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Recurrence quantification analysis (RQA) is used to characterize a dynamical transition that takes
place in the diffusive sandpile. The transition happens when a combination of the drive strength, dif-
fusivity and overturning size exceeds a critical value. Above the transition, the self-similar transport
dynamics associated to the classical (non-diffusive) sandpile is replaced by new transport dynamics
dominated by near system-size, quasiperiodic avalanche events. The deterministic content of trans-
port dynamics, as quantified by RQA, turns out to be quite different in both phases. The time
series analyzed with RQA in this work correspond to local sand fluxes at different radial locations
across the diffusive sandpile.

I. INTRODUCTION

The concept of self-organized criticality (SOC)[1] ap-
peared over the latter half of the 20th century as a possi-
ble explanation for different observed dynamics of differ-
ent physical and biological complex systems[2–6]. Their
macroscopic behaviour displayed the spatial and tempo-
ral scale-invariance characteristic of the critical point of a
phase transition, but without requiring any careful tun-
ing of some parameter in order to reach the SOC state.
SOC dynamics is often observed in slowly-driven non-
equilibrium systems, with a large number of elements
entertaining nonlinear interactions. The key ingredient
for the appearance of SOC is the existence of (a) an in-
stability threshold and (b) two disparate timescales, one
associated with the source of energy (or drive) and the
other with the dissipation of energy (or relaxation). The
main properties showed by systems in such a state are:
1) spatial self-similarity (no characteristic lengths); 2)
temporal persistence (memory effects) and 3) long-term
(divergent) correlations. These properties are in contrast
to those found in systems whose transport is dominated
by pure diffusion, in which characteristic lengths (spa-
tial locality) and time (lack of memory and uncorrelated
dynamics) can be established.

In natural systems a competition between transport
mechanisms with different dynamics is often observed.
As an example, the transport of energy and particles in
fusion plasmas magnetically confined in a tokamak can
be considered, at least in certain regimes (see Ref. 7 for
a thorough review), as the superposition of (at least) two
different contributions: 1) an intermittent flux (referred
to as the avalanche or SOC channel in what follows),
driven by some kind of near-critical turbulence; 2) a con-
tinuous flux (referred to as the diffusive channel), driven
by either collisions or some kind of supercritical turbu-
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lence. In cases like these, in which two (or more) channels
contribute to transport, hybrid dynamical regimes should
be expected in which the intrinsic nature of transport can
itself change, in addition to the possible change in trans-
port levels.
There is some experimental evidence pointing to the

self-similar nature of plasma edge fluctuations and to
the existence of avalanche-driven transport in real fusion
plasmas in certain confinement regimes[7–10]. The SOC
paradigm has been proposed as a relevant concept for the
description of plasma transport in tokamaks[11, 12]. It
does indeed provide a framework in which some exper-
imental findings[13–16], initially not understood, might
find an explanation. The importance of the interaction
between the SOC channel and standard diffusive chan-
nels in this context has been pointed out, in particular
due to the enormous radial gradients present. In fact, it
is the interest in understanding this interplay that first
drove the efforts towards studying the dynamics of the
diffusive sandpile [17]. In those studies, it was found
that a remarkable transition took place, that affected
the global transport dynamics, as the relative importance
of the diffusive channel increased sufficiently, even when
it still remained strongly subdominant [19]. In partic-
ular, the transport dynamics changed abruptly and the
characteristic self-similar avalanche-like events typical of
SOC systems were replaced by quasiperiodic constant-
size edge-triggered events. As a result, the system lost
most of its SOC properties.
In this article, we revisit this transition from the novel

perspective offered by recurrence quantification analysis
(RQA) techniques. This rather different take offers a
complementary view to the referred previous studies that
focused instead on estimators such as the sandpile profile
roughness and avalanche statistics. The concept of recur-
rence, on which RQA is based, was first introduced by
Poincaré while studying the three-body problem [20]. In
that work, Poincaré claimed that, in volume-preserving
flows with bounded orbits, the system recurs infinitely
many times as close as one wishes to its initial state.
Therefore, simply by following the evolution of state of
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any system, one could in principle search for recurrences
in simulated (as is the case here) or experimental data.
Then, associations could be drawn between the observed
features of these recurrences and the underlying dynam-
ics known to be active in the system. A powerful tool
for the visualisation and analysis of recurrences is the re-
currence plot (RP), introduced by Eckmann et al.[21].
The methodology based on the analysis of recurrences in
phase space using several measures of complexity quan-
tifying the small scale structures in RPs is known as re-
currence quantification analysis (RQA)[22].
The article is then organized as follows: in Sec. II

the diffusive sandpile is introduced as a simple model
that captures the basic physics of the interaction between
SOC and diffusive transport channels. In Sec. III we de-
scribe the local flux time series from the diffusive sand-
pile that will be studied in the following sections. In Sec.
IV we outline the basic concepts of recurrence plots and
RQA. In Sec. V we apply RQA to the local flux time
series before and above the dynamical transition takes
place. In Sec. VI we interpret the RQA results in terms
of the rules of the diffusive sandpile (that is, the physics
of the problem!). Finally, Sec. VII contains our conclu-
sions.

II. THE DIFFUSIVE SANDPILE MODEL

The running sandpile model has been extensively used
to study the underlying physics aspects associated with
the transport of particles in fusion plasmas[7, 12, 17, 18].
The diffusive running sandpile is a driven directed run-
ning sandpile[23, 24] with an additional diffusive com-
ponent whose intensity can be tuned relative to the
avalanche-like component. The sandpile domain consists
of L + 1 cells or sites, numbered from x = 0 to x = L
(i.e., x = 0, 1, . . . , L − 1, L are the allowed values). To
each radial location x, a variable h(x) is assigned that
represents the amount of sand stored (or its height) in
the cell at that site. The sandpile state evolves as
follows: a grain of sand is dropped randomly on
every cell at each iteration with probability P0.
The average external drive per cell and iteration
is thus S0 = P0. The SOC character of the sandpile
dynamics arises from the existence of a critical slope Zc

that, when locally overcome, gives rise to the removal
sand to the adjacent position. All cells are checked for
stability at each iteration by comparing the local gradi-
ent Z(x) = − [h(x+ 1)− h(x)] with the critical gradient
Zc > 0. If Z(x) > Zc, Nf grains of sand are moved to
the next cell (see Fig. 1),











h(x) = h(x) −Nf ,

h(x+ 1) = h(x+ 1) +Nf .

(1)

In the diffusive sandpile, a second diffusive channel is
added by establishing a local diffusive flux Γd at each cell

FIG. 1: (Color online) (a) Sketch of the one-dimensional sand-
pile in real space explaining the corresponding automaton
rules. (b) Sketch of the sandpile automaton rules in gradi-
ent space. The parameters for this sandpile are: Zc = 20 and
Nf = 5. Red cells are unstable; the sand that has been moved
to a location is shown in orange; the void left by the move, in
light blue.

given by Γd(x) = D0 [Z(x− 1)− Z(x)] = Γ+
d (x)−Γ−

d (x),
where D0 is the diffusion coefficient. The diffusive flux
is simply the difference as the amount of sand reaching
the cell at x due to diffusive transport from the cell at
x − 1 [Γ+

d (x) = D0Z(x − 1)] minus the amount of sand
leaving the cell at x due to diffusive transport to the
cell at x + 1 [Γ−

d (x) = D0Z(x)]. Naturally, the diffusive
flux just described is equivalent to the application of the
following rule at each step,

h(x) = h(x) +D0 [h(x+ 1)− 2h(x) + h(x− 1)] , (2)

a discrete version of a diffusive term like D0d
2h/dx2.

The rules of the sandpile are completed by imposing
a closed boundary condition at x = 0, so that no par-
ticle flux enters that cell from the left. The boundary
condition applied at x = L is open, so that all particles
reaching the bottom edge of the sandpile are removed
from the system.
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The diffusive running sandpile will reach a steady state
under a continuous, fixed-average external drive. Assum-
ing that the drive is spatially uniform, the sandpile do-
main will be split into two distinct subdomains once the
steady state is reached. In the inner subdomain (ex-
tending outwards from x = 0), transport of sand will be
driven only by diffusion. In the outer subdomain (extend-
ing inwards from the boundary cell at x = L), transport
will be driven by both diffusion and avalanches. Both
subdomains match at a crossover point, whose mere exis-
tence establishes a limiting value of D0 for avalanche-like
transport to exist. Its location, xt, is estimated by finding
the largest position at which the integrated source in the
range [0, xt] can be entirely evacuated by diffusion down
the gradient while keeping the gradient below the average
value at the SOC state, that is given by Za = Zc−Nf/2
[The estimation for Za is easy to do simply by inspecting
Fig. 2]. The result is,

∫ xt

0

S0dx = P0xt = Γ−

d (xt) = D0Za → xt =
D0Za

P0
. (3)

FIG. 2: (Color online) Scheme with the possible values of h
for the last four cells of the sandpile (case D0/P0 = 0). hu,
ha and hl stand for the upper, average and lower values of
the height respectively. h(L) = 0 is the boundary condition
for the bottom cell. Since h(L) = 0, the upper limit on the
height of the previous cell is hu(L−1) = Zc. Hence, h(L−1) ≤
hu(L − 1). But h(L − 1) ≥ hl(L − 1) = Zc −Nf in order to
satisfy the steady state condition. Thus, its mean value is
ha(L−1) = [hu(L−1)+hl(L−1)]/2 = Zc−Nf/2. The same
principle can then be applied inwards.

The analytical values for Za and xt agree well with the
simulations. The steady-state solutions for the sandpile
profile on both subdomains can now be found to be, as
long as xt < L,

{

n(x) = Ax2 +B, 1 ≤ x ≤ xt < L,

n(x) = Za (L− x) , xt ≤ x ≤ L,

(4a)

(4b)

with















A = −
P0

2D0
,

B = ZaL−
Z2
aD0

2P0
.

(5)

The condition xt < L translates, in terms of the param-
eters of the simulation, into D0/P0 < L/Za, that sets
an upper limit for the diffusivity ratio D0/P0. Other-
wise, the sandpile will exhibit the typical parabolic pro-
file of diffusive systems, and SOC dynamics will be ab-
sent. The crossover point given by Eq. (3) moves out-
wards (inwards) for increasing (decreasing) diffusivity or
decreasing (increasing) drive. Interestingly, the quantity
D0Za/P0L = xt/L gives the fraction of the total aver-
age transport leaving the sandpile through the diffusive
channel. Therefore, the average ratio of the intensities of
both channels can be tuned by varying D0/P0, for fixed
Za and L.
Another quantity of interest for the diffusive sandpile

is the average (in time) local flux of sand. This flux
must be understood as the sum of two contributions,
Γ(x) = Γt(x) + Γd(x), where Γt stands for the avalanche
flux and Γd represents the diffusive flux. In steady state,
the average local flux must equal the integral of the
drive between [0, x] [In particular, Γ(L) = P0L.]. The
avalanche part of the flux can be written in terms of the
probability of a cell of being unstable, P1(x), via:

Γt(x) = P1(x)Nf . (6)

1/P1(x) also represents the number of iterations, on av-
erage, between two successive flips happening at the cell
located at x, known as the average waiting time. P1(x)
can be easily estimated to be,



















P1(x) = 0, x ≤ xt,

P1(x) =
P0x−D0Za

Nf

, x ≥ xt.

(7)

In fact, Eq. (7) permits to estimate xt as the radial posi-
tion inside of which all cells are stable. Indeed, requiring
P1(xt) = 0 in Eq. (7) yields the same value for xt given
by Eq. (3). Since transport is carried entirely by diffu-
sion inside xt, Γ(x < xt) = Γd(x) = P0x for x < xt. For
x ≥ xt, the diffusive flux stays roughly constant and at
Γd(x) ≃ D0Za, since the average slope remains roughly
constant at Za = Zc −Nf/2 as we discussed previously.
Therefore, the importance of the avalanche transport in-
creases with x from xt to L. This is illustrated in Fig. 3
that shows the probability of cell overturning, P1(x), as a
function of x for increasing values of the diffusivity ratio
D0/P0.
The diffusive sandpile just described was shown [19]

to undergo a dynamical transition as the critical param-
eter κ = (D0/P0)N

2
f was increased beyond a critical
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FIG. 3: Probability of overturning events per iteration as a
function of the cell position for different values of the diffu-
sivity ratio D0/P0. Filled symbols stand for the analytical
estimation by means of Eq. (7). Open symbols stand for the
simulations from the diffusive sandpile by using the following
parameters L = 200, Zc = 100, Nf = 10 and P0 = 0.01.

value κc ≃ 22. This parameter is related to the aver-
age variance of the slope across the avalanche region, or
roughness, since it is proportional to the ratio of the ex-
pected roughnesses in the limits of D0 → 0 (pure SOC
regime) and D0/P0 > L/Za (pure diffusive regime since
in that case xt = D0Za/P0 > L). The different dynamics
governing transport above and below the transition are
clearly illustrated in Fig. 4. In the SOC-like regime (i.e.,
for κ < κc) transport takes place within the avalanche re-
gion in the form of avalanches (Fig. 4, left column) with
a self-similar distribution of sizes, that can be initiated or
stopped at any cell. Above the transition (κ > κc), how-
ever, transport becomes instead dominated by quasiperi-
odic avalanche events that are (almost always) initiated
at the bottom edge of the pile and propagate upwards to
the crossover cell at xt (which has been set to ≃ 50 for
both simulations shown in Fig. 4). The temporal length
(duration) of these quasiperiodic relaxation oscillations
of constant amplitude in Figs. 4(b)-(d) is found to be
D ≃ 2(L − xt) (≃ 700 steps in this case). The aver-
aged waiting times associated to these relaxations after
the transition can be easily estimated by imposing the
balance between the temporal averaged incoming flux to
the cell at x = L (which in steady state is just the ra-
dially integrated source S = P0L), and the flux leaving
that cell (sand leaving the pile) either through diffusive
or avalanche-like transport channels,

P0L = D0Za + 2(L− xt)NfP2, (8)

being P2 the probability associated to these edge-
triggered, quasiperiodic avalanches of relatively constant
amplitude. The corresponding averaged waiting times
(wt) will then be the inverse of this probability, wt =
1/P2 ≃ 50000 steps of the cellular automata, which
agrees well with the numerical results of the automata.
It is this change in dynamics that we will try to charac-

FIG. 4: (Color online) Typical avalanche activity in the diffu-
sive sandpile for parameter values that put its dynamics below
(a)-(c) or above (b)-(d) the transition discussed in the main
text. Unstable sites are represented with black dots and stable
ones are represented with white dots (blanks). Figs. 4(c)-(d)
are zooms of the regions marked between horizontal, dashed
lines in Figs. 4(a)-(b) respectively. Both simulations have
identical parameters except that Nf = 5 → κ = 6.25 in
(a)−(c) and Nf = 15 → κ = 56.25 in (b)−(d).

terize in terms of the RQA techniques in the rest of the
paper.

III. FLUX TIME SERIES FROM THE

DIFFUSIVE SANDPILE

Here we describe briefly the four types of sandpile time
series (Γi) to which RQA will be applied in the next sec-
tions. They all correspond to records of the local particle
flux taken at some location within the diffusive sand-
pile (Γ), integrated over a prescribed sampling period ∆.
That is,

Γi =

∆
∑

j=1

Γ(∆[i − 1] + j), i = 1, 2, · · · , N, (9)

where Γ in the summation represents the raw data
coming from the sandpile simulations (see Fig. 5).
Typically, N = 32, 000 in our simulations and ∆ = 1, 000.
Fig. 5 shows four typical time flux signals obtained

from the diffusive sandpile. The parameters used in our
simulations are L = 400, P0 = 5 × 10−4, Zc = 200 and
Nf = 30. For each signal in Fig. 5, an inset has been in-
cluded that results from zooming out the shaded box in
the main plot. The main difference between the four se-
ries is their location in the pile, and the respective value
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FIG. 5: Time records of Γ(t) for different regimes: (a) below
the transition, inside the SOC region (x > xt); (b) above the
transition, inside the SOC region (x > xt); (c) in the vicinity
of the crossover location (x ≃ xt); and (d) within the diffusive
region (x < xt).

of the so-called roughness parameter, κ ≡ D0N
2
f /P0.

This parameter has been found to control the access to
the dynamical transition in the diffusive sandpile [19],
that happens if κ > κc ≃ 22. The four signals picked
for illustrating purposes are clearly quite different to the
naked eye. In Fig. 5(a), the evolution of the particle
flux at x = 200 is shown for a run with D0/P0 = 1/900
and κ = 1 < κc. The dynamics are purely SOC in this
regime. That is, transport take place through avalanches
over the SOC region; at any cell, local flux events exhibit
power-law statistics and long-term memory. In contrast,
Fig. 5(b) shows the temporal evolution of the particle flux
at x = 200 but for D0/P0 = 140/900 and κ = 140 > κc.
Here, transport becomes instead dominated by quasiperi-
odic relaxation oscillations that traverse the whole re-
gion; local flux events appear as quasiperiodic bursts of
roughly constant amplitude. The reason for the change in
dynamics through the transition is well understood [19]:
the increased diffusion smooths out any irregularity of
the sandpile profile caused by the falling rain so quickly
that avalanches tend to originate at x = L, where the

boundary condition forces the steepest slope, and prop-
agate through the majority of the x > xt region scarcely
encountering any obstacle. For the simulation used,
xt ∼ 30. Hence, the x = 200 is well within the x > xt

region. Next, Fig. 5(c) shows the evolution of the flux
at the vicinity of xt for the same simulation as Fig. 5(b).
The inset shows some small quasiperiodic bursts, in addi-
tion to the usual large bursts associated to unstable cell
overturnings. We will clarify their origin while trying
to interpret the RQA results in later sections. Finally,
Fig. 5(d) shows the time series of the flux for the same
simulation but for cell x = 6 < xt, within the diffusive
region. This record resembles now a rather stochastic
signal and is typical of diffusive-dominated transport.

IV. RECURRENCE QUANTIFICATION

ANALYSIS OF THE DIFFUSIVE SANDPILE

LOCAL FLUX TIME SERIES

Recurrences can be visualized and quantified by means
of recurrence plots [22, 25, 26], that are graphical rep-
resentations of symmetric matrices, whose elements can
only take two values, namely 0 or 1. These values codify
instants in which two different states of the system are
sufficiently close (1) or not (0) in phase space. RQA pro-
vides a great amount of information about the dynamics
of any dynamical system through recurrence plots. It has
been widely used in the study of nonlinear dynamics of
complex systems and applied to areas as diverse as life
science[27, 28], earth science[29, 30], astrophysics[31, 32],
chemical reactions[33], economical dynamics[34, 35] and
fusion plasmas[36–38].
In order to study recurrences, one starts by repre-

senting the states of the system as elements of a d-
dimensional phase space, ~y(t) = {y1(t), y2(t), . . . , yd(t)},
being ~y(t) vectors defining a trajectory in that phase
space. However, not all the relevant components (d)
are usually available to construct the corresponding state
vector. Instead, we use some scalar time series of a rep-
resentative quantity, si = s(i∆t), where i = 1, . . . , N ,
being ∆t the inverse sampling frequency and N the num-
ber of temporal points. The phase space of the system
can then be reconstructed by means of the time delay
method:

~si = {si, si+τ , si+2τ , . . . , si+(m−1)τ}, (10)

where m is the embedding dimension and τ is the time
delay. The recursive plot is then constructed using the
so-called recurrence matrix:

Rij(ε) = H (ε− ‖ ~si − ~sj ‖) i, j = 1, . . . , N. (11)

Here, H(·) is the Heaviside function and the symbol ‖ · ‖
stands for a suitable norm. Therefore, Rij = 1, reflects
the fact that states ~si and ~sj visited by the system at
times i and j were sufficiently close to each other, at least
in the sense that ‖ ~si−~sj ‖< ε, for some prescribed ε > 0.
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On the other hand, if ‖ ~si − ~sj ‖> ε, the corresponding
entry in the matrix will be Rij = 0. The visualization of
a recurrence plot is then performed by assigning different
colors to the two values entries can take (see Fig. 6 for
an illustration). Typically, black dots are assigned for
recurrences and white dots for non-recurrences.

FIG. 6: Recurrence plots obtained from local fluxes at points
where transport dynamics are different inside the diffusive
sandpile: (a) within the diffusion-dominated region (x < xt)
and, (b) within the avalanche region (x > xt), but with trans-
port dominated by large quasiperiodic avalanches (κ > κc).
The parameters used are RR=5%, m = 4 and τ = 20∆.

The interpretation of recurrence plots then go as fol-
lows. Any black diagonal line in the recurrence plots
represents a time interval over which the system state
has followed a similar evolution that some other previ-
ous state. That is, ~si ≈ ~sj , ~si+1 ≈ ~sj+1, . . . , ~si+l−1 ≈
~sj+l−1, where l is the length of the diagonal line. On the
other hand, vertical (horizontal) lines represent time in-
tervals in which the system state has not changed much
~si ≈ ~sj , ~si ≈ ~sj+1, . . . , ~si ≈ ~sj+v−1, being v the length
of the vertical (horizontal) line. The probability distri-

bution of diagonal and vertical/horizontal lines in the
recurrence plot offers a valuable tool to characterize the
system nonlinear dynamics. Different estimators of com-
plexity have been proposed[22] that attempt at quanti-
fying the shape and size of these structures, constituting
the basis of the aforementioned recurrence quantification
analysis (RQA). However, we will only introduce the two
estimators that will be used in what follows.
The simplest RQA measure is the recurrence rate (or

RR), that quantifies the density of recurrence points in
the recurrence plot. It is defined as the ratio of recurrence
points to the total number of points. A second RQA
measure deals with diagonal lines and is based on the
histogram of diagonal lines of length l, p(l). It is known
as determinism (or DET), being given by the ratio of
recurrence points included in diagonal lines (of at least
length lmin) to all recurrence points:

DET =

lmax
∑

lmin

lp(l)

lmax
∑

1

lp(l)

. (12)

For deterministic dynamics one expects that DET will
be close to unity since any initial condition would fol-
low the same evolution. On the other hand, for random
dynamics, DET will be close to 0. It is important to
choose a proper value for lmin in order to compute
a meaningful DET. It should be sufficiently large
as to exclude the kind of short diagonals formed
by a mere tangential motion of the phase space
trajectory [22]. On the other hand, if it is chosen
too large, the lack of good statistics will render
the value of DET meaningless.

V. RQA APPLICATION TO THE LOCAL

FLUXES OF THE DIFFUSIVE SANDPILE

We proceed now to apply RQA to several time series
of the local fluxes at different locations of the diffusive
sandpile. Several technical details about the calculation
of the recurrence plots are discussed first.

A. RQA general parameters

1. Recurrence rate and value of ε

All recurrence plots have been calculated while keep-
ing the value of the recurrence rate (RR) fixed. That
is, ε is calculated for each plot so that RR remains the
same. In this way, we can draw meaningful comparison
between recurrence plots for regimes with different dy-
namics. This is important for the sandpile when varying
the diffusion parameter of the sandpile D0/P0. Specifi-
cally, the value of the recurrence rate has been fixed to
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RR = 0.05 (5%) all throughout this paper. Secondly, we
have used the standard Euclidean L2-norm to calculate
distances between states.

2. Time delay

The accepted prescription is to set the value of the
time delay τ to be set at least of the order of the tem-
poral decorrelation time of the input signal[39, 40]. The
physical justification for this choice is that we are inter-
ested in the mesoscale dynamics, i.e. temporal scales well
beyond the duration of any single avalanche. In the sand-
pile, avalanche durations are within the interval [1, L].
Thus, the decorrelation time of the temporal flux series,
τd ∼ L, is much less than the inverse sampling frequency,
∆ = 1000. Therefore, in order to assure that we are
in the mesoscale, we have used τ = 20∆ for all of the
calculations. In addition, the portion of the time series
considered to construct any recurrence plot has been cho-
sen to be 25τ = 500∆ = 500, 000 iterations long. This
value is adequate over the range of values of D0/P0 used
in the sandpile simulations examined here.

3. Embedding dimension value

Regarding the embedding dimension (m), we follow
the accepted prescription of determining it using the
False Nearest Neighbors (FNN) algorithm[41–43]. A
sound election of m is important. If the value is too
small, the geometry of the attractor cannot be unfolded
in the reconstructed space. If m is too high, the di-
agnostics characterizing the dynamics can produce un-
reliable or spurious results [22]. The FNN algorithm
is a powerful tool to estimate the correct number of
time-delay coordinates. It consists in finding the near-
est neighbor of each state vector with respect to some
norm (the L2-norm in our case). For any m > 0, let
~si = {si, si+τ , . . . , si+(m−1)τ} be the state vector of the
system at time i and let ~sni = {sni , s

n
i+τ , . . . , s

n
i+(m−1)τ}

be its nearest neighbor at the same time. We then com-
pare the distance between them when increasing their
dimension by 1. That is, adding si+mτ and sni+mτ to each
state vector. If the |si+mτ − sni+mτ | is large compared to
the new state distance ‖~si−~sni ‖, the original states were
close just because of the projection onto the embedding
space and are classified as false nearest neighbors. On
the other hand, if |si+mτ − sni+mτ | is small compared to
‖~si − ~sni ‖, they remain as near neighbors. Repeating
this operation for all possible states, one can quantify
the fraction of false nearest neighbours as a function of
m. The suitable m value can then be determined as the
one for which this fraction is sufficiently small. Here, we
have declared a neighbour false whenever the condition
|ui+mτ − un

i+mτ | > 15‖~ui − ~un
i ‖. Fig. 7 shows that a

proper embedding is then obtained by choosing m ≥ 4,
which keeps the fraction of FNN below 10% on average.

This result is rather insensitive to the value of D0/P0

used in the sandpile simulations.
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FIG. 7: Fraction of False Nearest Neighbors as a function of
m for different values of the diffusion parameter D0/P0.

B. RQA results

1. Recurrence plots for the diffusive sandpile

For illustrative purposes, Fig. 6 shows two typical re-
currence plots obtained for local flux time series from the
diffusive sandpile. Fig. 6(a) is obtained from the local
flux at a point within the diffusive region of the diffu-
sive sandpile (i.e., x < xt). It is representative of a case
with a low degree of determinism, as can be easily as-
sessed from its visual inspection. It presents recurrent
points that are isolated (except at the main diagonal,
that simply states the perfect correspondence of a state
with itself!), or in very small groups; the landscape is
rather erratic. Fig. 6(b), on the other hand, is obtained
from the local flux at a point within the avalanche region
(i.e., x > xt) and above the dynamical transition (i.e.,
κ > κc). It illustrates a case with a higher level of deter-
minism. Here, recurrent points are grouped in clusters
of different sizes, and there is an abundance of diagonal
and vertical/horizontal structures.

2. Determinism (DET)

We have calculated recurrence plots, using the same
parameters and procedure as used to produce those in
Fig 6, for the local fluxes at many different positions
of the diffusive sandpile, and for a wide range of values
of the diffusion parameter D0/P0. Using Eq. 12 (and
choosing a value lmin = 4, that is sufficiently large
to avoid tangential motion of trajectories in phase
space while still including meaningful statistics),
we have then quantified the degree of determinism DET
as diffusion is varied. Since the local flux data available
is much longer than the temporal window used for the
recurrence plot calculation, results have been averaged
over multiple temporal windows (64, in most cases) to re-
duce uncertainties. Fig. 8 shows the radial dependence of
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the time-averaged DET at each sandpile cell for increas-
ing values of the roughness parameter κ = D0N

2
f /P0.

The figure shows rather interesting features. First, it ex-
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FIG. 8: (Color online) Temporal averaged determinism of the
flux temporal series as a function of the position for varying
values of the parameter κ. The parameters used in the simu-
lations were L = 400, P0 = 5× 10−4, Nf = 30 and Zc = 200.

hibits two strong peaks at the two edge positions of the
avalanche region (i.e., x1 = xt and x2 = L), the former
of which drifts towards larger x as D0/P0 is increased (as
it should, since xt = D0Za/P0). The same behaviour at
the edge points is observed for every value of κ, either
below or above the transition at κc. Secondly, two dis-
tinct behaviours are observed throughout the avalanche
region depending on whether κ < κc or κ > κc. Be-
low the transition, DET decreases slowly from the peak
value at x1 as x is increased; in addition, the minimum
value it reaches, before suddenly raising again as x ap-
proaches x2, increases with κ. Indeed, that saturated
DET is about 0.1 for κ = 1, 0.2 for κ = 10 and 0.4
for κ = 22. Things change quite dramatically above the
transition, when κ > κc. In this case, the value of DET
throughout the avalanche region is rather constant (ex-
cept the two peak values at x1 and x2), and decreases
instead as κ is increased above κc.
A more convenient way to characterize the dynamical

transition using RQA is to look at the value of DET av-
eraged over all sandpile cells. Fig. 9 shows this value
as a function of the logarithm of the roughness pa-
rameter, log10(κ), for several values of Nf . All curves
exhibit a clear jump around κ = κc ≃ 22 (see vertical
dashed line), which coincides very well with the criti-
cal threshold reported in Ref. 17. All curves also show
that, for values of κ well below κc, the DET value sat-
urates at a final value that is an increasing function of
Nf . As will be remembered, these cases correspond to
parameter values in which the avalanche region trans-
port is dominated by classical SOC-like behaviour. On
the other hand, the value of DET decreases towards zero
for κ ≫ κc, when the avalanche region transport is dom-
inated instead by quasiperiodic relaxations and SOC dy-
namics disappear. The decrease happens however more
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FIG. 9: (Color online) Averaged determinism of the flux series
as a function of log

10
(κ) for several values of Nf .

slowly as Nf is larger.

VI. DISCUSSION OF THE RQA RESULTS

We proceed to discuss next the interpretation of the
RQA results described in the previous section, relating
them to the diffusive sandpile working rules. This exer-
cise will provide some new insights about how the sand-
pile dynamics change in the presence of finite diffusion.
The first thing to bear in mind is what DET actually

measures: the importance of (sufficiently long) diagonal
lines in the recurrence plots. These lines are obtained by
looking for similar local flux quartets (Γi1 ,Γi2 ,Γi3 ,Γi4),
formed by the values of the local flux at four succes-
sive times separated by τ ∼ 20, 000 iterations, across
the 500, 000 iteration-long temporal window examined.
The characteristic number of iterations that an avalanche
needs to pass through any cell of the sandpile is of the
order of the avalanche region, L − xt < L = 400. Since
the four members of the flux quartet are separated by
many more iterations than L, a long diagonal line implies
that there is some local process taking place that virtu-
ally repeats itself every time it happens, and that lasts
for periods of time much longer than single avalanches.
From the behaviour of the values of DET described pre-
viously, it is clear that these processes must be different
in the diffusive part (x < xt) and in the avalanche part
(x > xt) of the diffusive sandpile. Also, that they change
fundamentally over the avalanche region as D0/P0 is in-
creased and the transition is crossed. The boundaries
of the avalanche region, x1 and x2 also seem to have a
behaviour of their own. Why? and which are these long-
term processes that drive the large values of DET?
In what follows, we will argue that the physical mech-

anism behind these processes is related to how diffusion
concomitantly erases the roughness of the profile across
the avalanche region. This process should be uniform in
space, and should yield constant (on average) values of
DET across the avalanche region, that should increase
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below the transition with D0/P0, and decrease after-
wards. However, finite-size effects cause that the two
boundaries, at xt and L, behave rather differently to the
other cells. The finite diffusion then transmits this odd
behaviour into the avalanche region, causing the spatial
dependence in DET observed in Fig. 8, which is more
acute below the transition. To base these claims, how-
ever, one needs to look in more detail at how avalanches
happen in the sandpile.

A. Avalanches in the sandpile

The diffusive sandpile is simple enough that one can
easily identify the main processes that take place in it.
First, there is the random rain that drives the roughness
of the sandpile profile. That is, the local variation of the
slopes with respect their neighbours. Whenever a grain
of sand falls at a cell, it instantly increases its height by
+1, but it also increases the local slope by +1, and re-
duces the slope of the previous cell by −1. Since rain
can fall randomly anywhere with the same probability,
each local slope carries out a separate random walk, go-
ing up and down with equal chance. Whenever any local
slope undergoing this process overcomes the local stabil-
ity threshold, Zc, an avalanche starts. The location of
that starting point must correspond to a local bump in
slope, that is so close to the critical threshold Zc that a
single grain of sand added by the rain can make it top-
ple. Fig. 10 illustrates the process. In red, we see a cell
(No. 14) whose local slope exceeds the critical threshold
after rain has dropped on it. The rules of the sandpile
move Nf grains of sand to the next cell that, in slope
space, implies that their respective slopes are increased
by +Nf while the local slope at the originally unsta-
ble cell is reduced by −2Nf . The two neighbour cells
(No. 13 and No. 15 in Fig. 10) are checked for stability
next, and the process continues to propagate both up-
wards and downwards from the initial cell until a local
hole in slope is encountered in each direction. By local
hole we mean a cell whose local slope is sufficiently be-
low the critical threshold that the addition of Nf is not
enough to make it go unstable. In the case illustrated in
the figure there is one such hole at cell No. 10 (above
the initially unstable cell) and at cell No. 16 (below).
The final result of the avalanche, as seen in the lower,
right frame of Fig. 10, is that the local slope of all cells
crossed by the avalanche remain in the same state as be-
fore, except for the initial bump that is now gone (the
local slope at cell No. 14 has been reduced by −Nf);
the two holes (above and below) that are also gone (the
local slope has been increased by +Nf) and a new hole

that has appeared at the cell that is two positions be-
low the upwards stopping point (cell No. 12, in this
case). This is the way in which things happen across
the avalanche region. Avalanches start at local bumps,
stop at the closest hole locations (above and below) and
produce a new hole above the original starting position

FIG. 10: (Color online) Evolution of an avalanche in |Z|-
space for a sandpile with Nf = 5 and Zc = 20 (see text for
explanation). Mean slope profile is around Zc−Nf/2 = 17.5,
as shown with a red dashed line.

that will act as a stopping point for future avalanches.
Due to the slow rain rate, the influence of holes and
bumps in the profile (that is, its roughness) is felt for
very long periods of time, usually much longer than sin-
gle avalanches as shown in many other works [12, 24].
It is their presence and slow evolution that causes the
large values of DET. It is also to be expected that DET
should increase in the presence of diffusion, specially for
small values that do not significantly modify the SOC
dynamics that thrives on the avalanche mechanism just
described, since the slow diffusive smoothing of the
bump will delay local avalanche triggering lead-
ing to a longer, persistent and more recognizable trace
in the local flux signal. It should also increase with Nf ,
as shown in Fig. 9, since the larger Nf means deeper
holes and higher bumps. However, the rain is dropped
uniformly in space and therefore, the distribution of holes
and bumps should be pretty uniform all throughout the
sandpile. As a result, we would expect the value of DET
to be roughly constant across the avalanche region in the
SOC regime. This is not what we found in the previous
section, though. Why?
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B. Situation at the inner boundary, x = xt

Things become a little bit different at the crossover
point x = xt (also at the other boundary, x = L, that we
discuss separately in the next subsection). To illustrate
the situation, we focus first on the pure SOC sandpile,
where xt = 0. Fig. 11 shows a sketch of an avalanche
that starts at cell No. 4 (i.e., x = 3). As expected, in the

FIG. 11: (Color online) Evolution of an avalanche that reaches
the center of the pile in |Z|-space for a sandpile with the same
parameters as in Fig. 10 (see text for explanation).

next iteration, its local slope decreases by −2Nf and that
of the cells immediately below and above it increases by
+Nf . The avalanche propagates as in the case of Fig. 10
except for the fact that here no hole exists above 4 (there
is a hole that stops the downward propagation at cell
No. 6, though!). Therefore the avalanche propagates all
the way up to the first cell. It cannot go any further up
the slope, though. By following the sequence sketched
in Fig. 11 one can easily see the final result. All cells
traversed by the avalanche end up with the same slope
expected for the bump at which it was initiated (cell No.
4, whose slope is reduced by −Nf) that is now gone, the

first hole down from that bump (cell No. 6, whose slope
has increased by +Nf) that also disappears, and the first
cell next to the center (cell No. 2, whose slope has been
reduced by −Nf ) where a new bump has appeared. In
the absence of diffusion, the hole at the second cell is
only filled by avalanches that propagate upwards from
the outer cells. But whenever this happens, the next
avalanche will not stop until it hits the center, and the
hole will appear again at cell No. 2. As a result, the
cell next to the center has a much larger probability of
stopping avalanches than any other cell in the pile (this
is not the same as saying that more avalanches will actu-
ally stop there than anywhere else in the pile, since that
number will depend on how many avalanches actually
propagate all the way to the center!). This is the reason
why DET has such a peaked value close to x = xt! If we
now consider cases in which D0/P0 is finite, the behav-
ior (i.e., a lower average slope) will extend for cells with
x > xt, because the local slope at the hole will be flat-
tened by diffusion, the more the larger D0/P0 becomes.
This is the reason for the non-uniform behaviour shown
in Fig. 8, for values of κ below the transition.

C. Situation at x = L

At the sandpile edge, on the other hand, sand is forced
to leave the sandpile at every iteration, which leaves no
hole or bump there. This is illustrated in Fig. 12, for
the purely SOC sandpile. Here, an avalanche starts at
cell No. 396 and reaches the edge, since there is no holes
below it (there is one above, though, at cell No. 394 that
stops the upwards propagation of the avalanche). The
chunks of sand moving down the pile reach the edge,
where they are vacated from the sandpile. But this pro-
cess causes no change in the slope at or near the edge, in
contrast to what happened at the center of the pile.
In addition, the rain behaves differently at the edge

as well. Mainly, because rain does not fall at the edge
cell (or if it is does, it is instantaneously removed). This
means that the slope at the edge, i.e. Z(L−1), no longer
carries out a random walk in slope space, but an steady
increase at a rate P0 since it increases by one when rain
falls on the L − 1 cell but does not decrease ever. As
a result, the time the slope of the L − 1 cell needs to
overcome Zc is much shorter than in any other location
of the sandpile. Avalanches will start more frequently at
the edge than at any other location. This is the reason
why the value of DET is larger at the edge. Similarly
to what happened at the center, a finite value of D0/P0

simply spreads this behaviour inwards.
The arguments just laid out for the edge cell (and also

for the crossover location, as we did in the previous sub-
section) are easily confirmed by looking at the distribu-
tion of starting and stopping points for avalanches. In
Fig. 13, the histograms of starting and stopping points
are shown for a diffusive sandpile with crossover point
at xt ≃ 50. The histogram of starting points, on the
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FIG. 12: (Color online) Evolution of an avalanche that reaches
the edge of the pile in |Z|-space for a sandpile with the same
parameters as in Figs. 10 and 11 (see text for explanation).

left, shows a pronounced peak at the edge (due to the
higher average slope we predicted) and a depletion as we
approach the crossover point from x > xt (due to the
lower average slope previously discussed). Everywhere
else, the histogram is flat, as should be expected since
avalanches are triggered by rain that is uniform in space.
On the other hand, the histogram of stopping points, that
should increase linearly with x (since the amount of sand
that needs to be transported down the slope must grow,
as we move to larger x, to compensate the increased in-
tegrated drive over all previous cells), shows a clear peak
at x ∼ xt (due to the lower average slope previously men-
tioned) and at the edge. The edge peak is accompanied
by a depletion of stopping points in cells close to the
edge, though. Both are a consequence of the larger aver-
age slope predicted at the edge, that diffuses inwards for
finite D0/P0, which makes holes much more improbable
in that region. This leads to a situation in which most
avalanches that reach that region will make it out of the
pile more often than not.
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FIG. 13: (Color online) Histogram of starting (left) and stop-
ping (right) points for avalanches collected for several values of
the parameter Nf . The parameters in common were L = 400,
D0/P0 = 0.25 and Zc = 200. Total duration of each run is
32× 106 iterations.

D. Behaviour beyond the transition at κ = κc

The physical reason for the dynamical transition ob-
served in the diffusive sandpile when κ = κc has been
attributed to diffusion becoming sufficiently large as to
wipe out bumps and holes from the slope profile be-
fore they can act as starting or stopping points for
avalanches [19]. It should be remarked that this can hap-
pen (and usually does) at values of D0/P0 sufficiently
small as to maintain the sand being transported by the
diffusive channel significantly below the avalanche chan-
nel. Since it is the presence of bumps and holes that
caused the large values of DET observed below the transi-
tion, we expect them to decrease significantly for κ > κc.
This is what Fig. 8 indeed shows. In addition, the singu-
lar behavior at xt and L is still active above the transi-
tion, with significant larger values of DET close to them.
But its influence can no longer propagate deep into the
avalanche region, which results in a much more uniform
value throughout the region. Finally, the value of DET
for κ ≫ κc decreases more slowly with increasing Nf ,
as shown in Fig. 9, simply because holes are deeper and
bumps higher for larger Nf . It simply takes more time
to diffuse them away for the same D0/P0.

VII. CONCLUSIONS

In this work, we have characterized the dynamical
transition that takes place in the diffusive running sand-
pile by using recurrence quantification analysis tech-
niques. The RQA diagnostics have shown that the
change in the dynamics of the sandpile, as the relative
importance of the diffusive channel is increased, is cor-
related to a gradual change of the deterministic content
of the local flux time series as measured at different lo-
cations of the sandpile. This change is due to the com-
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plex interplay between the continuous diffusive transport
channel provided by D0 > 0, and the avalanche transport
channel, both of which are active over the avalanche re-
gion of the sandpile, and that changes significantly with
the roughness parameter κ. Below the transition (i.e.,
when κ < κc), diffusion reinforces the deterministic char-
acter imprinted by avalanche propagation on the local
fluxes. Above the transition (κ > κc), however, the ef-
fect is reversed and determinism, as measured by RQA, is
continuously reduced. A last aspect revealed by the RQA
analysis is that, although one would have in principle ex-
pected that the level of determinism be pretty uniform
across the sandpile, finite-size effects are also important.
They can affect the determinism value significantly, par-
ticularly at the two boundaries of the avalanche region,
being also able to penetrate quite deep into the avalanche
region, particularly as the transition is approached from

below (κ < κc).

Acknowledgments

This research was sponsored by Ministerio de
Economı́a y Competitividad of Spain under Projects
No. ENE2012-31753 and ENE2012-33219. Research sup-
ported in part by DOE Office of Science Grant No. DE-
FG02-04ER5741 at University of Alaska. Sandpile simu-
lations have been run in Uranus, a supercomputer cluster
located at Universidad Carlos III de Madrid (Spain) that
has been funded by the Spanish Government via the na-
tional projects UNC313-4E-2361, ENE2009-12213-C03-
03, ENE2012-33219 and ENE2012-31753.

[1] P. Bak, C. Tang and K. Wiesenfeld, Phys. Rev. Lett. 59,
381 (1987).

[2] B. E. Shaw, J. M. Carlson, J. S. Langer, J. Geoph. Res.
97, 479 (1992).

[3] P. Bak and K. Sneppen, Phys. Rev. Lett. 71 4083 (1993).
[4] B. Drossel and F. Schwabl, Phys. Rev. Lett. 69 1629

(1992).
[5] T. Nagatani, Physica A 218 1 (1995).
[6] S. Field, J. Witt, F. Nori and X. Ling Phys. Rev. Lett.

74 1206 (1995).
[7] R. Sanchez and D.E. Newman, Plasma Phys. Contr. Fus.

57, 123003 (2015)
[8] B. A. Carreras, B. van Milligen, M. A. Pedrosa, R.

Balb́ın, C. Hidalgo, D. E. Newman, E. Sánchez, M.
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