e
k,l] this term takes the

form

G2
k,l(ω) = (ω2T

(k)
R T

(l)
R )−1

[
cos (ω(tsl − tsk)) + cos (ω(tel − tek))

− cos (ω(tel − tsk))− cos (ω(tsl − tek))
]
. (19)

This is a generalization of the transfer function previously
derived for the special case of periodic, equal-duration
Ramsey interrogations [26, 29], and allows effective es-
timation of y(t) for any t and for any set of measured
samples ȳk. Now, with the expressions above we may
calculate all relevant terms in Equations 9 and 9 in the
Fourier domain.

We thus see that this approach allows expression of
time-domain LO variances as overlap integrals between
Sy(ω) and the transfer functions capturing the effects of
the measurement and feedback protocol, including cor-
relations between measurements or corrections in time.
Through this formalism we may incorporate arbitrary
measurement protocols (e.g. arbitrary and dynamic
Ramsey periods and dead times): the underlying physics
of e.g. changing linewidth of the measurement is ex-
plicitly captured through the form and implicit time-
dependence of the transfer function used to characterize
the measurement protocol.
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III. EXPLOITING NOISE CORRELATIONS TO
IMPROVE FEEDBACK STABILIZATION

Recasting variance metrics for the stability of LOs in
terms of transfer functions is particularly powerful be-
cause it provides a path to craft new measurement feed-
back protocols designed to reduce residual variance mea-
sures for the LLO by modifying the protocol’s spectral
response. Our key insight is that the non-Markovianity
of dominant noise processes in typical LOs – captured
through the low-frequency bias in Sy(ω) [26, 29] – implies
the presence of temporal correlations in y(t) that may be
exploited to improve feedback stabilization. These cor-
relations are captured in the set of n past measurement
outcomes ȳk = {ȳk,1, · · · , ȳk,n}; accordingly future evo-
lution of y(t) may be predicted based on a past subset
of measurements within ȳk, so long as the past measure-
ments and point of prediction fall within the character-
istic correlation time for the LO noise given by Sy(ω).
This approach provides a direct means to account for
LO evolution that is normally not compensated during
dead time in the measurement process and is missed by
the averaging process over TR.

A. Optimal estimator for corrections

The formal basis of our analytic approach, in summary,
is to calculate a covariance matrix in the frequency do-
main via transfer functions to capture the relative corre-
lations between sequential measurement outcomes of an
LLO, and use this matrix to derive a linear predictor of
the LLO frequency offset at the moment of correction.
Under appropriate conditions this predictor provides a
correction with higher accuracy than that derived from a
single measurement, allowing us to improve the ultimate
performance of the LLO. Since the predictor is found us-
ing information from previous measurements (feedback)
and a priori statistical knowledge of the LO noise to pre-
dict the evolution of the LO (feedforward), we call the
scheme hybrid feedforward.

This approach shares common objectives with applica-
tion of optimal control techniques such as Kalman filter-
ing [25] in the production of composite frequency stan-
dards from an ensemble of physical clocks [35], or in
compensating for deterministic frequency shifts due to
e.g. aging or changes in the ambient temperature of a
clock [36, 37]. The primary advance of this work is the
insight that stochastic evolution of the LO can be pre-
dicted and compensated using optimal control protocols
inside the feedback loop.

In hybrid feedforward, results from a set of n past
measurements are linearly combined with weighting co-
efficients ck optimized such that the kth correction, Ck,
provides maximum correlation to y(tck) at the instant of
correction tck (Fig. 1c). Assuming that the LO noise is
Gaussian, the optimal least minimum mean squares es-
timator (MMSE) is linear, and the optimal value of the

correction is given by Ck = ck · ȳk: the dot product of
a set of correlation coefficients ck derived from knowl-
edge of Sy(ω) and a set of n past measured samples,
ȳk = {ȳk,1, · · · , ȳk,n}. We define an (n+ 1)× (n+ 1) co-
variance matrix where the (n + 1)th term represents an
ideal zero-duration sample at tck and in the second line
we write the covariance matrix in block form:

Σk ≡



σ(ȳk,1, ȳk,1) · · · σ(ȳk,1, y(tck))

σ(ȳk,2, ȳk,1) · · · σ(ȳk,2, y(tck))

· · · · · · · · ·

σ(y(tck), ȳk,1) · · · σ(y(tck), y(tck))

 (20)

≡
[
Mk Fk

FT
k σ(y(tck), y(tck))

]
. (21)

In this form the matrix Mk describes correlations be-
tween measurement outcomes while the vector Fk de-
scribes correlations between each measurement and the
LLO at the time of correction. The MMSE optimality
condition is then fulfilled for

ck =
Fk√

FT
k MkFk

wk

2π

∫ ∞
0

Sy(ω)dω (22)

where wk is an overall correction gain. The covariance
matrix elements are calculated as defined above in terms
of the LO noise power spectrum.

In the practical setting of a frequency standard exper-
iment, we wish to improve two metrics simultaneously:
the accuracy of each correction, and the long-term stabil-
ity of the LLO output. The former is achieved by max-
imising the correlation between Ck and y(tck), while the
latter is captured by the metrics of frequency variance,
sample variance, and Allan variance at long averaging
times.

Consideration of a single cycle of hybrid feedforward
correction calculated over a time-sequence yk can provide
a value for the ensemble averaged 〈yLLO(tck)2〉 in terms
of covariance matrix elements, despite the fact the LLO
frequency variance under hybrid feedforward cannot be
expressed in a closed non-recursive form for more than a
single cycle. This in turn provides a metric for the cor-
rection accuracy for hybrid feedforward, defined as the
inverse of the LLO frequency variance at time tck normal-
ized by that for the free-running LO . This captures the
extent to which a correction brings yLLO(t) → 0 at the
instant of correction, t = tck

Ak ≡
〈yLO(tck)2〉
〈yLLO(tck)2〉

=

(
1 + w2

k − wk
|Fk|2√

FT
k MkFk

)−1
(23)

We can gain insights into the performance of the cor-
rection protocol by considering limiting cases. In the
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limit of white noise with negligible correlations, Mk → I,
the identity matrix possessing only diagonal elements.
In this limit the rightmost term in Eq. 23 reduces to
wk |Fk|, which is small (there are negligible correlations
between measurement outcomes and y(tck)). Here ac-
curacy Ak → 1/(1 + w2

k), and is maximized by setting
wk = 0; this is interpreted as performing no feedback at
all, as measurements (and hence corrections) are uncor-
related with y(tck). By contrast with perfect correlations
all elements of the covariance matrix takes value unity.
Standard feedback works perfectly by selecting unity gain
and selecting the number of measurements to be com-
bined, n = 1, to correct based on a single measurement.

In intermediate regimes induced by LLO noise with fi-
nite correlation times (e.g. colored power spectra Sy(ω))
the ensemble-averaged accuracy of the hybrid feedfor-
ward correction is maximized (for wk > 0) by minimizing

the term
√

FT
k MkFk. We can interpret the effect of Mk

as an effective rotation matrix, reducing the magnitude
of this expression by effectively maximizing the “angle”
between MkFk and Fk. While it is unphysical to re-
duce this to zero based on the limiting cases discussed
above, it is possible to appropriately select k, based on
characteristics of Sy(ω), in order to improve correction
accuracy.

Beyond the accuracy of single corrections, in all slaved
frequency standards we rely on repeated measurements
and corrections to provide long-term stability, a measure
of how the output frequency of the LLO deviates from its
mean value over time. We study this by calculating the
sample variance of a time-sequence of measurement out-
comes averaged over an ensemble of noise realizations,
〈σ2

y[N ]〉. A “moving average” style of hybrid feedfor-

1

0

g 
(t)

 

t (a.u.)

C
(n)
k

C
(n)
k+1

TR TD

ts1 ts2 ts3 ts4 ts5 te5te4te3te2te1

C
(n)
k+2

Hybrid Feedforward: Overlapping corrections

FIG. 2. Schematic diagram of hybrid feedforward with
an example protocol using n = 3. Start and end times of
measurements are defined arbitrarily permitting non-uniform-
duration measurements, although measurements are illus-

trated as uniform for clarity. Corrections C
(n=3)
k are applied

in either non-overlapping blocks of three measurements or as
a moving average (depicted here). In the latter case, the co-
variance matrix must be recalculated to correctly account for
any variations in measurement duration. Dashed red arrows
indicate the first corrections performed without full calcula-
tion of the covariance matrix. This effect vanishes for k > n.

ward provides improved long-term stability, as the correc-
tion Ck will depend on the set of measurement outcomes
ȳk = {ȳk−n+1, · · · , ȳk}, among which previous correc-
tions have been interleaved, as illustrated in Fig. 2. In
this case the covariance matrix must be updated to re-
flect the action of each correction. See Appendix for a
detailed form of the Sample Variance in the case of this
form of stabilization.

B. Numerical Simulations

In order to test the general performance of hybrid feed-
forward in different regimes we perform numerical simu-
lations of noisy LOs with user-defined statistical proper-
ties, characterized by Sy(ω). We produce a fixed number
of LO realizations in the time domain [38] and then use
these to calculate measures such as the sample variance
over a sequence of simulated measurement outcomes with
user-defined Ramsey measurement times, dead times,
and the like. In these calculations we may assume that
the LO is free running, experiencing standard feedback,
or employing hybrid feedforward, and then take an en-
semble average over LO noise realizations in order to pro-
duce the expectation value of the relevant variance met-
ric. Our calculations include various noise power spectra,
with tunable high-frequency cutoffs, including common
‘flicker frequency’ (Sy(ω) ∝ 1/ω), and ‘random walk fre-
quency’ (Sy(ω) ∝ 1/ω2) noise, as appropriate for experi-
ments incorporating realistic LOs.

We begin by exploring the value of varying the Ramsey

periods, T
(k)
R in an n measurement sequence in order to

vary sampling of the LO frequency noise power spectrum

Sy(ω). As an example, we fix n = 2 and permit T
(1)
R and

T
(2)
R to be varied as optimization parameters in order to

maximize correction accuracy under hybrid-feedforward
correction. We employ a multidimensional optimization
in the form of a Nelder-Mead simplex over the mea-
surement durations, finding that a measurement proto-
col consisting of a long measurement period followed by a
short period maximizes correction accuracy (inset Fig. 3).
Intuitively this structure ensures that the measurement
routine samples both high and low-frequency regimes of
Sy(ω). The ordering of a long followed by a short Ram-
sey period ensures minimum delay (and hence maximum
correlation) between the most recent measurement sam-
pling the high-frequency regime and the noise at time of
correction, y(tck).

With Sy(ω) ∝ 1/ω and Sy(ω) ∝ 1/ω2 we observe in-
creased correction accuracy under hybrid feedforward rel-
ative to traditional feedback in Fig. 3. For a ratio of

T
(1)
R /T

(2)
R → 100 we see improvements in accuracy up to

50% through use of our protocol. This indicates clearly
that the use of statistical information about the noise can
be used to improve feedback corrections via incorpora-
tion of prediction of the LO’s evolution. In the presence
of rapid fluctuations in y(t) arising from a broadband
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FIG. 3. Calculated correction accuracy of the first correction
for hybrid feedforward normalized to feedback (accuracy =
1), under different forms of Sy(ω) as a function of the ratio
of Ramsey periods between the two measurements employed

in constructing C
(2)
k . Correction accuracy for feedback is cal-

culated assuming the minimum Ramsey time; thus for the
ratio of Ramsey measurements taking value unity on the x-
axis, the hybrid feedforward scheme takes twice as long as

feedback. Inset: depiction of the form of C
(2)
k used in hy-

brid feedforward, depicting the “slower” measurement being
performed first.

white power spectrum, the benefits of hybrid feedforward
are mitigated, as expected. Under such circumstances
the LO noise evolution is delta-correlated in time, mean-
ing there is no temporal correlation to exploit via hybrid
feedforward. In the parameter ranges we have studied nu-
merically we find that correction accuracy is maximized
for n = 2 − 3, with diminishing performance for larger
n. Again, this is determined by the relevant correlation
time of the LO noise.

As described above we also consider the improvement
in long-term stability achievable for a locked LO under
different feedback stabilization protocols. We calculate
〈σ2

y[N ]〉 up to N = 100 measurements, calculated using
feedback and hybrid feedforward with n = 2 assuming
the simple case of uniform TR and overlapping correc-
tions (Fig. 4a-b). We present the resulting normalized
improvement in 〈σ2

y[N ]〉 relative to the LLO under stan-
dard feedback in Fig. 4c, observing clear improvement
(reduction) in 〈σ2

y[N ]〉 through the hybrid feedforward
approach. Benefits vary with the details of the selected
noise power spectrum but vary 5− 25% of 〈σ2

y[N ]〉 rela-
tive to standard measurement feedback. We present data
for different functional forms of Sy(ω), including low-
frequency dominated flicker noise (∝ 1/ω), and power
spectra with more significant noise near T−1c (∝ 1/ω1/2)
. The benefits of our approach appear most significant
in the long term when high-frequency noise reduces the
efficacy of standard feedback. Notably, because of well
known relationships between LO phase noise and LO fre-
quency noise [28], significant high-frequency weight in
Sy(ω) is commonly encountered.

As another example we explicitly explore how HFF
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FIG. 4. (a, b) Calculated sample variance for an unlocked
LO, feedback, and hybrid feedforward, as a function of mea-
surement number N , for different power spectra (indicated
on graphs). Calculations assume Sy(ω) ∝ 1/ω, with a high-

frequency cutoff ωc/2π = 100/Tc and Sy(ω) ∝ 1/ω1/2 with
a cutoff frequency ωc/2π = 1/Tc, demonstrating the impor-
tance of high-f noise near ω/2π = T−1

c . PSDs with different ω-
dependences are normalised to have the same value at ωlow =
1/100Tc. (c) Normalized sample variance data from panels (a)

and (b) presented as the ratio of 〈σ2
y[N ]〉(HFF )/〈σ2

y[N ]〉(FB)

in order to demonstrate improvement due to hybrid feedfor-
ward (numbers less than unity indicate smaller sample vari-
ance under hybrid feedforward). (d) Calculated 〈σ2

y[N ]〉 for
N = 20 as a function of duty factor, normalized to the sample
variance for the free-running LO. Data above red dashed line
indicate that the standard feedback approach produces insta-
bility larger than that for the free-running oscillator. Both
data sets assume Sy(ω) ∝ 1/ω, with ωc/2π = 100/Tc. Crosses
represent data with ten noise spurs superimposed on Sy(ω),
starting at ω/2π = 1.15T−1

c , and increasing linearly with step
size 0.15T−1

c .

can mitigate Dick-effect-related aliasing by performing
calculations using noise with strong contributions near
T−1c . In Fig. 4c we calculate the expectation value of
the sample variance at a fixed value of N = 20 for a
LLO stabilized using either traditional feedback or hy-
brid feedforward. The sample variances are normalized
by that for the free-running LO, meaning that values of
this metric less than unity demonstrate improvement due
to stabilization, and smaller values indicate better stabi-
lization. On the horizontal axis we vary the duty factor
d, defined as the ratio of the interrogation time to total
cycle time: d ≡ TR/Tc from 1% to unity (no dead time).
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Knowledge of correlations in the noise allows hybrid
feedforward to provide metrologically significant gains in
stability relative to traditional feedback. These differ-
ences arise because even though the noise processes are
random, knowledge of the statistical properties of the
noise provides a means to effectively model the average
dynamical evolution of the system, and accurately pre-
dict how the system will evolve in the future. Exact
performance depends sensitively on the form and magni-
tude of Sy(ω), but results demonstrate that systems with
high-frequency noise content around ω/2π ≈ T−1c benefit
significantly from hybrid feedforward.

Results presented in Fig. 4d indicate an improvement
provided by hybrid feedforward that is most marked for
low duty factor d where the Dick effect is known to be
most severe, although overall sample variance grows for
both stabilization protocols in this limit. As d → 1 the
performance of traditional feedback and hybrid feedfor-
ward converge, as standard feedback corrections become
most effective when dead time is shortest. We even find
that in certain regimes where noise near T−1c is so strong
that standard feedback makes long-term stability worse
than applying no feedback at all, hybrid feedforward can
provide useful stabilization.

For these calculations we have selected noise power
spectra that, while conservative, are inspired by typical
LO phase noise specifications weighted to enhanced high-
frequency content due to the conversion between phase
and frequency instability [28]. We specifically compare
Sy(ω) ∝ 1/ω and Sy(ω) ∝ 1/ω with added noise spurs
near the inverse cycle time, T−1c . The latter condition
mimics LO noise in real experimental situations with
tight-SWAP clocks such as the POP atomic clock [39].
The POP clock has a duty cycle d ≈ 0.7, and a domi-
nant LO noise term Sy(ω) ∝ 1/ω with sharp spurs near
the inverse cycle time, matching the conditions treated
in Fig. 4. From these data our results suggest a poten-
tial improvement in sample variance ∼ 5 − 10% using
this extremely simple (and un-optimized) protocol. We
note that the noise strength treated in this figure is very
strong; we have generally observed that relative gains are
determined by the form of Sy(ω) rather than its absolute
magnitude.

IV. CONCLUSION

In summary, we have presented a set of analytical tools
describing LLO performance in the frequency domain for
arbitrary measurement times, durations, and duty cy-
cles. We have employed this formalism, based on gener-
alized transfer functions, to develop a new software-only
approach to LO feedback stabilization in slaved passive
frequency standards, bringing optimal estimation tech-
niques inside the feedback loop. The techniques we pro-
pose incorporate a series of past measurements and sta-
tistical knowledge of the noise to improve the accuracy of
feedback corrections and ultimately improve the stabil-

ity of the slaved LO. We have validated these theoretical
insights using numerical simulations of noisy local oscil-
lators and calculations of relevant stability metrics.

The results we have presented represent only the first
steps which we believe may be possible focused on the
integration of optimal estimation techniques to improve
clock stabilization without the need for hardware modi-
fication. For instance we have numerically demonstrated
improved correction accuracy using nonuniform-duration
TR over a cycle, as well as long-term stability improve-
ment using only the simplest case of uniform TR. These
approaches may be combined to produce LLOs with im-
proved accuracy relative to the reference at the time of
correction and improved long-term stability. In cases
where the penalty associated with increasing TR is mod-
est (captured in the statistical properties of the noise),
such composite schemes can provide substantial benefits
as well, improving both accuracy of correction to the LLO
and overall frequency standard stability.

Other expansions may leverage the basic analytic for-
malism we have introduced; we have introduced the
transfer functions, |G(ω)|2 and G2

k,l(ω), but have as-
sumed only the simplest form for the time-domain sen-
sitivity function and fixed overall gain. However, it is
possible to craft a measurement protocol to yield |G(ω)|2
that suppresses the dominant spectral features of the LO
noise. We have observed that through such an approach
one may reduce the impact of aliasing on clock stabi-
lization, indicating a path for future work on reducing
of the so-called Dick limit in precision frequency refer-
ences. Finally, recent experiments from our group [40]
have demonstrated that similar concepts in optimal esti-
mation and predictive correction may be integrated using
machine learning techniques to gain information about
Sy(ω) on the fly, and experimentally demonstrating that
similar hybrid feedforward stabilization can yield exper-
imental gains in long-term LLO stability. It is exciting
to explore combinations of analytic and numerical tech-
niques to find tradeoffs in performance vs computational
efficiency.

In the parameter regimes we have studied the rela-
tive performance benefits of the hybrid feedforward ap-
proach are of metrological significance - especially con-
sidering they may be gained using only “software” mod-
ification without the need for wholesale changes to the
clock hardware or measurement procedure. We believe
the approach may find special significance in tight-SWAP
(size, weight, and power) applications such as space-
based clocks where significantly augmenting LO quality is
generally impossible due to system-level limitations. Fu-
ture work will focus on detailed studies of measurement
routines optimized for specific clocks such as HORACE.
Overall, we believe that this work indicates clear poten-
tial to improve passive frequency standards by incorpo-
ration of optimal estimation techniques in the feedback
loop itself. Note: While preparing this manuscript we
became aware of related work seeking to employ covari-
ance techniques to improve measurements of quantum
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APPENDIX

Variances for locked local oscillators with hybrid
feedforward

The standard measures for oscillator performance con-
sider either a free-running LO or provide a means only

to statistically characterize measurement outcomes under
black-box conditions. Here we present explicit analytic
forms for different measurements of variance in the pres-
ence of feedback locking.

The expected value of the LLO sample variance can be
found by substituting (3) into the definition of the sample
variance, producing a generic expression for traditional
feedback (one measurement per correction cycle) and hy-
brid feedforward (multiple measurements per cycle):

E[σ2
yLLO[N ]] =

1

N − 1

N∑
k′=1

{
σ2
yLLO(k′) +

1

N2

N∑
p′=1

N∑
q′=1

σ(ȳLLO
p′ , ȳLLO

q′ )− 2

N

N∑
l′=1

σ(ȳLLO
k′ , ȳLLO

l′ )

}
(24)

=
1

N − 1

N∑
k′=1

{(
σ2
yLO(k′) + ḡ2k′

bk′/nc∑
r=1

bk′/nc∑
s=1

σ(Cr, Cs)− 2ḡk′

bk′/nc∑
u=1

σ(ȳLO
k′ , Cu)

)

+
1

N2

N∑
p′=1

N∑
q′=1

σ(ȳLO
p′ + ḡp′

bp′/nc∑
p=1

Cp, ȳ
LO
n + ḡq′

bq′/nc∑
q=1

Cq)− 2

N

N∑
l′=1

σ(ȳLO
k′ + ḡk′

bk′/nc∑
u=1

Cu, ȳ
LO
l′ + ḡl′

bl′/nc∑
v=1

Cv)

}
(25)

=
1

N − 1

N∑
k′=1

{(
σ2
yLO(k′) + ḡ2k′

bk′/nc∑
r=1

bk′/nc∑
s=1

σ(Cr, Cs)− 2ḡk′

bk′/nc∑
u=1

σ(ȳLO
k′ , Cu)

)

+
1

N2

N∑
p′=1

N∑
q′=1

(
σ(ȳLO

p′ , ȳLO
q′ ) + ḡp′ ḡq′

bp′/nc∑
p=1

bq′/nc∑
q=1

σ(Cp, Cq)

)

− 2

N

N∑
l′=1

(
σ(ȳLO

k′ , ȳLO
l′ ) + ḡk′ ḡl′

bk′/nc∑
k=1

bl′/nc∑
l=1

σ(Ck, Cl)

)}
(26)

where in the case of hybrid feedback, N is defined to be
total number of measurements and n is the number of
measurements per cycle. The summation signs with un-
primed indices are sums over whole cycles (of which there
are bN/nc) and the primed indices are sums over all N
measurements. In general, E[σ2

yLLO[N ]] contains recur-
sive terms that cannot be concisely expressed in terms
of the LO PSD Sy(ω) and covariance transfer function
G2(ω).

The Allan variance, the conventional measure of fre-
quency standard instability, can be expressed analo-
gously

Aσ2
y(y) =

1

2π

∫ ∞
0

Sy(ω)
∣∣AG(ω)

∣∣2 dω (27)

where the transfer function, for ideal Ramsey interroga-
tion, is

∣∣AG(ω)
∣∣2 =

2 sin4 (ωTR/2)

(ωTR/2)2
(28)

where TR lacks an index because the definition of the Al-
lan variance assumes equal-duration interrogation bins
[26]. The Allan variance calculated via this frequency-
domain approach can be compared to its value via the
time-domain approach, which consists of finding the vari-
ance of the difference between consecutive pairs of mea-
surement outcomes:
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Aσ2
y(y) =

1

2
〈(ȳk+1 − ȳk)2〉 (29)

where ȳk is the kth measurement outcome and 〈· · · 〉 may

indicate a time average or an ensemble average, depend-
ing on whether y(t) is assumed to be ergodic.

The LLO Allan variance can be found by substituting
(4) into the definition of the Allan variance (29):

Aσ2
yLLO(k) =

1

2
E[(ȳLLO

k+1 − ȳLLO
k )2] (30)

=
1

2
E

[(
ȳLO
k+1 −

ḡk+1

ḡk
ȳLO
k − ȳLO

k +
ḡk
ḡk−1

ȳLO
k−1

)2]
(31)

=
1

2

(
σ2
yLO(k + 1) +

(
1 +

ḡk+1

ḡk

)2

σ2
yLO(k) +

(
ḡk
ḡk−1

)2

σ2
yLO(k − 1)

+
2ḡk
ḡk−1

σ(ȳLO
k+1, ȳ

LO
k−1)− 2

(
1 +

ḡk+1

ḡk

)
σ(ȳLO

k , ȳLO
k+1)− 2(ḡk + ḡk+1)

ḡk−1
σ(ȳLO

k , ȳLO
k−1)

)
(32)
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tem of units (si),” (2006).

[7] D. B. Sullivan, J. C. Bergquist, J. J. Bollinger, R. E.
Drullinger, W. M. Itano, S. R. Jefferts, W. D. Lee,
D. Meekhof, T. E. Parker, F. L. Walls, and D. J.
Wineland, J. Res. Natl. Inst. Stand. Technol. 106, 47
(2001).

[8] C. Audoin and B. Guinot, The Measurement of Time,
1st ed. (Cambridge University Press, 2001).

[9] P. T. H. Fisk, Rep. Prog. Phys. 60, 761 (1997).
[10] N. Hinkley, J. Sherman, N. Phillips, M. Schioppo,

N. Lemke, K. Beloy, M. Pizzocaro, C. Oates, and A. Lud-
low, Science 341 (2013).

[11] N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers,
C. Tamm, and E. Peik, phys. rev. lett. 108 (2012).

[12] C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J.
Wineland, and T. Rosenband, Phys. Rev. Lett. 104,
070802 (2010).

[13] T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou,
A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger,
T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C.
Swann, N. R. Newbury, W. M. Itano, D. J. Wineland,
and J. C. Bergquist, Science 319 (2008).

[14] G. Dick, Proc. 19th Annual Precise Time and Time In-
terval (PTTI) Appls. and Planning Meeting (1987).

[15] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A.
Sherman, L.-S. Ma, and C. W. Oates, Nat. Photon. 5,
158 (2011).

[16] M. Takamoto, T. Takano, and H. Katori, Nature Pho-
tonics 5, 288 (2011).

[17] J. Hartnett and N. Nand, IEEE Trans. Microwave Thy
and Tech. 58, 3580 (2010).

[18] C. Hagemann, C. Grebing, T. Kessler, S. Falke,
N. Lemke, C. Lisdat, H. Schnatz, F. Riehle, and U. Sterr,
IEEE Trans. Instr. and Meas. 62, 1556 (2013).

[19] G. Biedermann, K. Takase, X. Wu, L. Deslauriers, S. Roy,
and M. Kasevich, Phys. Rev. Lett. 111 (2013).

[20] B. Girod, R. Rabenstein, and A. Stenger, Signals and
Systems (Wiley, New York, 2001).

[21] A. Kofman and G. Kurizki, Phys. Rev. Lett. 87, 270405
(2001).

[22] T. J. Green, H. Uys, and M. J. Biercuk, Phys. Rev. Lett.
109, 020501 (2012).

[23] T. J. Green, J. Sastrawan, H. Uys, and M. J. Biercuk,
New J. Phys. 15, 095004 (2013).

[24] A. Soare, H. Ball, D. Hayes, J. Sastrawan, M. C. Jar-
ratt, J. J. McLoughlin, X. Zhen, T. J. Green, and M. J.
Biercuk, Nat. Phys. 10 (2014).

[25] R. F. Stengel, Optimal Control and Estimation (Dover,
Mineola, New York, 1994).

[26] J. Rutman, Proceedings of the IEEE 66, 1048 (1978).
[27] W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier,

T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts,
M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C.
Bergquist, Phys. Rev. Lett. 97, 020801 (2006).

[28] Characterization of Clocks and Oscillators, Tech. Rep.
1337 (National Institute of Standards and Technology,
1990).

[29] J. Barnes, A. Chi, L. Cutler, D. Healey, D. Leeson, T. Mc-
Gunigal, J. Mullen, W. Smith, R. Sydnor, R. C. Vessot,

http://dx.doi.org/10.1126/science.1192720
http://dx.doi.org/10.1103/PhysRevLett.100.140801
http://dx.doi.org/10.1103/PhysRevLett.100.140801
http://dx.doi.org/10.1103/PhysRevLett.104.070802
http://dx.doi.org/10.1103/PhysRevLett.104.070802
http://books.google.com.au/books?id=pX3pSgAACAAJ
http://books.google.com.au/books?id=pX3pSgAACAAJ
http://dx.doi.org/ 10.1038/nphoton.2010.313
http://dx.doi.org/ 10.1038/nphoton.2010.313
http://dx.doi.org/10.1038/nphoton.2011.34
http://dx.doi.org/10.1038/nphoton.2011.34
http://dx.doi.org/10.1109/TMTT.2010.2086551
http://dx.doi.org/10.1109/TMTT.2010.2086551
http://dx.doi.org/10.1109/TIM.2013.2242597
http://dx.doi.org/10.1109/PROC.1978.11080
http://dx.doi.org/10.1103/PhysRevLett.97.020801


12

and G. Winkler, IEEE Trans. Instr. and Meas. IM-20,
105 (1971).

[30] C. Greenhall, D. Howe, and D. Percival, IEEE Trans.
Ultrason., Ferroelec., and Freq. Control 46, 1183 (1999).

[31] G. Uhrig, Phys. Rev. Lett. 98, 100504 (2007).
[32] L. Cywinski, R. M. Lutchyn, C. P. Nave, and S. D.

Sarma, Phys. Rev. B 77, 174509 (2008).
[33] M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga,

W. M. Itano, and J. J. Bollinger, Nature 458, 996 (2009).
[34] M. J. Biercuk, A. C. Doherty, and H. Uys, J. Phys. B

44, 154002 (2011).
[35] C. A. Greenhall, Metrologia 40, S335 (2003).

[36] B. Penrod, in Frequency Control Symposium, 1996. 50th.,
Proceedings of the 1996 IEEE International. (1996) pp.
980–987.

[37] C. Nichols, P. Wu, G. Carleton, and S. Beaudin, (2006).
[38] A. Soare, H. Ball, D. Hayes, X. Zhen, M. C. Jarratt,

J. Sastrawan, H. Uys, and M. J. Biercuk, Phys. Rev. A
89, 042329 (2014).

[39] S. Micalizio, C. E. Calosso, A. Godone, and F. Levi,
Metrologia 49, 425 (2012).

[40] S. Mavadia, V. Frey, J. Sastrawan, S. Dona, and M. J.
Biercuk, arXiv:1604.03991 (2016).

[41] M. Mullan and E. Knill, arXiv 1404.3810 (2014).

http://dx.doi.org/10.1109/TIM.1971.5570702
http://dx.doi.org/10.1109/TIM.1971.5570702
http://dx.doi.org/10.1109/58.796124
http://dx.doi.org/10.1109/58.796124
http://dx.doi.org/10.1109/FREQ.1996.560284
http://dx.doi.org/10.1109/FREQ.1996.560284
http://arxiv.org/abs/1404.3810

	Analytically exploiting noise correlations inside the feedback loop to improve locked-oscillator performance
	Abstract
	 The effect of local oscillator noise on frequency standard stability
	Time-domain description of Ramsey measurements and feedback stabilization 
	Measures of frequency standard stability for unlocked and locked LOs

	Performance measures for frequency standards in the fourier domain
	Exploiting noise correlations to improve feedback stabilization
	Optimal estimator for corrections
	Numerical Simulations

	Conclusion
	Appendix
	Variances for locked local oscillators with hybrid feedforward

	References


