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A decrease in system size can induce qualitatively different behavior compared to the macroscopic
behavior of the corresponding large-size system. The mechanisms of this transition, which is known
as the small-size transition, can be attributed to either a relative increase in the noise intensity
or to the discreteness of the state space due to the small system size. The former mechanism has
been intensively investigated using several toy and realistic models. However, the latter has rarely
been analyzed and is sometimes confused with the former, because a toy model that extracts the
essence of the discreteness-induced transition mechanism is lacking. In this work, we propose a 1-
and 3-body reaction system as a minimal model of the discreteness-induced transition and derive
the conditions under which this transition occurs in more complex systems. This work enriches our
understanding of the influence of small system size on system behavior.

I. INTRODUCTION

Detecting qualitative transitions in system’s state
such as the phases is important for characterizing
how the system changes its nature depending on the
system’s parameters. For a macroscopic system with
an infinite number of particles, the n-th order phase
transition is defined by the existence of a singularity
in the n-th derivative of the free energy. Although a
phase transition with a singularity does not occur in
finite or small-size systems, the notion of this tran-
sition can be extended. By considering the typical
states of a stochastic finite-size system in conjunc-
tion with the peaks of the stationary distribution,
transitions in the finite-size system can be defined as
the emergence or disappearance of peaks in response
to changes in the system parameters. For example,
such a change in the peaks in response to a variation
in the noise intensity is known as a noise-induced
transition [1-4].

Although this phenomenon was reported in the
1970s, it has attracted renewed attention in the field
of systems biology, because chemical reactions within
a cell comprising a small number of molecules are
typical examples of small-size system behavior. In-
deed, with a decrease in the system size or in the
total number of molecules, changes in the distribu-
tion peaks appear and a transition due to the small-
number effect is exhibited [5-11]. This phenomenon
is also relevant for evolutionary games in finite pop-
ulations, for example, for the establishment of coop-
eration and consensus among social agents [12, 13].

* yoheis@sat.t.u-tokyo.ac.jp

Despite their prevalence and importance, however,
the origins of small-size transitions are not yet fully
understood. This lack of understanding exists be-
cause system smallness has a minimum of two com-
pletely different effects on the system: it increases the
intrinsic noise intensity and renders the state space
discrete.

The original noise-induced transition reported in
Refs. [1-4], along with the majority of other results
[7, 8, 10, 11], can be attributed to increased noise
intensity and the multiplicative nature of the noise
itself. This conclusion can be drawn because such
transitions can be observed even if we employ a con-
tinuous approximation of the original dynamics over
the discrete state space using the chemical Fokker-
Planck equations (CFPE) [14]. In this transition,
roughly speaking, the system remains in the region
for which the noise intensity is smaller than other re-
gion in the state space, which results in the appear-
ance of a new peak in the stationary distribution.

The dynamic properties and biological implications
of noise-induced transitions have already been inten-
sively analyzed for both simple toy models [7] and
more complex models [15]. The impact of discrete-
ness, in contrast, has rarely been analyzed. In fact,
this factor is not even acknowledged in the majority
of works on small-size transitions. As an example
of a study in which the influence of discreteness is
considered, Togashi et al. have reported that a dra-
matic change in dynamics is observed in a small-size
autocatalytic reaction system in response to an alter-
native extinction of molecular species in the autocat-
alytic loop; this is caused by the discreteness of the
system [5, 6]. However, although these researchers
have identified discreteness as the origin of the ob-
served transition, Ohkubo has argued that this tran-



sition can instead be attributed to a noise-induced
transition, if a simplified version of their model is
employed [7]. Therefore, the ability of system dis-
creteness to induce new transitions remains an un-
certain and controversial topic.

One fundamental problem that hampers our under-
standing of the role of discreteness is the lack of a
minimal toy model that extracts the essence of a
purely discreteness-induced transition, provided such
a transition indeed exists. In this paper, we resolve
this problem by proposing a 1- and 3-body reac-
tion system as a minimal model of the discreteness-
induced transition. By extending this model, we
also derive a sufficient condition under which the
discreteness-induced transition occurs in more com-
plex systems. Finally, we note a possible connection
of the system to phenomena other than a reaction
system.

II. DISCRETENESS-INDUCED
TRANSITION IN 1- AND 3-BODY
REACTION SYSTEM

Throughout this paper, we consider spatially ho-
mogeneous reaction systems, which consist of two
species, A and B [16]. We assume that the total
number of particles, N = ny + np, is conserved,
where n4 and np are the number of particles of A
and B, respectively. Thus, the state of the system
is determined by the difference in the particle num-
bers of A and B, z = na —ng (—-N < z < N),
and also the system size, €, is proportional to N,
Q) o« N. Henceforth, we call N the system size. We
also suppose that the number of particles varies by
one during each reaction, that is, the particle number
difference jumps from z to either z + 2 or z — 2 for
an infinitesimal time step [17]. These assumptions
guarantee the detailed balance condition (DBC) at
the stationary state (see Appendix A). The dynam-
ics of such reaction systems can be described by the
master equation (ME),

OP(t,z) =Y [w(y,z—y) P(t,z—y)

y==+2

—w(y, Z) P(tv Z)] ’ (1)
where P(t, z) represents the probability that the sys-
tem is in the state z at time ¢, and w(y, z) denotes the
transition rate from z to z + y. As we are not inter-
ested in the dependence on the initial conditions, we
focus on the stationary distribution, Py, (z), which
can be obtained using the DBC as a recursion rela-
tion, Pat (2 +1) = [w(y, 2) /w(—y, 2 + )] P (2), and
the normalization condition, > Ps.(2) =1.

The first model we consider is the following 1- and
3-body reaction system:

ASBBS A, (2)
24+ B 2% 34 A+2B 2% 3B, (3)

24+ B 2% A1 2B A+2B 2% 24+ B, (4)

where ¢ and A\g denote the 1- and 3-body reaction
rates, respectively [18]. The transition rates are given
by
U}3(2,Z) = w1,3(2az) +w3,3(272)7 (5)
w3(—=2,2) = w1 3(—2,2) +ws3(—2,2), (6)

where

wi 3(£2,2) = g (N F2), (7)
wy (2, 2) = % (N +2)(N = 2)(N—=2). (8)

Here, Eq. (7) denotes the transition rates from z
to either z 4+ 2 or z — 2 through 1-body reactions
(Eq. (2)), and Eq. (8) represents those through 3-
body reactions (Egs. (3) and (4)). The factor (N —2)
in Eq. (8) means that the 3-body reactions can-
not arise when the total particle number, N, is less
than 3 [19]. As a result of the DBC, the relation
w(2,2) Py (2) = w(—2, 242) Py.(2+2) is maintained,
and the ratio between two neighboring states can be
expressed as

Py (2 +2) _ ws(2,2)
Py (2) w3(—2,2+2)’
I PR GO N
e e G

where

f3(z) = w3(2,2) — w3 (-2, 2+ 2),
€ N -2
:)\0(1+Z) |:—)\—O+W:|
It is apparent that f3(z) > 0 and f3(z) < 0 cor-
respond to Py (z +2) > Py (2) and Py (2 + 2) <
Py (z), respectively; hence, f5(z) determines the lo-
cal structure of the stationary distribution. More-
over, if the term inside the square bracket in the last
line of Eq. (10) is negative, Py.(z) is convex at z = 0;
that is, the stationary distribution is unimodal. In
contrast, if this term is positive, Py (2) is concave at
z = 0 and the stationary distribution becomes bi-
modal. This transition occurs at the NV that satisfies
(N —2)/N? = €/\g, and the uniform distribution
appears at the stationary state. The critical system
size is given by

Nf@%:l 591 (ﬁvz—gﬁ ., (11)

2 € € €

(10)
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FIG. 1. (color online) Stationary distributions of the 1-
and 3-body reaction system (Egs. (2), (3) and (4)) as
functions of z. The curves and points denote the Ps.(2),
obtained analytically from the DBC and numerically from
the stochastic simulation by Gillespie’s algorithm [20],
respectively. The reaction rates are ¢ = 12, A = 100, and
the number of particles is, from bottom to top, N = 20
(red), 8 (green), 4 (blue), and 3 (purple). The noise-
induced transition occurs between N = 8 and 4 whereas
the discreteness-induced transition appears between N =
4 and 3.

where the upper index of the left-hand side corre-
sponds to the sign of the right-hand side.

We suppose that N decreases from infinity. From
Egs. (10) and (11), Py .(z) is unimodal when N >
NF(3), bimodal when N7 (3) < N < NJ(3), and
unimodal for N < N7 (3). FIG. 1 shows the station-
ary distributions obtained analytically from the DBC
or numerically from a stochastic simulation. We find
that two transitions occur in accordance with the de-
crease in N. The stochastic trajectories of the condi-
tions shown in FIG. 2 indicate that the system trap-
ping time is increased as N decreases, which causes
the transition at N (3). In contrast, the transition
at N7 (3) cannot be confirmed from the trajectories
at N =4 (blue) and 3 (purple), unless the stationary
distributions, which have small curvatures at their
centers, are compared.

Next, we explain that the transitions at N} (3) and
N (3) can be understood as noise- and discreteness-
induced transitions, respectively. Following Ref. [7],
we divide the reactions, Egs. (5) and (6), into
symmetric and asymmetric parts, wss(2,z) =
w3 3(—2,2) and wy3(2,2) # wi3(—2,2), respec-
tively. Because of the asymmetricity of the transi-
tion rates, wi 3(2,z) — w1 3(—2,2) = —ez, one ex-
pects that the system at z jumps more frequently
toward z = 0 than z = £N. This transition direc-
tion bias can be regarded as a kind of force or drift

FIG. 2.
and 3-body reaction system. The vertical and horizontal

(color online) Stochastic time evolutions of 1-

axes denote z and t, respectively. The correspondence
between the colors and parameters, N, €, and Ao, is the
same as in FIG. 1, from bottom to top. We use arbitrary
time unit.

term in CFPE. In contrast, as the symmetric part,
w3 3(2,2) = w3 3(—2,2), causes the system to jump
from z to either z + 2 or z — 2 at an equal rate, this
part works as noise or diffusion term in the CFPE.
Thus, the dynamics of this system can be visualized
via an analogy with a system driven by force and
noise. From the second line of Eq. (10), one finds that
the first and second terms inside the square bracket
represent the drift and noise, respectively. There-
fore, Eq. (10) indicates which effect more strongly
determines the structure of Py (z). When N is suf-
ficiently large, the noise term can be negligible as a
result of the law of large numbers, and the station-
ary behavior is almost fully determined by the drift
term. In this situation, the system is expected to
frequently achieve states in the vicinity of z = 0,
the stable fixed point of the drift term. However,
the noise term increases as N is decreased, and the
noise becomes dominant over the drift. That is, even
though z = 0 appears to be stable based on the anal-
ysis of the drift term, the noise intensity is strongest
here; thus, the system is quickly kicked off. As a
result, one frequently observes the system at states
in the vicinity of z = =N, where the noise intensity
is small or, equivalently, where the system is trapped
for a longer period of time [21]. This phenomenon oc-
curs when the noise overcomes the drift term; thus,
it is referred to as a noise-induced transition.

We next evaluate the noise effect when N is further
decreased. The second term of Eq. (10) decreases
owing to the numerator, (N — 2). Consequently, the



drift becomes dominant once more in the case of an
extremely small N, and the unimodal distribution
appears. The (N — 2) factor, which is introduced
by Eq. (8), indicates that 3-body reactions cannot
arise when N < 3. Hence, it can be concluded that
the transition at N (3) emerges due to the discrete-
ness of N. In fact, if we approximate (N — 2) by N
and neglect this discreteness effect, the transition at
N (3) disappears. Such an approximation is often
employed in the Kramers-Moyal expansion in order
to derive the CFPE, which neglects O(1/N?) terms
and fails to describe extremely small-size systems. (A
detailed calculation is shown in Appendix B.)

IIT. DISCRETENESS-INDUCED
TRANSITION IN 1- AND M-BODY
REACTION SYSTEM

Because of the simplicity of our minimal system, the
second critical system size, N (3), is a maximum of 4
when )\g/e = 8, which is not feasible for any realistic
situations. In the following, we demonstrate that the
critical system size for the discreteness transition can
be sufficiently large for applications to biological and
social systems, by considering general M-body reac-
tions rather than those with M = 3. To extract the
essence of this behavior analytically, we consider a
restricted M-body reaction system, which consists of
a couple of reversible 1-body reactions and 2(M — 1)
kinds of special M-body reactions as follows (M > 3)
[22]:

AS B,
mA+ (M —m)B

BS A, (12)

AM,m

— = m+ 1A+ (M —-—m-1)B, (13)
mA+ (M —m)B
A 1) A+ (M —m+1)B, (14)
where m represents the number of particles that par-
ticipate in each reaction and takes all integers from
m=1tom = M — 1. Each M-body reaction rate,
AM,m , 1S given by

- (M —2)!
Mo = G TR (M= 2) = (m =D}
= py—20m-1X0, (15)

where A\g > 0 and ,C, denotes the combination,
2Cr = nl/[rl (n—7)!]. The sum of the reaction rates

can be written as (see Appendix C)

€
wp(£2,2) = §(N F2)

420 (N—i—z)(N—z)Aﬁl(N—E)
ANM-1 - ’

(16)

where the products of (N — ¢) indicate that the M-
body reactions cannot occur when the total particle
number is less than M. Then, we evaluate the in-
crease and decrease of Py (z) using

fu(z) =wpm(2,2) —wp (=2, 24 2),

)\0 M-1
Z(Z+1) _€+W H(N—f)‘| 5
(=2
= Mo(z+1) {—Aio + h(N, M)} . an
1 M—-1
(N, M) = = [Tv-20. (18)
=2

As we have explained in the previous model, the sta-
tionary distribution of this system also changes form
from unimodal to bimodal, when the sign of the term
inside the square bracket in Eq. (17) changes from
negative to positive. The critical system size, N.(M),
can be evaluated from h(N., M) =€/X\o [23]. In or-
der to examine both the existence and the number of
solutions of this equation, it is useful to plot €/\g and
h(N, M) as functions of N, and to focus on the local
maximum of hps(N) that first appears when N de-
creases from infinity. Let Nyax(M) be the position of
this local maximum. In FIG. 3, we show hps(N) for
M = 20 as an example, and find that this function
has a local maximum, Ny, for 202 < N < 203. We
find that, if €/Xo < h(Nmax(M), M) is satisfied, two
kinds of transition can emerge at the N values that
satisfy €/Ag = h(Ne, M) .

Next, we suppose €/Ag < h(Nmax(M), M) and in-
vestigate the behavior of h(N, M), which is related
to the noise effect, when N decreases from infinity.
(For instance, see FIG. 3.) First, h(NN, M) increases;
hence, the noise affects the system. As a result,
a noise-induced transition arises at N (M), which
is the first intersection point of h(N, M) and €/Xo.
Then, when N is smaller than Nyax(M), h(N, M) is
significantly affected by the discreteness of the par-
ticle number and the noise effect is again reduced.
Consequently, a discreteness-induced transition oc-
curs at N7 (M), which is the second intersection
point of h(N, M) and €/)\g. Based on this analysis,
we can conclude that the critical system size for the
discreteness-induced transition, N, (M), can become
large for most Npax(M) .



In FIG. 4, we also confirm that the stationary distri-
bution of this system at M = 20 certainly changes
twice across N (20) and N (20). From the stochas-
tic simulation shown in FIG. 5, we find that, when
N is smaller than NJ(20), the trapping time in
the vicinity of the boundaries is increased. Fur-
thermore, for N < N7 (20), the system appears
to frequently visits in the vicinity of z = 0. In
FIG. 6, Npax(M) is plotted as a function of M and
the Npax(M) of this system increases quadratically
as M becomes large. Thus, we conclude that the
discreteness-induced transition can be observed for
a rather large N, provided multi-body reactions are
permitted. Furthermore, if different M-body reac-
tions arise in a system, e.g., 1-, 3-, and 10-body re-
actions, discreteness-induced transitions may emerge
several times as N decreases.
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FIG. 3. (color online) First (red dashed line) and second
(blue solid line) terms inside square brackets of Eq. (17),
€/Xo and h(N, M), respectively, as functions of N for
M = 20, Ao = 10000, and € = 17. In the region where
the blue curve is above (below) the red curve, the term
inside the bracket is positive (negative), which means that
the stationary distribution is concave (convex). We find
that h(N,20) has a local maximum for 202 < N < 203.
The noise- and discreteness-induced transitions emerge
at the intersection points of the two lines, which appear
after and before this local maximum, respectively.
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FIG. 4. (color online) Stationary distributions of 1- and
20-body reaction system as functions of z. The curves
and points denote the Py (z) obtained analytically from
the DBC and numerically from the stochastic simulation
[20], respectively. The reaction rates are e = 17, A\g =
10000, and the number of particles is, from bottom to top,
N =400 (red), 350 (green), 300 (blue), 250 (purple), 200
(cyan), 150 (magenta), 100 (black). The noise-induced
transition appears between N = 350 and 300 and the
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FIG. 5. (color online) Stochastic time evolutions of 1-
and 20-body reaction system. The vertical and horizontal
axes denote z and t, respectively. The correspondence
between the colors and parameters, N, ¢, and Ao, is the
same as in FIG. 4, from bottom to top. We use arbitrary
time unit.
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FIG. 6. (color online) Relationship between reaction
degree, M, and particle number Npax, which becomes
the largest extreme point of the second term inside the
bracket of Eq. (17).

IV. SUMMARY AND DISCUSSION

As the size of a system decreases, the typical states,
which can be associated with the peaks of the station-
ary distribution, may change dramatically, even if no
macroscopic transitions emerge. The effect of small
N is considered to be twofold: there is an increase
in the intrinsic noise and the state space discreteness
is emphasized. The transitions investigated in the
majority of the previous studies related to this topic
[1-4, 7, 8, 10, 11] are thought to have been caused by
intrinsic noise, as the examined systems continued to
exhibit transitions even when the state space of the
system was assumed to be continuous. In contrast,
the effect of discreteness has rarely been studied [5],
and the argument that discreteness causes a transi-
tion for small N remains controversial.

In this paper, we have analyzed a 1- and 3-body
reaction system and confirmed the existence of the
discreteness-induced transition. In addition, we eval-
uated the critical system size for the discreteness-
induced transition and showed that, in a restricted
1- and M-body reaction system, the critical system
size quadratically increases as a function of M. This
result indicates that the discreteness effect may not
necessarily be neglected in finite-size systems.

Although multi-body reaction itself often exists in
biochemical reactions, the present form of reactions
may not be realistic as chemical reactions, especially
when M is large. However, a multi-body reaction
system can be interpreted as a consensus model for
social agents [24-26]. In such cases, A and B rep-
resent two different opinions. The 1-body reactions
(Eq. (12)) indicate individuals spontaneously chang-

ing their opinions from A to B or from B to A at
the rate €, which represents the frequency at which
opinions are changed. In contrast, M-body reactions,
Egs. (13) and (14), represent an opinion change when
M-agents interact in a convention. Note that this
system is symmetric under the exchange of A and B;
thus, we do not consider the case in which the in-
dividuals neither have an opinion preference nor are
governed by majority rule. As we have shown, the
stationary distribution is affected by both the sys-
tem size, N, and the reaction particles, M. Two
peaks appear at z = £ N in the probability distribu-
tion for N; (M) < N < N} (M). These two peaks
correspond to the case in which all the individuals
have the same opinion, either A or B. Thus, it is
expected that a consensus can be achieved without
a preferred opinion in this scenario. Therefore, when
€, A\g, and N are given, the opinion of a whole system
can be unified by choosing an appropriate convention
size, i.e., M. This result may provide a new scenario
towards consensus achievement. So far it is often be-
lieved that opinions among agents are unified due to
opinion preference or majority rule, as has also been
discussed in several theoretical models [27, 28]. How-
ever, neither of them are employed in our system, as
shown in Egs. (12), (13) and (14). Instead of them,
we only assume that agents avoid disorder of a con-
vention, that is, agents have large M-body reaction
rates, as the “entropy” in a convention is large (see
Eq. (15)). Hence, our result shows that opinions can
be unified only by avoidance of disorder.

Although we adopted specific reaction rates in the
present paper, it will be interesting to relax this re-
striction on the rates, and study the discreteness-
induced transitions in a more general case, where
diverse transitions may also coexist, with several
phases in Py (2) .
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Appendix A: Detailed balance condition

We explain here that the systems treated in this pa-
per satisfy the DBC in their stationary states. First,
consider the ME at a system boundary, z = N. As
the total particle number is conserved in this system,
the transition rate from z = N to z = N + 2 is zero,
i.e., w(2,N) = 0. Thus, at the stationary state, the
ME becomes

w(—2, N)Py (N) = w(2, N — 2)Py (N — 2).
(A1)

Then, we proceed to the neighboring state, z = N —2.
The ME at this state can be expressed as

[w(=2, N — 2) + w(2, N — 2)] Pyt.(N —2)
= w(2, N —4) Py (N — 4) + w(—=2, N)Py (N) .
(A2)
Substituting Eq. (A1) into Eq. (A2), we obtain
w(—2,N — 2)Py (N — 2)
=w(2, N —4)Py (N — 4). (A3)

In the same manner, by considering successive MEs
at the neighboring states, we can conclude that the
DBC

w(2,2)Pst.(2) = w(—2,2 4+ 2)Py. (2 + 2),
(A4)

is satisfied in this system.

Appendix B: Analysis of 3-body reaction system
using chemical Fokker Planck equation

As it is difficult to analytically solve the ME, even
in the stationary state, the CFPE is employed to
evaluate the properties of the stationary distribu-
tion. However, the CFPE neglects fluctuations of
O(1/N?) and, therefore, a qualitatively incorrect re-
sult may be derived for small N. Here, we show that
a discreteness-induced transition cannot be found if
we employ the CFPE to describe the dynamics of
the 1- and 3-body reaction system considered in the
main text. In this Appendix, we change the variable
from the particle number difference, z, to the particle
concentration difference, x = z/N, and assume that
Py () is a continuous function. This assumption is
valid provided N is sufficiently large. However, as
this approximation neglects the particle-number dis-
creteness, it becomes problematic in extremely small-
size systems. By employing the Kramers-Moyal ex-
pansion and neglecting O(1/N?) terms, we can derive

the CFPE [29] as follows:
(’%PCFP (t, (E)

= — 9, [A(x) PCTP (t,2)] (B1)
b 3 (BP0,

where the drift and diffusion terms, A(z) and B(x),
respectively, are given by

A(z) = —2ex, (B2)
B(z) = —2X07® + 226 + Ao] - (B3)
Then, the stationary distribution becomes
PSP () = R ) (B4)
o(x) = <])\\]—06—1) ln(i—z+1—x2> ,
(B5)

where R is the normalization factor. This system ex-
hibits a noise-induced transition at the critical sys-
tem size, N. = A\o/¢, and this size agrees with the ex-
act result of Eq. (11) up to O(1/N). However, as we
neglect O(1/N?) terms, which express the lack of re-
actants in the 3-body reactions for small N, we fail to
find discreteness-induced transitions using Eqs. (B4)
and (B5).

Appendix C: Derivation of Eq. (16)

As the 1- and M-body reaction system treated in
the main text is invariant under the exchange of A
and B, wy(—2, z) satisfies wyr(—2,2) = wpr(2, —2)
and, therefore, it is sufficient to show that the
wpr(2, z) given by Eq. (13) becomes the second term
of Eq. (16). For convenience, we rewrite the transi-
tion rate through the M-body reactions, war,am (2, 2),
using n4 and np in place of N and z. We obtain

M—-1
war,m (2, 2) = Z W, (2, 2),
m=1
= A (N2
- A 2MNMEL (N A 2 - 2m)l!
(N =)l
>< )
[N —z—2(M —m)]!
S A na!
- A NMEL (g +m— M)
nB!
— C1

where Wprm(2,2) denotes the reaction rate of
Eq. (13) for each m. When the reaction rates are



given by Eq. (15), Eq. (C1) becomes

Wpnr M(2 Z)

NMlZMQle

_ X
= NM-1 gm(na,np).

na! ng!
(na+m—M)! (ng —m)!’

(C2)

This can be simplified as follows:

gm(na,np)

=na(na—1)---

+rm—2C1na(na—1)---
xnpg(ng —1)

(na—M+2)ng
(na—M +3)

+r-—202na(na—1)--(na—M+4)
an(nB — 1)(713 — 2)
_|_. ..
Frm—2Cm_1nana—1)---(na—M+m+1)
xngng—1)---(ng—m+1)

+r—2Cr—2na nB(nB — 1) s (nB - M + 2),

(na—M+3)np
x[(na —M +2)+ (np —1)]

F+[m—2C1 = 1lna---(na—M+4)npg(ng — 1)

x[(na — M +3)+ (np —2)]

=N

_|_...

+Hm—2Cm-1—m-2Cm—2+ m—2Cm—3+ -]
(na—M+4+m+2)ng---(np—m+1)
X[(na—M+m+1)+ (np —m)]

_|_...7

M-1 /m-—1
= (Z(—l)mll M20e>
m=1 \ ¢=0
n4! ng!

“atm—M+ 1) (np —m)!

X [N —M+1],
(C3)

where we use ng +np = N in the last line of the
above equation. The term within parentheses in

Eq. (C3) can be rewritten into a simple form. Taking
the alternating sum of r;_3Cy + py—3Cr—1 = p—2C0
from £ = m — 1 to 0 (note that py_3C_; = 0), we

obtain
1=M-2Cm-1— M—2Cm_2+ m—2Cm_3

NI (_1)7”*1

M73Om7
m—2Co,

m—1
= Z (=1)" aCy

(C4)
£=0
Therefore, Eq. (C3) becomes
gm(na,np)
M2
=[N=M+1] Y m3Cm
m=1
o na! ng!
(na+m—M+1)! (ng —m)!’
=[N —M+1]gru-1(na,np), (C5)

where we change the upper boundary of the summa-
tion from M — 1 to M — 2 using p;_3Cp—2 = 0. By
applying the same transformation repeatedly, we find
[N—M+1)[N—-M+2] x

X [N - 2] g?(nAu nB)u

M-1

= H[N—f]nAnB.

(=2

QM(nAanB) =

(C6)

Finally, we obtain the second term of Eq. (16),

N, Mo1

NMO T H [N —flnang,
(=2

M-1

Ao Iy -2

T ANM-1
(=2
X(N 4+ 2)(N — z2). (C7)
The other part of the M-body reaction rate,
wpr,m(—2, z), can be derived from wpsa(—2,2) =

wa,m (2, —z), as we have noted at the beginning of
this Appendix.

wM M(2 Z)
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