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The one-dimensional Ising spin-glass model with power-law long-range interactions is a useful
proxy model for studying spin glasses in higher space dimensions and for finding the dimension at
which the spin-glass state changes from having broken replica symmetry to that of droplet behavior.
To this end we have calculated the exponent that describes the difference in free energy between
periodic and anti-periodic boundary conditions. Numerical work is done to support some of the
assumptions made in the calculations and to determine the behavior of interface free-energy exponent
of the power law of the interactions. Our numerical results for the interface free-energy exponent
are badly affected by finite size problems.

PACS numbers: 75.50.Lk, 75.40.Cx, 05.50.+q

The Edwards-Anderson (EA) Hamiltonian [1] was put
forward in 1975 and it is universally agreed that it cap-
tures the essence of spin-glass behavior. However, what
is not agreed upon is the nature of its low-temperature
ordered state. There are two main theories. The first
is the replica symmetry breaking (RSB) theory of Parisi
[2–7] which is known to be correct for the Sherrington-
Kirkpatrick (SK) model [8], which is the mean-field or
infinite-dimensional limit of the EA model. It is char-
acterized by a very large number of pure states which
organize into an ultrametric topology [6]. On the other
hand, in the second theory, the “droplet” picture, de-
veloped in Refs. [9–13] there are only two pure states.
In this picture behavior is dominated by low-lying ex-
citations or droplets whose (free) energies scale as their
linear dimension ` as `θ and have a fractal dimension ds
where d − 1 < ds < d for a d dimensional system. In
contrast, in the RSB picture there are low-lying excita-
tions which cost an energy of O(1) and which are space
filling, that is, ds = d. Despite the striking differences
of the two pictures, it has proven difficult to establish
either by experiment or simulations which holds for, say,
three-dimensional (d = 3) spin glasses.

Much of the effort in this regard has focused on the
existence or absence of the de Almeida-Thouless (AT)
line [14] that separates a spin-glass state in a field from
a paramagnetic state. In the RSB picture for Ising spin
glasses (only these will be discussed in this paper), there
is a phase transition in the field h and temperature T
plane separating the paramagnetic phase from a phase
with RSB. In the droplet picture, the application of a
field removes the phase transition to the spin-glass phase
which then occurs only in zero field, just as for the Ising
ferromagnet. We have argued [15] that there is an AT
line for dimensions d > 6 and that for d ≤ 6 the droplet
picture applies and the AT line is absent. The calculation
involved determining the form of this line in the limit as

T → Tc but what one really needs is to show that for
any T < Tc, there is no transition in a field. An at-
tempt was made to do this using a 1/m expansion for an
m-component random field added to the m-component
EA vector model [16], and once again d = 6 emerged as
the dimension below which the droplet picture might be
appropriate, but the argument is rather convoluted. A
tentative argument that there might be no AT line when
d ≤ 6 was made by Bray and Roberts [17] when they
were unable to find any stable perturbative fixed points
in an ε-expansion where d = 6 − ε. Suggestive though
these arguments which are based on the form of the AT
line or the critical exponents across it are, they do not
get really to the heart of the matter, which is the na-
ture of the low-temperature phase in spin glasses. This
is controlled by a zero-temperature fixed point, rather
than a critical fixed point. In this paper we focus on this
zero-temperature fixed point and its associated exponent
θ.

While we believe that d = 6 is the dimension below
which the low-temperature phase is as described by the
droplet picture and above which for d > 6 by RSB ideas,
there is clearly little chance that numerical studies could
be done in such high space dimensions to confirm this
changeover. However, it is possible to imagine numerical
work to confirm the equivalent changeover in the one-
dimensional Ising spin-glass model introduced by Kotliar,
Anderson, and Stein (KAS) [18] given by the Hamilto-
nian

H = −
∑
i<j

JijSiSj , (1)

where the Ising spins Si = ±1 are distributed on a one-
dimensional ring of length L to enforce periodic boundary
conditions. The interactions Jij are specified by

Jij = c(σ)
εij
rσij
, (2)
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where [19]

rij =
L

π
sin

(
π|i− j|
L

)
(3)

is the chord between sites i and j. The disorder εij is
chosen according to a Gaussian distribution of zero mean
and standard deviation unity, while the constant c(σ) in
Eq. (2) is fixed to make the mean-field transition temper-
ature TMF

c = 1, where [· · · ]av represents a disorder av-
erage so that [J2

ij ]av = c(σ)2/r2σ
ij . (TMF

c )2 =
∑
j [J

2
ij ]av.

We shall take [J2
ii]av = 0.

The phase diagram of this model in the d–σ plane has
been deduced from renormalization group arguments in
Refs. [13, 19, 20]. For d = 1, the model behaves just like
the SK model when 0 ≤ σ < 1/2. For 1/2 < σ < 2/3 the
critical exponents at the spin-glass transition are mean-
field like, but in the interval 2/3 ≤ σ < 1, the critical
exponents are changed by fluctuations away from their
mean-field values. When σ ≥ 1, Tc(σ) = 0. There is a
convenient mapping between σ and an effective dimen-
sionality deff of the short-range EA model [19, 21–24].
For 1/2 < σ < 2/3, it is

deff =
2

2σ − 1
. (4)

Thus, right at the value of σ = 2/3, deff = 6. This map-
ping has a precise sense for equations associated with
finite-size critical scaling at least when 1/2 < σ < 2/3.
Whereas for the short-range EA model there is an ex-
pression involving the dimensionality d, the correspond-
ing formula for the KAS model is obtained by replacing
d by the effective space dimension deff of Eq. (4) [24].

In Ref. [15] it was shown that the arguments which had
lead us to believe that 6 is the lower critical dimension for
replica symmetry breaking, such as the form of the AT
line near Tc and the Bray-Roberts study of the critical
exponents across the AT line suggested also that σ = 2/3
was the special value of σ for the KAS model. Thus,
we suspect that for σ < 2/3 there is RSB in the low-
temperature phase, while for 1 > σ ≥ 2/3 there is droplet
behavior. The purpose of this paper is to strengthen
these arguments by calculating the exponent θ of the zero
temperature-fixed point. That we can do this is another
advantage of the KAS model. In the droplet region, it
has been realized for many years that θ = 1 − σ [13,
20, 25]. We shall argue below that θ = 1/6 in the RSB
region, if one defines θ from the variance of the sample-to-
sample free-energy differences between periodic and anti-
periodic boundary conditions. For the EA model θ and
ds in the droplet regime are only known from numerical
studies or simple renormalization group approximations
[26], in particular that of Migdal and Kadanoff [27].

While, in principle, the KAS model allows one to do
numerical work on systems which might be the analogue
of high-dimensional hypercubic systems of the EA model,
there are problems with its use. Finite-size effects are
both large and difficult to understand and deal with. To

illustrate this, we show in Fig. 1 a plot of the exponent
µ (which describes the sample-to-sample variation, i.e.,
δE ∼ Lµ), δE of the ground-state energy of the system
as a function of σ. The estimate of µ is obtained by
just fitting δE to Lµ, ignoring any corrections to scaling.
Clearly, the data are a long way from being satisfacto-
rily fitted by this simple form, but if one is optimistic,
one could imagine that as L is increased the results tend
towards the theoretical expectation. However, the im-
provement is so slow we worried whether the theoretical
expectation that for the SK limit µ = 1/6 [28] might not
be correct. In Appendix A we therefore have outlined a
“rigorous” proof that at least µ ≤ 1/5. (We put rigorous
in quotes to indicate to that the proof cannot be consid-
ered mathematically rigorous as it involves the use of the
replica trick). In this paper we need the value of µ as we
argue that for all σ < 2/3, θ takes the SK limit value of
µ.
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FIG. 1: (Color online) Estimates of the exponent µ (sample-
to-sample variation of the ground-state energy) as a function
of σ, i.e., δE ∼ Lµ. KY denotes results obtained on samples
up to L = 256 by Katzgraber and Young (KY) [19]. The
expectation for µ is that µ = 1/6 for σ < 1/2, [28] and is
1/2 for all σ > 1/2, as the system is now self-averaging [29]
(dashed lines). Finite-size effects alas make the transition
between these two values for µ spread over a large range of σ.
Notice that the results for µ in the SK model region, σ = 0.1,
are moving closer to the theoretical prediction of 1/6 as L
increases.

I. THE INTERFACE FREE ENERGY

One of the key concepts in the droplet picture of spin
glasses is the interface free energy [9–11, 13, 30] δF , and
the associated stiffness exponent θ defined by

δF ∼ `θ, (5)

where ` is the length scale of the excitation or droplet
(or region of flipped spins). If θ > 0, the spin-glass state
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is stable at finite temperature, whereas if θ < 0, at T =
0 large-scale excitations cost little energy so the spin-
glass state is unstable at finite temperature. Thus, the
dimension or value of σ at which θ = 0 determines the
lower critical dimension of the spin glass. In this section
we calculate θ analytically first in the RSB region σ < 2/3
and then in the droplet region (2/3 ≤ σ < 1) for the
KAS model using the replica method and the formalism
of Ref. [31].

There are many ways of defining a droplet free-energy
cost, but in this section we shall take it to be the interface
free energy defined as the root-mean-square change in the
free energy of a spin glass when the boundary conditions
along one direction (the z direction) are changed from
periodic to anti-periodic, i.e.,

δF =
√

∆F 2
P,AP. (6)

Here and in the following, the overbar represents averag-
ing over bond configurations, where ∆FP,AP = FP−FAP,
and FP and FAP are the free energies with periodic and
anti-periodic boundary conditions, respectively. Anti-
periodic boundary conditions can be realized by reversing
the sign of the bonds crossing a diameter of the ring in
the KAS model. It follows that ∆FP,AP = 0.

The basic strategy of Ref. [31] was to replicate the sys-
tem with periodic boundary conditions n times and the
system with anti-periodic boundary conditions m times,
and keep n distinct from m. Expanding the replicated
partition function in powers of m and n, and taking the
logarithm, we obtain

− lnZnPZ
m
AP = (n+m)βF

− (n+m)2

2
β2∆F 2 +

nm

2
β2∆F 2

P,AP + · · · , (7)

where ∆F 2 = F 2
P − FP

2
= F 2

AP − FAP
2

is the (mean
square) sample-to-sample fluctuation of the free energy,
the same for both sets of boundary conditions “P” or
“AP,” and F = FP = FAP. Hence, to find the variance

of the interface free energy, ∆F 2
P,AP, (which scales with

L as L2θ), we expand lnZnPZ
m
AP to second order in the

numbers of replicas, n and m, separate out the pieces
involving the total number of replicas n + m, and take
the remaining piece, which is proportional to nm.

Using the standard replica field theory [32], we write

ZnPZ
m
AP =

∫
Dq exp(−βHrep), (8)

where Hrep is the replica free energy, expressed in terms
of the spin-glass order parameter field, qαβ(x). For the

short-range KAS model it is given by

βHrep =

∫
dz

−τ
2

∑
α,β

q2
αβ +

1

4

∑
α,β

(∂qαβ/∂z)
2

−w
6

∑
α,β,γ

qαβqβγqγα −
y

12

∑
α,β

q4
αβ

 , (9)

where qαβ is a symmetric matrix with qαα = 0, we
have omitted some irrelevant terms of order q4, and set
τ = 1 − T/Tc. The fourth-order term included is the
one responsible for replica symmetry breaking in the SK
model. The coefficients w and y are arbitrary positive
parameters. For the short-range KAS model, the bare
propagator is g = 1/(k2 − τ).

To describe the long-range KAS model we replace the
gradient terms in Eq. (9) by

− 1

4

∑
α,β

∫ L/2

−L/2
dz

∫ L/2

−L/2
dz′

[qα,β(z)− qα,β(z′)]2

[(L/π) sin(π(z − z′)/L)]2σ
,

(10)
which on Fourier transforming can be seen to lead to
a bare propagator of the form g = 1/(k2σ−1 − τ) [33]
as k → 0. [Actually Eq. (10) as it stands generates a
numerical factor of cg(σ) = −Γ(1 − 2σ) sin(πσ) in front
of the k2σ−1 in the propagator, which can be removed if
desired by dividing Eq. (10) by cg(σ)]. In terms of the
original spins Eq. (10) is just

− 1

4

∑
α,β

∑
i,j

[J2
ij ]av

(TMF
c )2

(S
(α)
i S

(β)
i − S(α)

j S
(β)
j )2 . (11)

The replica indices go α, β, γ = 1, 2, · · · , n, n+1, · · · , n+
m. The order parameter q divides naturally into blocks
of size n and m. From now on, Greek indices label the
first block, Roman ones the second block, so, for example,
qαa, means α ∈ [1, n] and a ∈ [n+1, n+m], and refers to
the respective entry in the off-diagonal or mixed sector.

Along the z-direction, which we take to be a distance
along the circumference of the ring of length L, we impose
the boundary condition that the solution is periodic in
the Greek and Roman sectors, and is antiperiodic in the
mixed sectors reflecting the sign reversal of the bonds
across the chosen diameter of the ring in the one sector
with respect to the other:

qαβ(z) = qαβ(z + L)

qab(z) = qab(z + L)

qαa(z) = −qαa(z + L).

(12)

At mean-field level, there is the following stable solution
for lnZnPZ

m
AP:

− lnZnPZ
m
AP = βHrep{qSP}, (13)

where

qSP =

(
Q

(n)
αβ 0

0 Q
(m)
ij

)
(14)
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is independent of the spatial coordinates. It is natural
that the diagonal blocks are the same as the regular Parisi
Ansatz because ordering in the system with periodic
boundary conditions, say, should not be affected by there
being another completely independent copy with different
boundary conditions. Choosing the mixed Greek-Roman
sector to vanish seems to be consistent with the stan-
dard interpretation [34] of RSB in short-range systems,
namely that changing the boundary conditions changes
the system everywhere. More precisely the surface of the
domain wall separating the regions which flip from the
regions which do not flip is space filling. In this situation,
one can reasonably expect zero overlap between configu-
rations with different boundary conditions. However, in
the droplet regime, where there is but one state and its
time reversed, we still expect that the thermal average of
the off-diagonal term remains zero. Our numerical work
is consistent with this assumption.

At mean-field level the solution is identical to the cus-
tomary mean-field solution but for a n + m-times repli-
cated system (n+m being finite) without boundary con-
dition changes. We can therefore immediately use the
result from Ref. [35] that on mean-field level, there is no
term of order (n + m)2, let alone of order nm, and thus
the interface energy vanishes to this order.

We now turn to the loop expansion about the saddle
point, which we expect to be valid for σ < 2/3. The
first correction is due to Gaussian fluctuations around
the saddle point solution. They are given by

− lnZnPZ
m
AP = βHrep{qSP}+

1

2

∑
k

I(k2σ−1), (15)

where

I(k2σ−1) =
∑
µ

dµ ln(k2σ−1 + λµ). (16)

λµ are the eigenvalues of the Hessian, evaluated at the
saddle-point solution and dµ are their respective degen-
eracies. These are the same as for a system of size n+m
without boundary condition changes because the saddle
point solution is the same. Only the nature of the k-
vectors changes for the terms involving eigenvalues whose
corresponding eigenvectors f are nonzero exclusively in
the mixed sector (i.e., fαβ = fij = 0): the wave vectors
have to respect the imposed boundary conditions, which
implies k = (2nd + 1)π/L (with nd ∈ Z) in the mixed
sector as opposed to k = 2ndπ/L in the Greek or Roman
sectors.

Following Refs. [31] and [35], it is convenient to intro-
duce the function

J(k2σ−1) := ln(k2σ−1 +
x2

1w
2

2y
)

− 4w(4yk2σ−1 + wx1)

4yk2σ−1
√

4yk2σ−1 + w2x2
1

tan−1 wx1√
4yk2σ−1 + w2x2

1

,

where x1 is the break-point of the Parisi q-function. This
is because the the quadratic terms in n and m in I are

of the form

(n+m)2

2
JP(k2σ−1) + nm[JAP(k2σ−1)− JP(k2σ−1)].

The subscripts “P” and “AP” on J mean that J must
be taken as 0 when the argument is not of the required
type, i.e., periodic or antiperiodic.

We can now identify the term that gives rise to the
interface free energy. Comparison with Eq. (7) shows

β2∆F 2
P,AP =

(∑
AP
−
∑

P

)
J(k2σ−1) =

2

∞∑
r=1

[
J

((
(2r + 1)π

L

)2σ−1
)
− J

((
(2r)π

L

)2σ−1
)]

+

∆f2
SKL

2µ, (17)

where the subscripts on the sums indicate the nature of
the allowed k-vectors, as made explicit in the second part
of Eq. (17). The sum over k has been changed from ±∞
to 1 to ∞ with the sum multiplied by a factor of 2. The
term ∆f2

SKL
2µ in Eq. (17) comes from the k = 0 term in∑

P, which is nominally divergent as k → 0.
In Ref. [31] we made an attempt at using finite-size

ideas to regularize this divergence, but did it incorrectly.
It was pointed out, correctly however, that the diverging
term is identical to the variance of the sample-to-sample
fluctuations of the free energy of the SK model containing
L spins, ∆f2

SKL
2µ, with ∆FSK an L independent term.

Since that paper was written, this variance has become
better understood. Parisi and Rizzo [28] argued that
µ = 1/6. Aspelmeier [36, 37] has shown that at least
µ ≤ 1/4. In Appendix A the bound is strengthened;
µ ≤ 1/5. We will take it that µ = 1/6.

Because J(k2σ−1) ≈ −πw/4yk2σ−1 for small k, the
term in the sum in Eq. (17) is well-approximated by

−πw
4y

2

∞∑
r=1

 1[
(2r+1)π

L

]2σ−1 −
1[

(2r)π
L ]

]2σ−1

 = CL2σ−1,

where C = [1 − 4−σ(−4 + 4σ)ζ(2σ − 1)]πw/(2π2σ−1y).
This gives

β2∆F 2
P,AP = ∆f2

SKL
2µ + CL2σ−1. (18)

Provided that µ = 1/6, the right-hand side of Eq. (18) is
dominated by the first term. It is overtaken by the second
term only when σ > 2/3, but when σ > 2/3 one is in the
droplet region, and the calculation of the interface free

energy β2∆F 2
P,AP takes a quite different form, as we shall

discuss below.
In the EA d-dimensional version of the calculation—

which was summarized in Ref. [38]—there was a similar
change at d = 6 dimensions. For the EA model the sys-
tem is of length L in the z-direction, the direction in
which the change is made from periodic to anti-periodic
boundary conditions, and it is periodic and of length M
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in the transverse d−1 dimensions, so N = LMd−1. Then,
for d > 6

β2∆F 2
P,AP = ∆f2

SKN
2µ + L2f(L/M). (19)

The term ∼ L2f(L/M) is the analog of the term L2σ−1

for the KAS model, and is sub-dominant to the term of
order N1/3 (if µ = 1/6) until the dimensionality d is low-
ered to 6. This term depends on the shape of the system
L/M and has the aspect-ratio scaling form expected for
the interface free energy in dimensions d ≤ 6. The lead-
ing term in N1/3 depends only on the total number of
spins N , and arises because the domain walls are space
filling for d > 6, with ds = d. The interchange between
the term in N1/3 and its leading correction is one of the
reasons that we suspect that 6 is the dimension below
which RSB behavior changes to droplet behavior. For
the KAS model, it is one of the reasons why we believe
that RSB behavior does not occur in the spin-glass phase
for σ ≥ 2/3.

The key assumption used in our calculation is that in
the Greek-Roman sector Qαa = 〈qαa(z)〉 = 0. This as-
sumption allowed us to expand about a spatially-uniform
solution. In Appendix B we give the numerical details of
the simulations which were done to directly test this as-
sumption. We study the three overlap functions, Pπ,π(q),
Pπ,π(q) and Pπ,π(q). Thus, the overlap q between the

spin S
(π)
i in the system with periodic boundary condi-

tions and the spin S
(π)
i at the same site i in the system

with anti-periodic boundary conditions is defined as

q =
1

L

L∑
i

S
(π)
i S

(π)
i . (20)

The distribution of this overlap is Pπ,π(q), and together
with the similarly-defined overlap distributions Pπ,π(q)
and Pπ,π(q) is shown in Figs. 2 and 3 for a variety of
system sizes L and σ values. We shall refer to the last two
distributions as the diagonal contributions, [after bond-
averaging, Pπ,π(q) = Pπ,π(q)] and Pπ,π(q) as the “off-
diagonal” contribution. In replica language, the overlap
defined in Eq. (20) relates to that in the mixed Greek-
Roman sector, qαa. Our crucial assumption was that
Qαa(z) = 〈qαa(z)〉 = 0. One might have expected that in
the mixed sector Qαa(z) is an odd function interpolating
at one end of the system from +qEA to −qEA at the other
end in order to satisfy the boundary conditions. However,
if that were the situation, the off-diagonal distribution
Pπ,π(q) would have peaks near ±qEA, just like the peaks
of the diagonal distributions. However, the only peak in
the off-diagonal distribution occurs at q = 0 and for all
values of σ there are no signs of peaks at ±qEA. We
believe that this confirms our fundamental assumption.

We shall find it useful to examine the second moment
of Pπ,π(q) which equals 〈q2〉, where

q2 =
1

L2

∑
j,i

S
(π)
j S

(π)
j S

(π)
i S

(π)
i . (21)
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FIG. 2: (Color online) Spin overlap distributions for three
values of σ as a function of L at T = 0.2Tc. The distribu-
tions include Pπ,π(q), Pπ,π(q) and Pπ,π(q). The “diagonal”
distributions have substantial peaks close to ±1, with decreas-
ing qEA as L increases, while the “off-diagonal” distributions,
Pπ,π(q), peak only at q = 0, get increasingly localized to-
wards the center as L increases for the system sizes studied.
Note that in the third panel, Pπ,π(q) appears to saturate to
a nondelta-function. In all panels the systems sizes increase
from bottom to top as seen from the center of the distribution
for the cases where there is a central peak. Otherwise, as seen
from the peaks at large values of |q|.

Let us examine the situation at zero temperature. Let

τi = S
(π)
i S

(π)
i = ±1. τi = +1 if at site i the spins associ-

ated with periodic and antiperiodic boundary conditions
are parallel, τi = −1, if these spins are anti-parallel. A
sequence in which the τi are of the same sign will be
called an island. Then

q2 =

(
1

L

∑
i

τi

)2

. (22)

For the one-dimensional KAS model with long-range in-
teractions, a droplet may consist of disconnected pieces,
i.e., islands, so a fractal dimension ds could be defined if
the number of islands scales as Lds . In the RSB region we
expect that ds = d = 1. If one changes the boundary con-
ditions from periodic to anti-periodic, one does not gen-
erate a single reversed domain but instead a number of
order Lds islands. The islands have a distribution of sizes.
In the RSB region (σ < 2/3) we expect that the number
of these islands varies as L/L0, where L0(σ) is the root-
mean-square size of the islands, which seems to increase
with σ. This break up into islands arises to reduce the
energy by taking advantage of particular features of the
bonds Jij and the existence of many states in the RSB
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FIG. 3: (Color online) Spin overlap distributions for L = 400
for various values of σ at T = 0.2Tc. The “diagonal” dis-
tributions are those with peaks close to ±1, while the “off-
diagonal” distributions, Pπ,π(q), have peaks only at q = 0, be-
come increasingly localized towards the center as σ decreases.
For the distributions with a peak at the center, the values of
σ increase with decreasing peak height. For the distributions
with large support for |q| large the values of σ increase for
increasing peak height.

region. Because islands are only a feature of long-range
one-dimensional systems, they have not been studied in
the literature. In the EA model with short-range inter-
actions, the droplets are simply connected. We intend to
address details of these islands in a future publication.

The first moment of P (q) equals 〈q〉 and is zero [the
functions are symmetric, so P (q) = P (−q)]. Thus, the
average value of τi is zero and there are as many positive
τi values as negative τi values. For any given ground
state, the average of τi might not be zero. However, if one
averages over the ground state and the states obtained
by flipping all the spins in (say) the system with periodic
boundary conditions, the average value of τi will be zero.

The second moment can be estimated by noting that
the sum in Eq. (22) is a sum of L/L0 terms random in sign

and of magnitude L0, so the sum is of order
√
L/L0 L0.

Hence, q2 = L0/L. Assuming that the distribution of q
is Gaussian,

Pπ,π(q) =

√
L

2πL0
exp

[
−Lq

2

2L0

]
. (23)

Thus, in the limit of L → ∞, Pπ,π(q) = δ(q). The peak

Pπ,π(0) is expected to vary as ∼
√
L/L0. It is shown in

Fig. 4 and seems to be consistent with these arguments
at least for the data for σ = 0.1 and 0.55, which lie in
the RSB region.

In the droplet region the data in Figs. 2 and 3 imply
that 〈q2〉 is nonzero as L→∞. Again, Pπ,π(q) is a func-
tion of q centered at the origin and of nonzero width,
so the peak Pπ,π(0) remains finite in the droplet region.

Therefore, there seems to be a simple test for determin-
ing whether the system has RSB behavior or not. If there
is RSB behavior, Pπ,π(0) diverges with the system size,
whereas in the droplet region it stays finite. Simulations
of the three-dimensional EA model suggest it stays finite
[39]. Our numerical work shows that in the KAS model
the change from RSB to droplet behavior might occur
somewhere between σ = 0.55 and σ = 0.75, but finite-
size effects make it hard to pin down the change more
precisely and we have failed to find any method of anal-
ysis which even hints at a sharp feature at σ = 2/3. It

might be that L0 diverges as σ → 2/3, so that 〈q2〉 joins
smoothly to its expected finite form for σ ≥ 2/3. We tried
to determine whether L0 has this feature, but failed to
see it clearly, probably because of finite size issues. We
do emphasize, however, that the window 0.55 ≤ σ ≤ 0.75
corresponds for a hypercubic system to space dimensions
between approximately 4 and 10.

In the RSB region the loop expansion, i.e., the expan-
sion about the mean-field solution, is well-controlled (but
technically challenging). Unfortunately, such a perturba-
tive approach completely fails in the droplet region as the
terms in the expansion about the state of assumed replica
symmetry appear to break replica symmetry. This prob-
lem might be overcome by going to all orders in the ex-
pansion [40]. However, we can get the exponent θ within
our formalism by using Eq. (11) for the bending energy
and using the arguments in Refs. [10, 13, 25]. It is use-

ful to set ταai = S
(α)
i S

(a)
i = ±1, so that ταai = +1 if

the spins S
(α
i ) and S

(a)
i are parallel, and −1 otherwise.

Then by flipping (say) half the ταai spins, one can see
that the variance of the replicated bending energy scales
as mnL2−2σ, just as already argued in Refs. [10, 13, 25].
In that case

θ = 1− σ. (24)

We believe that Eq. (24) applies only in the droplet re-
gion, i.e., σ ≥ 2/3. However, in the region σ < 2/3 where

we expect 〈q2〉 to be of order L0/L, the presence of so
many islands (of order L/L0) of finite size L0 and the cor-
relations between them must allow the system to reduce
the free-energy variance associated with the transition
from periodic to anti-periodic boundary conditions from
this estimate of L2(1−σ) to the smaller value of L1/3.

For σ ≥ 1, the exponent θ is no longer positive and
there will be no finite-temperature spin-glass phase [25].
However, the short-range EA model value for θ is −1 [10]
and so the crossover to the short-range behavior occurs
above σ = 2 when the long-range interactions become
irrelevant at the zero-temperature fixed point [13, 20].

II. CONCLUSIONS

We predict for the one-dimensional KAS model that in
the RSB region (σ < 2/3) θ = 1/6, while in the region
2/3 ≤ σ < 2, θ = (1 − σ). Notice that at the borderline
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FIG. 4: (Color online) Pπ,π(0) as a function of
√
L, for three

representative values of σ at T = 0.2Tc. Note that Pπ,π(0)

grows approximately linearly in
√
L in the RSB regime, but

seems to level off in the droplet/scaling regime (σ > 2/3).
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FIG. 5: (Color online) Estimates of the exponent θ as a func-
tion of σ. KY denotes results obtained on samples up to
L = 256 in Ref. [19] by Katzgraber and Young. The dashed
line denotes the droplet regime prediction for θ = 1− σ. We
expect this to apply for 2 > σ ≥ 2/3. When σ < 2/3 we
predict that θ = 1/6 and the horizontal dashed line shows
this prediction. Notice that the result for θ in the SK model
region (σ = 0.1) is moving closer to the theoretical prediction
of 1/6 as L increases, albeit very slowly.

of the RSB region and droplet region at σ = 2/3, θ is
predicted to be discontinuous, as shown in Fig. 5.

This discontinuity seems to be a feature of the KAS
model only. For the d-dimensional EA model where 6
is the borderline dimension, there is evidence that θ is
continuous at 6 dimensions as it approaches unity in six
dimensions (see Refs. [41, 42] for numerical evidence on
this question). If it tends to unity approaching 6 dimen-
sions from below, it merges with the value of θ expected

from RSB as the dimension d approaches six from above,
as given in Eq. (19). θ and µ have been studied as a
function of σ via numerical simulations. This was first
done by Katzgraber and Young (KY) [19, 43], with re-
sults which are not very close to the predictions made
here. No discontinuity in θ was reported at σ = 2/3. We
believe that the discrepancies are due to finite-size effects
[24], which are surprisingly large in the KAS model. The
data produced in the present study allows us to reach
larger sizes than those previously studied by KY, who
studied L ≤ 256. The larger sizes which we studied,
L = 400 and L = 1000, do give results somewhat closer
to our theoretical expectations, but the movement to-
wards them is slow. In the droplet region the finite-size
effects are probably of the same origin as those that make
the Parisi overlap Pπ,π(q = 0) nonzero, contrary to the
arguments of droplet theory, i.e., the system sizes stud-
ied are just not large enough to make it vanish. Smaller
systems appear to have RSB features such as a nonzero
value of Pπ,π(0).

In the RSB region where σ < 2/3, we are predicting
that θ = 1/6. The value of 1/6 is the SK value for µ.
However, the values for µ reported in the numerical liter-
ature [44] for the SK model seem closer to a value around
0.25, which, while very different from 1/6 of the theoret-
ical work of Parisi and Rizzo [28], is consistent with the
numerical value for θ reported in [19]. But once again, we
suspect that finite-size effects in the RSB region might
cause the discrepancy. In Appendix A we give what we
believe is a cogent argument that at least µ ≤ 1/5.

Our work suggests that a convenient numerical test
for RSB or droplet behavior is via the size dependence of
Pπ,π(0). If this quantity does not grow with system size,
the ordered state is droplet like. If it grows with system
size, the system has RSB behavior. However, this test
is affected by finite-size effects, yet perhaps not as badly
as other commonly used tests based on the existence or
not of the AT line. Simulations using special-purpose
machines [45] that allow for considerably larger system
sizes might allow for the detection of the true nature of
the spin-glass state using this newly-introduced metric.
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Appendix A: “Proof” that µ ≤ 1
5
for the SK model

For σ < 2/3, our calculation of the exponent θ related
it to the exponent µ of the sample-to-sample variation of
the energy in the SK limit. This exponent is believed to
be 1/6 [28], but numerical studies of it give larger values
[19, 44]. In this Appendix we derive an upper bound
on its value, namely µ ≤ 1/5. We believe that with
the methods used here it might be possible eventually to
actually prove that µ = 1/6. We also point out that the
numerical work is done for the ground state i.e., the the
free energy at T = 0, and the argument in this Appendix
is for the free energy at a finite temperature T < Tc.
However, we do not think this difference affects the value
of µ. The difference between the numerical value and
our theoretical expectations, is, we believe, just another
problem caused by finite size effects.

In Refs. [36, 37] it was shown that the free-energy fluc-
tuations ∆F in the SK model are given by the exact
formula

β2∆F 2 =
N2β4

16

∫ ∞
0

f2(ε)E〈(q2
13 − q2

14)(q2
13 − q2

23)〉 dε

+
Nβ2

4

∫ ∞
0

g2(ε)

(
E〈q2

13〉 −
1

N

)
dε, (A1)

where N is the system size, β the inverse temperature,
f2 and g2 two functions defined by

f2(ε) =
2ε log(1 + ε2)

(1 + ε2)2
g2(ε) =

ε log(1 + ε2)

(1 + ε2)3/2
,

and where qij with i = 1, 2 and j = 3, 4 are the overlaps
between spin glass systems 1, . . . , 4 of which systems 1

and 2 have identical Gaussian bonds J
(i)
kl with unit vari-

ance, and likewise for systems 3 and 4 with bonds J
(j)
mn,

and the correlation between the two sets of bonds is given
for k > l and m > n by

EJ (i)
kl J

(j)
mn = δkmδln

1√
1 + ε2

.

The symbol E here stands for the expectation value with
respect to all bonds and the angular brackets denote a
thermal average. The free-energy fluctuations are thus
directly linked to bond chaos via integrals over a function
(f2 or g2) times momenta of overlaps between spin-glass
replicas with different but correlated bonds.

TABLE I: Summary of moments E〈qk13〉 with k = 2, 4 calcu-
lated in Ref. [36].

Regime I Regime II Regime III

ε� N−1/2 N−1/2 � ε� N−1/5 N−1/5 � ε

E〈q213〉 const. ∼ (Nε2)−2/3 ∼ (Nh(ε))−1

E〈q413〉 const. ∼ (Nε2)−4/3 ∼ (Nh(ε))−2

For the calculation of Eq. (A1) it is, in principle, nec-
essary to calculate 3- and 4-replica overlaps of the form
E〈q2

13q
2
14〉 etc. This is, however, very difficult. Instead,

we note that trivially

0 ≤ (q2
14 − q2

23)2 = q4
14 + q4

23 − 2q2
14q

2
23,

whence it follows that

E〈q2
14q

2
23〉 ≤ E〈q4

13〉,

since replicas 1 and 2 are identical, as are replicas 3 and
4, and so E〈q4

14〉 = E〈q4
23〉 = E〈q4

13〉. This implies

E〈(q2
13 − q2

14)(q2
13 − q2

23)〉 =

E〈q4
13 − q2

13q
2
23 − q2

14q
2
13 + q2

14q
2
23〉 ≤ 2E〈q4

13〉. (A2)

For an upper bound of the first integral term in Eq. (A1)
it is therefore only necessary to know E〈q4

13〉 as a function
of ε. Such moments have been calculated asymptotically
in various regimes in Ref. [36]. The results are summa-
rized in Table I.

The function h is a nonnegative function with the fea-
tures that h(ε) = O(ε3) for ε → 0 and h(ε) → const. for
ε → ∞. These results allow for calculating the asymp-
totic behavior of the integrals in Eq. (A1). The first
integral can, with the help of Eq. (A2), be bounded by

N2β4

16

∫ ∞
0

f2(ε)E〈(q2
13 − q2

14)(q2
13 − q2

23)〉 dε

≤ N2β4

8

∫ ∞
0

f2(ε)E〈q4
13〉 dε

=
N2β4

8

∫ N−1/5

0

ε3F(N1/2ε) dε

+
N2β4

8

∫ ε0

N−1/5

ε3(Nε3)−2 dε+O(1),

where F is a scaling function combining regimes I and
II and with the properties F(x) → const. as x → 0 and
F(x) = O(x−8/3) as x → ∞. The term ε3 in the inte-
grals comes from a Taylor expansion of f2 for small ε.
The upper limit of the second part of the integral, which
corresponds to regime III, is some fixed ε0 of order 1 but
small enough to allow for a Taylor expansion of f2 and
h. Asymptotic evaluation of the integral is now possible,
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and the result is for regimes I and II

N2β4

8

∫ N−1/5

0

ε3F(N1/2ε) dε

=
β4

8

∫ N3/10

0

x3F(x) dx ∼ N2/5.

The dominant contribution to regime III of the integral
comes from the lower bound and is also ∼ N2/5.

A similar calculation shows that the second integral
term in Eq. (A1) is subdominant to N2/5, hence the fluc-
tuations are bounded by

β2∆F 2 ≤ const.×N2/5,

and the fluctuation exponent µ in β∆F ∼ Nµ is bounded
by µ ≤ 1/5.

Appendix B: Numerical simulation details

The main purpose of the numerical work is to verify
the main assumption in our calculation in Sec. I. This is
that in the mixed sector Qαa = 〈qαi(z)〉 = 0. It is this
assumption which allowed us to construct the first term
in the loop expansion about a spatially uniform solution.
We also expect that 〈qαi(z)〉 = 0 in the droplet region.
Our studies of the exponents θ and µ are in effect a by-
product of these investigations.

When doing numerical work on the one-dimensional
long-range model, one has to decide whether to stay with
the KAS model as originally outlined—in which every
spin is coupled to every other spin—or the diluted model
in which only a fixed number z (typically z is chosen to be
6) of the spins are coupled [21, 46]. The advantage of the
diluted model is that the simulations are faster, because
each spin update requires only a constant number of up-
dates from their neighbors. On the other hand, there is a
price to be paid in that it suffers from larger finite-size ef-
fects. We therefore decided to study the fully-connected
model. Despite smaller system sizes than in the diluted
case, finite-size corrections to scaling are smaller.

The model is simulated using population annealing
Monte Carlo [47–50]. Population annealing works with a
large population R0 of replicas of the system, each with
the same disorder. The population transverses an an-
nealing schedule and maintains thermal equilibrium to
a low target temperature, T0 = 1/β0. In this work, we
used a schedule that is linear in β. When the tempera-
ture is lowered from β to β′ the population is resampled.
The mean number of copies of replica i is proportional
to the appropriate re-weighting factor, exp[−(β′−β)Ei].
The constant of proportionality is chosen such that the
population size remains close to R0. This is followed by
NS = 10 sweeps of the Metropolis Monte Carlo algorithm
of each replica. We simulate M disorder realizations and

measure overlaps at T = T0 = 0.1Tc and T = 0.2Tc.
The simulation parameters are summarized in Table II.

TABLE II: Parameters of the simulations for different values
of σ and system size L for periodic (π), as well as anti-periodic
(π) boundary conditions. R0 is the population size, T0 =
1/β0 is the lowest temperature simulated, NT the number
of temperatures used in the annealing schedule, and M the
number of disorder realizations.

L σ R0 1/β0 NT M

100 {0.1,0.25,0.5,0.55} 104 0.1000 101 6000

100 {0.6} 104 0.0934 101 6000

100 {0.667} 104 0.0833 101 6000

100 {0.75} 104 0.0690 101 6000

100 {0.896} 2 104 0.0373 101 12000

200 {0.1,0.25,0.5,0.55} 2 104 0.1000 101 6000

200 {0.6} 2 104 0.0934 101 6000

200 {0.667} 2 104 0.0833 101 6000

200 {0.75} 2 104 0.0690 101 6000

200 {0.896} 2 104 0.0373 101 6000

300 {0.1,0.25,0.5,0.55} 4 104 0.1000 101 6000

300 {0.6} 4 104 0.0934 101 6000

300 {0.667} 4 104 0.0833 101 6000

300 {0.75} 4 104 0.0690 101 6000

300 {0.896} 4 104 0.0373 101 6000

400 {0.1,0.25,0.5,0.55} 5 104 0.1000 201 6000

400 {0.6} 5 104 0.0934 201 6000

400 {0.667} 5 104 0.0833 201 6000

400 {0.75} 5 104 0.0690 201 6000

400 {0.896} 5 104 0.0373 201 6000

1000 {0.1,0.55} 2 105 0.1000 201 3000

1000 {0.75} 2 105 0.0690 201 3000

TABLE III: Dependence of Tc(σ) on σ. The values of Tc used
in the simulation and the error bars are estimated using the
data of Ref. [33] via a cubic spline interpolation.

σ Tc(σ)

0.55 1.00(3)

0.6 0.93(3)

0.6667 0.83(2)

0.75 0.69(1)

0.896 0.37(1)

Our estimates of Tc(σ) are given in Table III. Most of
our studies of the three overlap functions were done at
0.2Tc(σ), in order to more easily compare how varying σ
affects them. We find the ground-state energy by finding
the lowest energy in our population at the lowest temper-
ature and we ensure that the number of replicas having
the lowest energy is large, in order to estimate the expo-
nents θ and µ.
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