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I. INTRODUCTION

The Second Law of Thermodynamics encapsulates one of the most important facts about
the macroscopic world: entropy increases over time. There are, however, a number of differ-
ent ways to define “entropy,” and corresponding controversies over how to best understand
the Second Law. In this paper we offer a formulation of the Second Law that helps to resolve
some of the tension between different approaches, by explicitly including the effects of the
measurement process on our knowledge of the state of the system. This Bayesian Second
Law (BSL) provides a new tool for analyzing the evolution of statistical systems, especially
for small numbers of particles and short times, where downward fluctuations in entropy can
be important.

One way to think about entropy and the Second Law, due to Boltzmann, coarse-grains
the phase space Γ of a system into macrostates. The entropy of a microstate x is then given
by S = log Ωx, where Ωx is the volume of the macrostate to which x belongs. (Throughout
this paper we set Boltzmann’s constant kB equal to unity.) The coarse-graining itself is
subjective, but once it is fixed there is a definite entropy objectively associated with each
microstate. Assuming that the system starts in a low-entropy state (the “Past Hypothesis”),
the Second Law simply reflects the fact that undirected evolution is likely to take the state
into ever-larger macrostates: there are more ways to be high-entropy than to be low-entropy.
The Second Law is statistical, in the sense that random fluctuations into lower-entropy
states, while rare, are certainly possible. In many contexts of interest to modern science,
from nanoscale physics to biology, these fluctuations are of crucial importance, and the study
of “fluctuation theorems” has garnered considerable attention in recent years [1–8].

Another perspective on entropy, associated with Gibbs in statistical mechanics and Shan-
non [9] in the context of information theory, starts with a normalized probability distribution
ρ(x) on phase space, and defines the entropy as S = −

∫
dx ρ(x) log ρ(x). In contrast with

the Boltzmann formulation, in this version the entropy characterizes the state of our knowl-
edge of the system, rather than representing an objective fact about the system itself. The
more spread-out and uncertain a distribution is, the higher its entropy. The Second Law,
in this view, represents the influence of stochastic dynamics on the evolution of the system,
for example due to interactions with a heat bath, under the influence of which we know less
and less about the microstate of the system as time passes.

For many purposes, the Gibbs/Shannon formulation of entropy and the Second Law
is more convenient to use than the Boltzmann formulation. However, it raises a puzzle:
how can entropy ever fluctuate downward? In an isolated system evolving according to
Hamiltonian dynamics, the Gibbs entropy is strictly constant, rather than increasing; for a
system coupled to a heat bath with no net energy transfer, it tends to monotonically increase,
asymptoting to a maximum equilibrium value. Ultimately this is because the Gibbs entropy
characterizes our knowledge of the microstate of the system, which only diminishes with
time.1

We can, of course, actually observe the system; if we do so, we will (extremely) occasion-
ally notice that it has fluctuated into what we would characterize as a low-entropy state from
Boltzmann’s perspective. The air in a room could fluctuate into one corner, for example,
or a cool glass of water could evolve into a warm glass of water containing an ice cube. To

1 Boltzmann himself also studied a similar formulation of entropy, which he used to prove his H-theorem.

The difference is that the H-functional represents N particles in one 6-dimensional single-particle phase

space, rather than in a 6N -dimensional multi-particle phase space. This is not a full representation of the

system, as it throws away information about correlations between particles. The corresponding dynamics

are not reversible, and entropy increases [10].
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reconcile this real physical possibility with an information-centric understanding of entropy,
we need to explicitly account for the impact of the act of measurement on our knowledge
of the system. This is the task of Bayesian analysis, which shows us how to update prob-
ability distributions in the face of new information [11, 12]. Since the advent of Maxwell’s
demon, measurement in the context of statistical mechanics has been explored extensively
[13]. This has resulted in a body of literature linking information-theoretic quantities to
thermodynamic variables [14, 15]. However, such analyses only examine the impact of mea-
surement at the point in time when it is performed. In the present work, we observe that
such measurements also contain information about the state of the system at earlier points
in time that are hitherto unaccounted for. This results in novel modifications of the Second
Law.

The setup we consider consists of a classical system coupled to an environment. The
dynamics of the system are stochastic, governed by transition probabilities, either due to
intrinsic randomness in the behavior of the system or to the unpredictable influence of the
environment. An experimental protocol is determined by a set of time-dependent param-
eters, which may be thought of as macroscopic features (such as the location of a piston)
controlled by the experimenter. The experimenter’s initial knowledge of the system is char-
acterized by some probability distribution; as the system is evolved under the protocol for
some period of time, this probability distribution also evolves. At the end of the experi-
ment, the experimenter performs a measurement. Bayes’s Theorem tells us how to update
our estimates about the system based on the outcome of the measurement; in particular, we
can use the measurement outcome to update the final probability distribution, but also to
update the initial distribution. The BSL is a relation between the original (non-updated)
distributions, the updated distributions, and a generalized heat transfer between the system
and the environment.

The Second Law contains information about irreversibility; a crucial role in our analysis
is played by the relationship between transition probabilities forward in time and “reversed”
probabilities backward in time. Consider a situation in which the system in question is an
egg, and the experiment consists of holding the egg up and dropping it. To be precise, the
experimental protocol, which we will call the “forward” protocol, is for the experimenter to
hold the egg in the palm of her open hand, and then to turn her hand over after a specified
amount of time. The initial probability distribution for the particles that make up the egg
is one that corresponds to an intact egg in the experimenter’s hand. With overwhelming
probability the forward protocol applied to this initial state will result in an egg on the floor,
broken.

This experiment is clearly of the irreversible type, but we should be careful about why
and how it is irreversible. If we reversed the velocities of every particle in the universe, then
time would run backward and the egg would reconstitute itself and fly back up into the
experimenter’s hand. This sort of fundamental reversibility is not what concerns us. For us,
irreversibility means that there are dissipative losses to the environment: in particular, there
are losses of information as the state of the system interacts with that of the environment.
This information loss is what characterizes irreversibility. From the theoretical viewpoint,
we should ask what would happen if all of the velocities of the broken egg particles were
instantaneously reversed, leaving the environment alone. Again with overwhelming proba-
bility, the egg would remain broken on the floor. To make sure the time-dependent actions
of the experimenter do not affect this conclusion, we should also instruct the experimenter
to run her experiment in reverse: she should begin with her palm facing downward while
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the egg is broken on the floor, and then turn it upward after a certain amount of time. In
this example, the effect of reversing the experimental procedure is negligible; the probability
that the egg will reassemble itself and hop up into her hand is not zero, but it is extremely
small.

The generalization beyond the egg dropping experiment is clear. We have a system and
an environment, and an experimenter who executes a forward protocol, which means a
macroscopic time-dependent influence on the dynamics of the system. The environmental
interactions with the system are deterministic but unknown to the experimenter, and so the
system evolves stochastically from her point of view. She assigns probabilities to trajectories
the system might take through phase space. We will call these the “forward” probabilities.
To isolate potential irreversibility in the system, we consider reversing all of the velocities
of the system’s particles in its final state, and then executing the “reverse” protocol, which
is just the forward protocol backward. The environment still interacts in an unknown way,
so the system again evolves stochastically. The probabilities that the experimenter assigns
to trajectories in this reversed setup are called the reverse probabilities.

To get precise versions of the Second Law, we will consider a particular information-
theoretic measure of the difference between the forward and reverse probabilities, known
as the relative entropy or Kullback-Leibler divergence [16]. The relative entropy of two
probability distributions is always non-negative, and vanishes if and only if the two distribu-
tions are identical. The relative entropy of the forward and reverse probability distributions
on phase space trajectories is a measure of the irreversibility of the system, and the non-
negativity of that relative entropy is a precise version of the Second Law [17].

The inclusion of Bayesian updates as the result of an observation at the end of the protocol
leads to the Bayesian Second Law. The BSL can be written in several ways, one of which
is:

∆H(ρm, ρ) + 〈Q〉F |m ≥ 0. (1)

Here, ρ is the probability distribution without updating, and ρm is the updated distribution
after obtaining measurement outcome m. H = −

∫
ρm log ρ is the cross entropy between the

two distributions. The cross entropy is the sum of the entropy of ρm and the relative entropy
of ρm with respect to ρ; it can be thought of as the average amount we would learn about
the system by being told its precise microstate, if we thought it was in one distribution (the
original ρ) but it was actually in another (the updated ρm). Like the ordinary entropy, this
is a measure of uncertainty: the more information contained in the (unknown) microstate,
the greater the uncertainty. However, the cross entropy corrects for our false impression of
the distribution. The difference in the cross entropy between the initial and final times is
∆H, and 〈Q〉F |m is the expectation value of a generalized heat transfer between the system
and the environment, which contains information about the irreversibility of the system’s
dynamics. Thus, at zero heat transfer, the BSL expresses the fact that our uncertainty about
the system is larger at the time of measurement, even after accounting for the measurement
outcome.

The relative entropy is not only non-negative, it is monotonic: if we apply a stochastic
(probability-conserving) operator to any two distributions, the relative entropy between
them stays constant or decreases. We can use this fact to prove refined versions of both
the ordinary (already derived in [17–19]) and Bayesian Second Laws, obtaining a tighter
bound than zero to the expected entropy change plus heat transfer. These lower bounds
are the relative entropy between the initial probability distribution and one that has been
cycled through forward and reverse evolution, and therefore characterize the amount of



5

irreversibility in the evolution.
We also apply our implementation of Bayesian updating to integral fluctuation theorems,

extending such theorems to subsets of experimental realizations conditioned on particular
measurement outcomes. Lastly, we illustrate the BSL in the context of some simple models.
These include deriving Boltzmann’s version of the Second Law within our formalism, and
studying the numerical evolution of a randomly driven harmonic oscillator.

II. SETUP

A. The System and Evolution Probabilities

We are primarily concerned with dynamical systems that undergo non-deterministic evo-
lution, typically due to interactions with an environment about which the experimenter
has no detailed knowledge. The effect of the unknown environment is to induce effectively
stochastic evolution on the system; as such, we can only describe the state and subsequent
time evolution of the system probabilistically [20]. We are considering classical mechanics,
where probabilities only arise due to the ignorance of the experimenter, including ignorance
of the state of the environment. Analogous equations would apply more generally to truly
stochastic systems, or to stochastic models of dynamical systems.

The state of the system at time t is therefore a random variable Xt taking values in a space
of states Γ. We will refer to Γ as “phase space,” as if it were a conventional Hamiltonian
system, although the equations apply equally well to model systems with discrete state
spaces. Because the evolution is non-deterministic, we can only give a probability that the
system is in state x at time t, which we write as P (Xt = x). This is a true probability in the
discrete case; in the continuous case it is more properly a probability density that should be
integrated over a finite region of Γ to obtain a probability, but we generally will not draw
this distinction explicitly. For notational convenience, we will often write this probability as
a distribution function,

ρt(x) ≡ P (Xt = x), (2)

which is normalized so that
∫
ρt(x) dx = 1.

The experimenter has two roles: to manipulate a set of external control parameters
defining the experimental protocol, and to perform measurements on the system. All mea-
surements are assumed to be “ideal”; that is, the act of measuring any given property of the
system is assumed to induce no backreaction on its state, and we do not track the statistical
properties of the measuring device.

We will primarily be studying experiments that take place over a fixed time interval
τ . The experimental protocol is fully specified by the history of a set of external control
parameters that can change over this time interval, λi(t). The control parameters λi specify
the behavior of various external potentials acting on the system, such as the volume of a
container or the frequency of optical tweezers. We will refer to the set λ(t) = {λi(t)} of
control parameters as functions of time as the “forward protocol.”

The forward protocol and the dynamics of the system together determine the forward
transition function, πF , which tells us the probability that the system evolves from an initial
state x at t = 0 to a final state x′ at t = τ :

πF (x→ x′) ≡ P (Xτ = x′|X0 = x;λ (t)). (3)
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The transition function πF is a conditional probability, normalized so that the system ends
up somewhere with probability one:

∫
πF (x→ x′)dx′ = 1. (4)

The forward transition function evolves the initial distribution to the final distribution,

ρτ (x
′) =

∫
dx ρ0(x)πF (x→ x′). (5)

A central role will be played by the joint probability that the system begins at x and
ends up a time τ later at x′,2

PF (x, x′) ≡ P (X0 = x,Xτ = x′) = ρ0(x)πF (x→ x′), (6)

which is normalized so that
∫
P (x, x′) dxdx′ = 1. By summing the joint probability over x

or x′ we obtain the distribution functions ρτ (x
′) or ρ0(x), respectively:

ρτ (x
′) =

∫
PF (x, x′)dx,

ρ0(x) =

∫
PF (x, x′)dx′. (7)

We close this subsection with a brief review on the probabilities of phase-space trajecto-
ries. The rules of conditional probability allow us to break up the transition functions based
on subdivisions of the time interval [0, τ ]. For the special case of a Markov process, we have
the identity

πF (x→ x′) =

∫
[dx]P (Xτ = x′|XtN = xN)

× P (XtN = xN |XtN−1
= xN−1) · · ·P (Xt1 = x1|X0 = x), (8)

where [dx] is the product of all the dxk and we choose tk = kτ/(N + 1). This is familiar as
a discretization of the path integral, and in the continuum limit we would write

πF (x→ x′) =

∫ x(τ)=x′

x(0)=x

Dx(t) πF [x(t)]. (9)

The functional πF [x(t)] is a probability density on the space of trajectories with fixed initial
position, but with the final position free. This functional has previously been introduced in
the literature for both classical and quantum systems [21, 22]. To get a probability density
on the space of trajectories with two free endpoints, we just have to multiply πF [x(t)] by
the initial distribution ρ0(x). The result, which we call PF [x(t)], is the path-space version of
the joint distribution PF (x, x′). We will not make heavy use of these path-space quantities
below, but the formal manipulations we make with the ordinary transition function and joint
distribution can be repeated exactly with the path-space distributions, and occasionally we
will comment on the path-space versions of our results.

2 Here and below we will mostly omit the dependence on the control parameters λ(t) from the notation for

brevity. They will return in Section II C when we discuss time-reversed experiments.
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FIG. 1. Relationships between the various distribution functions we define: the original distribution

ρ0(x), its time-evolved version ρτ (x′), their corresponding Bayesian-updated versions ρ0|m(x) and

ρτ |m(x′), and the cycled distributions ρ̃(x) and ρ̃m(x) discussed in Sections III B and IV C. Equation

numbers refer to where the distributions are related to each other.

B. Measurement and Bayesian Updating

The probability density on phase space can also change through Bayesian updates when
a measurement is made: the experimenter modifies her probabilities to account for the new
information. We will restrict ourselves to measurements performed at time τ , the end of
the experiment, though it is simple to extend the results to more general measurement
protocols. The measurement outcome is a random variable M that only depends on the
state of the system at time τ , not on the prior history of the system. The measurement is
then characterized by the function

P (m|x′) ≡ P (M = m|Xτ = x′) (10)

= probability of measurement outcome m given state x′ at time τ .

The updated phase space distribution at time τ is obtained by Bayes’s rule, which in this
case takes the form

ρτ |m(x′) ≡ P (Xτ = x′|M = m) =
P (m|x′)
P (m)

ρτ (x
′). (11)

Here the denominator is P (m) ≡
∫
P (m|y′)ρτ (y′)dy′, and serves as a normalization factor.

If we know the transition function, we can also update the phase space distribution at
any other time based on the measurement outcome at time τ . Below we will make use of
the updated initial distribution:

ρ0|m(x) ≡ P (X0 = x|M = m) =
ρ0(x)

∫
dx′ πF (x→ x′)P (m|x′)

P (m)
. (12)

This reflects our best information about the initial state of the system given the outcome
of the experiment; ρ0|m(x) is the probability, given the original distribution ρ0(x) and the
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Distribution Name Definition

ρ0(x) Initial Distribution 2

πF (x→ x′) Forward Transition Function 3

ρτ (x′) Final Distribution 5

PF (x, x′) Joint Forward Distribution 6

P (m|x) Measurement Function 10

ρτ |m(x′) Updated Final Distribution 11

ρ0|m(x) Updated Initial Distribution 12

πF |m(x→ x′) Updated Forward Transition Function 13

PF |m(x, x′) Updated Joint Forward Distribution 14

πR(x′ → x) Reverse Transition Function 18

PR(x, x′) Joint Reverse Distribution 19

PR|m(x, x′) Updated Joint Reverse Distribution 19

ρ̃(x) Cycled Distribution 32

ρ̃m(x) Updated Cycled Distribution 53

TABLE I. List of named probability distributions and their defining equations. These are grouped

according to whether they are updated and/or time-reversed.

measurement outcome m at time t = τ , that the system was in state x at time t = 0. For
example, we may initially be ignorant about the value of an exactly conserved quantity. If
we measure it at the end of the experiment then we know that it had to have the same value
at the start; this could mean a big difference between ρ0 and ρ0|m, though often the effects
will be more subtle. The various distribution functions we work with are summarized in
Figure 1 and listed in Table I.

Finally, we can update the forward transition functions,

πF |m(x→ x′) ≡ P (Xτ = x′|X0 = x,M = m) =
πF (x→ x′)P (m|x′)∫
dy′ πF (x→ y′)P (m|y′) , (13)

and the joint distributions,

PF |m(x, x′) ≡ P (X0 = x,Xτ = x′|M = m) =
P (m|x′)
P (m)

PF (x, x′) = ρ0|m(x)πF |m(x→ x′),

(14)
based on the measurement outcome. As we would expect, the updated transition function
evolves the updated distribution from the initial to the final time:

ρτ |m(x′) =

∫
dx ρ0|m(x)πF |m(x→ x′). (15)

It may seem odd to update the transition functions based on measurements, since in principle
the original transition functions were completely determined by the stochastic dynamics of
the system and this is a desirable property that one would like to preserve. For this reason,
the unupdated transition functions will play a special role below, while the updated ones
are only used as an intermediate quantity in algebraic manipulations.
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FIG. 2. The various distribution functions illustrated within a toy model of 100 independent spins

with a fixed chance of flipping at every timestep. The distributions are normalized functions on

the space of the total number x of up-spins. We consider an initial distribution (thick solid blue

line) that is equally split between the intervals x < 10 and 90 < x. The system is evolved for

enough time to come close to equilibrium but not quite reach it, as shown by the final distribution

(thin solid red line). A measurement is performed, revealing that less than half of the spins are

up (dot-dashed purple line). We can therefore update the post-measurement final distribution

(dashed red line). The corresponding updated initial distribution (dotted blue line) is similar to

the original initial distribution, but with a boost at low x and a decrease at high x.

To illustrate these definitions, consider a simple toy model: a collection of N independent
classical spins, each of which has a fixed probability to flip its state at each timestep. In this
model it is most intuitive to work with a distribution function defined on macrostates (total
number of up spins) rather than on microstates (ordered sequences of up/down spins).

The distribution functions relevant to our analysis are illustrated for this toy model with
N = 100 spins in Fig. 2. To make the effects of evolution and updating most clear, we
start with a bimodal initial distribution ρ0(x), uniform on the intervals 0 ≤ x < 10 and
90 < x ≤ 100. The system is evolved for a short time τ , not long enough to attain the
equilibrium distribution, which would be a binomial centered at x = N/2 = 50. The final
distribution ρτ (x

′) therefore has two small peaks just above and below x′ = 50. We then
perform a measurement, which simply asks whether most of the spins are up or down,
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obtaining the answer “mostly down.” This corresponds to a measurement function

P (m|x) =

{
1 if x ≤ 50,

0 if x > 50.
(16)

In Fig. 2 we have plotted the normalized version P (m|x)/P (m). From this we can construct
the updated final and updated initial distributions, using (11) and (12). The updated final
distribution is just the left half of the non-updated final distribution, suitably renormalized.
The updated initial distribution is a re-weighted version of the non-updated initial distribu-
tion, indicating that there is a greater probability for the system to have started with very
few up spins (which makes sense, since our final measurement found that the spins were
mostly down). This toy model does not have especially intricate dynamics, but it suffices to
show how our evolution-and-updating procedure works.

C. The Reverse Protocol and Time Reversal

The Second Law contains information about the irreversibility of the time-evolution of
the system, so to derive it we need to specify procedures to time-reverse both states and
dynamics. Specifically, we will define an effectively “time-reversed” experiment that we can
perform whose results can be compared to the time-forward experiment. As discussed in
the Introduction, the point here is not to literally reverse the flow of time upon completion
of the time-forward experiment (which would just undo the experiment), but to isolate the
effects of dissipative processes, like friction, which result from complicated interactions with
the environment.

For a state x, we denote by x the time-reversed state. In a ballistic model of particles, x
is just the same as x with all of the particle velocities reversed. We are only talking about
the velocities of the particles that make up the system, not the environment. In practice,
an experimenter is not able to control the individual velocities of all of the particles in the
system, so it may seem pointless to talk about reversing them. It will often be possible,
however, to set up a time-reversed probability distribution ρ(x) ≡ ρ(x) given some procedure
for setting up ρ(x). For instance, if the system has a Maxwellian distribution of velocities
with zero center-of-mass motion, then the probability distribution on phase space is actually
time-reversal invariant.

Time reversal of dynamics is simpler, primarily because we have only limited experimental
control over them. The system will have its own internal dynamics, it will interact with the
environment, and it will be influenced by the experimenter. In a real experiment, it is only
the influence of the experimenter that we are able to control, so our notion of time reversal
for the dynamics is phrased purely in terms of the way the experimenter decides to influence
the system. The experimenter influences the system in a (potentially) time-dependent way
by following an experimental protocol, λ(t), which we have called the “forward protocol.”
The forward protocol is a sequence of instructions to carry out using some given apparatus
while the experiment is happening. We therefore define a “reverse protocol,” which simply
calls for the experimenter to execute the instructions backward. In practice, that involves
time-reversing the control parameters (e.g., reversing macroscopic momenta and magnetic
fields) and running them backwards in time, sending

λi(t)→ λ̄i(τ − t). (17)
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For simplicity we will generally assume that the control parameters are individually invariant
under time-reversal, so we won’t distinguish between λ and λ̄. The non-trivial aspect of the
reverse protocol is then simply exchanging t with τ − t. If the control parameters are time-
independent for the forward protocol, then there will be no difference between the forward
and reverse protocols. This kind of experiment involves setting up the initial state of the
system and then just waiting for a time τ before making measurements.

Recall that the transition functions πF for the system were defined assuming the experi-
menter was following the forward protocol. The reverse protocol is associated with a set of
reverse transition functions πR. We define πR in analogy with (3) as

πR(x′ → x) ≡ P (Xτ = x|X0 = x′;λ (τ − t)), (18)

normalized as usual so that
∫
πR(x′ → x) dx = 1.

We will also need a time-reversed version of the joint distribution PF . As before, let ρ0(x)
denote the initial distribution, and let ρτ |m(x) and ρτ (x) denote the distributions at time τ
after following the forward protocol with and without Bayesian updates due to measurement,
respectively. Then, following (6) and (14), define

PR(x, x′) ≡ ρτ (x
′)πR(x′ → x),

PR|m(x, x′) ≡ ρτ |m(x′)πR(x′ → x). (19)

Although the reverse transition functions πR are written as functions of the time-reversed
states x and x′, it is straightforward to apply the time-reversal map on these states to obtain
the left-hand side purely as a function of x and x′.

It is helpful to think of these reverse joint probabilities in terms of a brand new experiment
that starts fresh and runs for time τ . The initial distribution for this experiment is given by
the final distribution coming from the forward experiment (with or without updates), and
the experiment consists of time-reversing the state, executing the reverse protocol, and then
time-reversing the state once more.

Our formalism should be contrasted with the typical formulation of a reverse experiment
found in the literature. The initial distribution for the reverse experiment is frequently
taken to be the equilibrium distribution for the final choice of control parameters [5]. The
present method is more similar to the formalism of Seifert [20] in which an arbitrary final
distribution, p1(xt), is considered.

Note that in the definition of PR|m, unlike in (14) above, the conditioning on m does
not affect the transition function πR. This is because, from the point of view of the reverse
experiment, the measurement happens at the beginning. But πR is a conditional probability
which assumes a particular initial state (in this case x′), and so the measurement m does
not provide any additional information that can possibly affect the transition function. Also
note the ordering of the arguments as compared with PF in (6): the initial state for the
reversed experiment is the second argument for PR, while the initial state for the forward
experiment is the first argument in PF . Finally, we record the useful identity

PF |m(x, x′)

PR|m(x, x′)
=
PF (x, x′)

PR(x, x′)
, (20)

assuming both sides are well-defined for the chosen states x and x′. Note that this relation
assumes the underlying dynamics are Markovian (measurement outcomes are determined
solely by the current state of the system). In Section V B we will briefly examine what
happens this assumption is relaxed, in which case (20) no longer holds.
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D. Heat Flow

The Crooks Fluctuation Theorem [3] relates forward and reverse transition functions
between equilibrium states to entropy production. It can be thought of as arising via coarse-
graining from the “detailed fluctuation theorem,” which relates the probabilities of individual
forward and backward trajectories to the heat generated along the path through phase space
[2, 5]. Outside the context of equilibrium thermodynamics, this relationship can be thought
of as the definition of the “heat flow”:

Q[x(t)] ≡ log
πF [x(t)]

πR[x(τ − t)] . (21)

The quantity Q[x(t)] can be equated with the thermodynamic heat (flowing out of the sys-
tem, in this case) in situations where the latter concept makes sense. (More properly, it is the
heat flow in units of the inverse temperature of the heat bath, since Q[x(t)] is dimensionless.)
However, Q[x(t)] is a more general quantity than the thermodynamic heat; it is well-defined
whenever the transition functions exist, including situations far from equilibrium or without
any fixed-temperature heat bath.

In a similar manner, we can use the coarse-grained transition functions (depending on
endpoints rather than the entire path) to define the following useful quantity,

Q(x→ x′) ≡ log
πF (x→ x′)

πR(x′ → x)
. (22)

This quantity Q, the “generalized heat flow,” is intuitively a coarse-grained version of the
change in entropy of the environment during the transition x → x′ in the forward experi-
ment, though it is well-defined whenever the appropriate transition functions exist. Similar
concepts of coarse-grained entropy production have been explored previously in the litera-
ture [18, 23]. It is this generalized heat flow that will appear in our versions of the Second
Law and the Bayesian Second Law.

III. SECOND LAWS FROM RELATIVE ENTROPY

All of the information about forward and reversed transition probabilities of the system
is contained in the joint forward probability distribution PF (x, x′) and reverse distribution
PR(x, x′), defined in (6) and (19), respectively. The effects of a Bayesian update on a
measurement outcome m are accounted for in the distributions PF |m(x, x′) and PR|m(x, x′),
given in (14) and (19). The most concise statements of the Second Law therefore arise from
comparing these distributions.

A. The Ordinary Second Law from Positivity of Relative Entropy

The relative entropy, also known as the Kullback-Leibler divergence [16], is a measure of
the distinguishability of two probability distributions:

D(p‖q) ≡
∫
dx p(x) log

p(x)

q(x)
≥ 0. (23)
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In a rough sense, D(p‖q) can be thought of as the amount of information lost by replacing
a true distribution p by an assumed distribution q. Relative entropy is nonnegative as a
consequence of the concavity of the logarithm, and only vanishes when its two arguments are
identical. In this sense it is like a distance, but with the key property that it is asymmetric
in p and q, as both the definition and the intuitive description should make clear.

The relative entropy has been used in previous literature to quantify the information loss
due to the stochastic evolution of a system. This has been achieved by analyzing path-space
or phase-space distributions at a fixed time [5, 17, 19]. In a similar manner, we compute
the relative entropy of the forward probability distribution with respect to the reverse one.
However, we think of PF (x, x′) and PR(x, x′) each as single distributions on the space Γ×Γ,
so that

D(PF‖PR) =

∫
dxdx′ PF (x, x′) log

PF (x, x′)

PR(x, x′)
. (24)

Into this we can plug the expressions (6) and (19) for PF and PR, as well as the relations
(7) between those distributions and the single-time distributions ρ0(x) and ρτ (x

′), to obtain

D(PF‖PR) =

∫
ρ0(x)πF (x→ x′)

(
log

ρ0(x)

ρτ (x′)
+ log

πF (x→ x′)

πR(x′ → x)

)
dxdx′ (25)

= S(ρτ )− S(ρ0) +

∫
dxdx′ PF (x, x′)Q(x→ x′). (26)

Here S is the usual Gibbs or Shannon entropy,

S(ρ) ≡ −
∫
ρ(x) log ρ(x) dx, (27)

and Q is the generalized heat flow defined by (22) above. The first two terms in (26)
constitute the change in entropy of the system, while the third term represents an entropy
change in the environment averaged over initial and final states. This expansion of (26)
is essentially a restatement of the Kawai-Parrondo-van den Broeck equality [17]. We will
introduce the notation 〈·〉F to denote the average of a quantity with respect to the probability
distribution PF ,

〈f〉F ≡
∫
dxdx′ PF (x, x′)f(x, x′). (28)

The positivity of the relative entropy (24) is therefore equivalent to

∆S + 〈Q〉F ≥ 0, (29)

with equality if and only if PF = PR. This is the simplest form of the Second Law; it says
that the change in entropy of the system is bounded from below by (minus) the average of
the generalized heat Q with respect to the forward probability distribution.

The result (29) is an information-theoretical statement; in the general case we should
not think of S as a thermodynamic entropy or 〈Q〉F as the expectation value of a quantity
which can be measured in experiments. To recover the thermodynamic Second Law, we must
restrict ourselves to setups in which temperature, heat flow, and thermodynamic entropy are
all well-defined. In this case, we can interpret 〈Q〉F as the expected amount of coarse-grained
heat flow into the environment. “Coarse-grained” here refers to the difference between the
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endpoint-dependent Q(x→ x′) and the fully path-dependent Q[x(t)] introduced above. By
considering the relative entropy of the forward path-space probability PF [x(t)] with respect
to the reverse one PR[x(t)], we can recover the ordinary Second Law with the ordinary heat
term, obtained from (29) by the replacement Q → Q. We will have more to say about the
relationship between these two forms of the ordinary Second Law in the following section.

B. A Refined Second Law from Monotonicity of Relative Entropy

Given any pair of probability distributions p(x, y), q(x, y) on multiple variables, we have

D(p(x, y)‖q(x, y)) ≥ D

(∫
dy p(x, y)

∣∣∣∣
∣∣∣∣
∫
dy q(x, y)

)
. (30)

This property is known as the monotonicity of relative entropy. To build intuition, it is
useful to first consider a more general property of the relative entropy:

D(p‖q) ≥ D (Wp‖Wq) ∀W, (31)

where W is a probability-conserving (i.e., stochastic) operator. This result follows straight-
forwardly from the definition of relative entropy and the convexity of the logarithm. In
words, it means that performing any probability-conserving operation W on probability
distributions p and q can only reduce their relative entropy.

In information theory, (31) is known as the Data Processing Lemma [24–26], since it
states that processing a signal only decreases its information content. Marginalizing over a
variable is one such way of processing (it is probability-conserving by the definition of p and
q), so marginalization, in particular, cannot increase the relative information. Intuitively,
(30) says that marginalizing over one variable decreases the amount of information lost when
one approximates p with q.

Our single-time probability distributions ρt(x) can be thought of as marginalized ver-
sions of the joint distribution PF (x, x′), following (7). We can also define a new “cycled”
distribution by marginalizing PR(x, x′) over x′ to obtain

ρ̃(x) ≡
∫
dx′ PR(x, x′) =

∫
dx′ρτ (x

′)πR(x′ → x). (32)

This is the probability distribution we find at the conclusion of the reversed experiment, or, in
other words, after running through a complete cycle of evolving forward, time-reversing the
state, evolving with the reverse protocol, and then time-reversing once more. In the absence
of environmental interaction, we expect the cycled distribution to match up with the initial
distribution ρ0(x), since the evolution of an isolated system is completely deterministic.

Applying monotonicity to PF and PR by marginalizing over the final state x′, we have

D(PF‖PR) ≥ D(ρ0‖ρ̃) ≥ 0, (33)

or simply, using the results of the previous subsection,

∆S + 〈Q〉F ≥ D(ρ0‖ρ̃) ≥ 0. (34)

This is a stronger form of the ordinary Second Law. It states that the change in entropy is
bounded from below by an information-theoretic quantity that characterizes the difference
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between the initial distribution ρ0 and a cycled distribution ρ̃ that has been evolved forward
and backward in time. We stress that (34) as presently stated is not original and has been
explored previously in the literature [17–19].

In the context of a numerical simulation, it is easier to calculate D(ρ0‖ρ̃) than D(PF‖PR),
since the former only depends on knowing the probability distribution of the system at two
specified points in time. D(ρ0‖ρ̃) can readily be calculated by evolving the distribution
according to the forward and reverse protocols. This is in contrast with D(PF‖PR), the
computation of which requires knowledge of joint probability distributions. Obtaining the
joint distributions is more difficult, because one must know how each microstate at the given
initial time relates to the microstates of the future time. This bound therefore provides
an easily-calculable contraint on the full behavior of the system. We note that similar
approaches involving coarse-graining have been previously explored in the literature [17].

Monotonicity of the relative entropy also allows us to succinctly state the relationship
between the path-space and endpoint-space formulations of the Second Law. Indeed, the
relationship between the probabilities PF [x(t)] and PF (x, x′) is

PF (x, x′) =

∫ x(τ)=x′

x(0)=x

Dx(t)PF [x(t)], (35)

with a similar relationship between the reversed quantities. Monotonicity of relative entropy
then implies that

D(PF [x(t)]‖PR[x(t)]) ≥ D(PF (x, x′)‖PR(x, x′)). (36)

Since the changes in entropy are the same, this inequality reduces to the relationship
〈Q[x(t)]〉F ≥ 〈Q(x→ x′)〉F between the expected heat transfer and the expected coarse-
grained heat transfer, which can also be shown directly with a convexity argument. The
point here is that the path-space and endpoint-space formulations of the ordinary Second
Law (as well as the Bayesian Second Law in the following section) are not independent of each
other. Endpoint-space is simply a coarse-grained version of path-space, and the monotonic-
ity of relative entropy tells us how the Second Law behaves with respect to coarse-graining.

IV. THE BAYESIAN SECOND LAW

Now we are ready to include Bayesian updates. It is an obvious extension of the discussion
above to consider the relative entropy of the updated joint probabilities PF |m and PR|m, which
is again non-negative:

D(PF |m‖PR|m) ≥ 0. (37)

This is the most compact form of the Bayesian Second Law (BSL). We emphasize that the
novelty of (37) stems from the use of fully updated distributions and not from the use of
the relative entropy.

A. Cross-Entropy Formulation of the BSL

It will be convenient to expand the definition of relative entropy in several different ways.
First, we can unpack the relative entropy to facilitate comparison with the ordinary Second
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Law:

D(PF |m‖PR|m) =

∫
dx ρ0|m(x) log ρ0(x)−

∫
dx′ ρτ |m(x′) log ρτ (x

′) + 〈Q〉F |m . (38)

Here we have used the expressions (14) and (19) for the joint distributions, as well as the
identity (20). We have also extracted the generalized heat term,

〈Q〉F |m ≡
∫
dxdx′ PF |m(x, x′) log

πF (x→ x′)

πR(x′ → x)
, (39)

which is the expected transfer of generalized heat out of the system during the forward
experiment given the final measurement outcome. This is an experimentally measurable
quantity in thermodynamic setups: the heat transfer is measured during each trial of the
experiment, and 〈Q〉F |m is the average over the subset of trials for which the measurement
outcome was m. The remaining two terms are not identifiable with a change in entropy, but
we have a couple of options for interpreting them.

The form of (38) naturally suggests use of the cross entropy between two distributions,
defined as

H(p, q) = −
∫
dx p(x) log q(x). (40)

(Note that this is not the joint entropy, defined for a joint probability distribution p(x, y) as
−
∫
dxdy p(x, y) log p(x, y).) Using this definition, the relative entropy between the updated

joint distributions (38) may be rewritten in the form,

D(PF |m‖PR|m) = H(ρτ |m, ρτ )−H(ρ0|m, ρ0) + 〈Q〉F |m . (41)

The Bayesian Second Law is then

∆H(ρm, ρ) + 〈Q〉F |m ≥ 0. (42)

Here, ∆ is the difference in the values of a quantity evaluated at the final time τ and the
initial time 0.

To get some intuition for how to interpret this form of the BSL, it is useful to recall
the information-theoretic meaning of the entropy and cross entropy. Given a probability
distribution p(x) over the set of microstates x in a phase space Γ, we can define the self-
information associated with each state,

Ip(x) = log
1

p(x)
. (43)

This quantity is also referred to as the Shannon information, “surprisal”, or, in the context
of stochastic thermodynamics, the stochastic Shannon entropy [8, 27]. The self-information
measures the information we would gain by learning the identity of the specific microstate x.
If x is highly probable, it’s not that surprising to find the system in that state, and we don’t
learn that much by identifying it; if it’s improbable we have learned a great deal. From this
perspective, the entropy S(p) =

∫
dx p(x)Ip(x) is the expectation value, with respect to p(x),

of the self-information associated with p(x) itself. It is how much we are likely to learn, on
average, by finding out the actual microstate of the system. In a distribution that is highly
peaked in some region, the microstate is most likely to be in that region, and we don’t learn
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much by finding it out; such a distribution has a correspondingly low entropy. In a more
uniform distribution, we always learn something by finding out the specific microstate, and
the distribution has a correspondingly higher entropy.

In contrast, the cross entropy H(p, q) =
∫
dx p(x)Iq(x) is the expectation value with

respect to p(x) of the self-information associated with q(x). Typically p(x) is thought of
as the “true” or “correct” distribution, and q(x) as the “assumed” or “wrong” distribution.
We believe that the probability distribution is given by q(x), when it is actually given by
p(x). The cross entropy is therefore a measure of how likely we are to be surprised (and
therefore learn something) if we were to be told the actual microstate of the system, given
that we might not be using the correct probability distribution. The cross entropy is large
when the two distributions are peaked, but in different places; that maximizes the chance of
having a large actual probability p(x) for a state with a large self-information Iq(x). When
the two distributions differ, we are faced with two distinct sources of uncertainty about the
true state of the system: the fact that there can be uncertainty in the true distribution,
and the fact that we are working with an assumed distribution rather than the true one.
Mathematically, this is reflected in the cross entropy being equal to the entropy of the true
distribution plus the relative entropy:

H(p, q) = S(p) +D(p‖q). (44)

The cross entropy is always greater than the entropy of the true distribution (by positivity
of relative entropy), and reduces to the ordinary entropy when the two distributions are the
same.

The Bayesian Second Law, then, is the statement that the cross entropy of the updated
(“true”) distribution with respect to the original (“wrong”) distribution, plus the generalized
heat flow, is larger when evaluated at the end of the experiment than at the beginning. In
other words, for zero heat transfer, the expected amount of information an observer using the
original distribution function would learn by being told the true microstate of the system,
conditioned on an observation at the final time, is larger at the final time than at the initial
one.

We note that the quantity H(ρt|m, ρt) only has operational meaning once a measurement
has occurred, since performing the Bayesian update to take the measurement into account
requires knowledge of the actual measurement outcome. The BSL is a statement about
how much an experimenter who knows the measurement outcome would expect someone
who didn’t know the outcome to learn by being told the microstate of the system. There is
therefore not any sense in which one can interpret an increase of H(ρt|m, ρt) with increasing t
as an increase in a dynamical quantity. This is in contrast with the dynamical interpretation
of the monotonic increase in entropy over time in the ordinary Second Law. It is, in fact, the
case that H(ρt|m, ρt) does increase with increasing t for zero heat transfer, but this increase
can only be calculated retroactively once the measurement has actually been made. Of
course, in the case of a trivial measurement that tells us nothing about the system, the BSL
manifestly reduces to the ordinary Second Law, since H(ρ, ρ) = S(ρ).

B. Alternate Formulations of the BSL

Another natural quantity to extract is the total change in entropy after the two-step
process of time evolution and Bayesian updating, which we will call ∆Sm:

∆Sm ≡ S(ρτ |m)− S(ρ0). (45)
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This is the actual change in the entropy over the course of the experiment in the mind of
the experimenter, who initially believes the distribution is ρ0 (before the experiment begins)
and ultimately believes it to be ρτ |m. In terms of this change in entropy, we have

D(PF |m‖PR|m) = ∆Sm + 〈Q〉F |m +D(ρτ |m‖ρτ ) +

∫
dx (ρ0|m(x)− ρ0(x)) log ρ0(x). (46)

The second to last term, D(ρτ |m‖ρτ ), is the relative entropy of the posterior distribution at
time τ with respect to the prior distribution; it can be thought of as the amount of infor-
mation one gains about the final probability distribution due to the measurement outcome.
This is a natural quantity in Bayesian analysis, called simply the information gain [28];
maximizing its expected value (and hence the expected information learned from a mea-
surement) is the goal of Bayesian experimental design [29]. Because it measures information
gained, it tends to be largest when the measurement outcome m was an unlikely one from
the point of view of ρτ . The final term exactly vanishes in the special case where the initial
probability distribution is constant on its domain, which is an important special case we will
consider in more detail below.

Using (46), the positivity of relative entropy is equivalent to

∆Sm + 〈Q〉F |m ≥ −D(ρτ |m‖ρτ ) +

∫
dx (ρ0(x)− ρ0|m(x)) log ρ0(x). (47)

The left-hand side of this inequality is similar to that of the ordinary Second Law, except
that the result of the measurement is accounted for. In the event of an unlikely measurement,
we would intuitively expect that it should be allowed to be negative. Accordingly, on the
right-hand side we find that it is bounded from below by a quantity that can take on negative
values. And indeed, the more unlikely the measurement is, the greater D(ρτ |m‖ρτ ) is, and
thus the more the entropy is allowed to decrease.

Finally, we can expand the relative entropy in terms of S(ρ0|m) instead of S(ρ0). That
is, we define the change in entropy between the initial and final updated distributions,

∆S(ρm) ≡ S(ρτ |m)− S(ρ0|m). (48)

(Note the distinction between ∆S(ρm) here and ∆Sm in (45).) This is the answer to the
question, “Given the final measurement, how much has the entropy of the system changed?”
Then (47) is equivalent to

∆S(ρm) + 〈Q〉F |m ≥ D(ρ0|m‖ρ0)−D(ρτ |m‖ρτ ). (49)

This change of entropy can be contrasted with S(ρτ |m)− S(ρ0), which is a statement about
the change in the experimenter’s knowledge of the system before and after the measurement
is performed.

The right hand side of (49) has the interesting property that it is always less than or equal
to zero. This can be shown by taking the difference of the relative entropies and expressing
it in the form

D(ρ0|m‖ρ0)−D(ρτ |m‖ρτ ) =

∫
dxdx′

ρ0(x)πF (x→ x′)P (m|x′)
P (m)

log
πF (x→ m)

P (m|x′) . (50)

We have defined πF (x→ m) ≡
∫
dx′πF (x→ x′)P (m|x′) for convenience. It is only possible

to write the difference in this form because the initial and final distributions are related by
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evolution (15). Using the concavity of the logarithm, it can then be shown that this quantity
is non-positive.

One final point of interest in regards to (47) and (49) is their average with respect to
measurement outcomes. The inequality is predicated on a specific measurement outcome,
m; averaging with respect to the probability of obtaining a given measurement, we find

〈∆Sm〉+ 〈Q〉F ≥ −I(Xτ ;M), (51)

〈∆S(ρm)〉+ 〈Q〉F ≥ I(X0;M)− I(Xτ ;M), (52)

where I(Xt;M) is the mutual information between the microstate of the system at time t
and the measurement outcome observed at time τ . Here the mutual information can be
expressed as the relative entropy of a joint probability distribution to the product of its
marginal distributions, I(X;M) = D(ρ(x,m)‖ρ(x)ρ(m)).

Inequalities similar to (51) and (52) can be found in the existing literature for nonequi-
librium feedback-control [6, 27, 30–33]. A careful accounting of mutual informations and
entropy production in feedback controlled systems has been performed in [27]. While we
have not explicitly included feedback-control in our formalism, we see that (51) corresponds
to the bounds on the entropy production of a system under measurement and feedback-
control when the initial state of the system is uncorrelated with that of the measuring
device. This equivalence is unsurprising as this is essentially the setup we are considering
presently. One may also show that both (51) and (52) are equivalent to (29) using standard
identities involving the mutual information and conditional entropy.

Unlike the averaged inequalities (52), (51), and other similar inequalities in the literature
[6, 8, 14, 27], the forms (47) and (49) of the Bayesian Second Law hold independently for
each possible measurement outcome. These enable us to make contact with the change in
thermodynamic properties of the system for specific measurement outcomes. In particular,
(47) and (49) allow us to study a system over only those measurement outcomes which
appear to naively violate the Second Law.

C. A Refined BSL from Monotonicity of Relative Entropy

So far we have rewritten the relative entropy of the forward and reverse distributions
(37) in various ways, but there is a refined version of the BSL that we can formulate using
monotonicity of relative entropy, analogous to the refined version of the ordinary Second
Law we derived in Section III B. Following the definition of the cycled distribution ρ̃ in
(32), we can define an updated cycled distribution by marginalizing the updated reverse
distribution over initial states,

ρ̃m(x) ≡
∫
dx′ PR|m(x, x′) =

∫
dx′ρτ |m(x′)πR(x′ → x). (53)

The monotonicity of relative entropy then implies that

D(PF |m‖PR|m) ≥ D(ρ0|m‖ρ̃m). (54)

This is the refined Bayesian Second Law of Thermodynamics in its most compact form,
analogous to the refined Second Law (34).
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Expanding the definitions as above, the refined BSL can be written as

∆H(ρm, ρ) + 〈Q〉F |m ≥ D(ρ0|m‖ρ̃m), (55)

or equivalently as

∆Sm + 〈Q〉F |m ≥ D(ρ0|m‖ρ̃m)−D(ρτ |m‖ρτ ) +

∫
dx (ρ0(x)− ρ0|m(x)) log ρ0(x). (56)

From the form of (55), we see that the change in the cross entropy obeys a tighter bound than
simple positivity, as long as the cycled distribution deviates from the original distribution
(which it will if the evolution is irreversible).

In a similar manner to (47), we can average (56) over all possible measurement outcomes
to arrive at a stronger form of (51) which accounts for the average irreversibility of the
experiment.

Other versions of the Second Law can be obtained from the relative entropy by inserting
different combinations of PF |m, PR|m, PF , and PR. We have chosen to highlight D(PF‖PR)
and D(PF |m‖PR|m) because these are the combinations which we can expect to vanish in
the case of perfect reversibility, and thus characterize the time-asymmetry of the dynamics.
Other possibilities, like D(PF |m‖PR), are always nonzero as long as information is gained
from the measurement.

V. BAYESIAN INTEGRAL FLUCTUATION THEOREMS

The inequalities derived in Section IV allow us to make statements about the average
values of various thermodynamic variables during the non-equilibrium evolution of the sys-
tem. However, such expressions are fundamentally limited in the amount of information
they provide for small systems where fluctuations are significant. To describe the role of
fluctuations, a wide literature of fluctuation theorems has been developed [1–4, 8]. In this
section, we will derive Bayesian analogs of such fluctuation theorems. We look first at the
case of Markovian measurements (the main focus of this paper), then briefly comment on
the non-Markovian case.

A. Markovian Measurements

We begin with the Markovian case, where measurement outcomes depend only on the
current state of the system. Recall the simple identity (20):

PR(x, x′)

PF (x, x′)
=
PR|m(x, x′)

PF |m(x, x′)
=
ρτ (x

′)

ρ0(x)
e−Q(x→x′), (57)

which we have made use of in previous sections. We may rewrite (57) in the following form,

PR(x, x′)

PF (x, x′)
= elog ρτ (x′)−log ρ0(x)−Q(x→x′), (58)

We note that the first pair of terms in the exponential consitute the negative of the change
in stochastic entropy during the evolution of the system along a forward trajectory [8]. As
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such, we see that (58) is the Crooks fluctuation theorem for entropy production [3]. However,
making use of the relation in (57), we also find

PR|m(x, x′)

PF |m(x, x′)
= elog ρτ (x′)−log ρ0(x)−Q(x→x′). (59)

This demonstrates the rather surprising fact that the same fluctuation theorem which holds
for the unupdated joint distributions also holds for the updated joint distributions. While
(59) appears to have the form of the Crooks fluctuation theorem, it is important to note that
the stochastic entropy production in the exponential corresponds to unupdated trajectories.
This is generally different from what would be considered the stochastic entropy production
along the same trajectory after performing a Bayesian update.

We can obtain integral fluctuation theorems from (58) and (59) by computing the expec-
tation value of the ratio with respect to PF (or PF |m). Naively, one would multiply by PF
and find PFPR/PF = PR, but we need to keep track of the domain of integration: we are
only interested in points where PF 6= 0 (PF |m 6= 0) when computing an average with respect
to PF (PF |m). So we have, for instance,

〈
PR
PF

〉

F

=

∫

PF 6=0

dxdx′ PR(x, x′). (60)

This integral will be equal to one unless there is a set of zero PF -measure with nonzero PR-
measure. On such a set, the ratio PR/PF diverges. Generically this will include all points
where ρ0(x) vanishes, unless Q happens to diverge for some choices of x′ (e.g., one reason
for PR to vanish is that certain transitions are strictly irreversible). Note that if ρ0(x) is
nowhere zero and Q does not ever diverge (as in most physically relevant situations), then
this integral is equal to one. This is true no matter how small ρ0(x) is or how large Q, as
long as they are nonzero and finite everywhere, respectively. For this reason, (60) generically
is equal to one.

The same reasoning holds for the updated probabilities:
〈
PR|m
PF |m

〉

F |m
=

∫

PF |m 6=0

dxdx′ PR|m(x, x′). (61)

Since the ratio PR|m/PF |m is identical to the ratio PR/PF , the condition for this integral to
equal one is the same as the previous integral, which means it is generically so.

To summarize, we have constants a, bm such that
〈
PR
PF

〉

F

=
〈
elog ρτ (x′)−log ρ0(x)−βQ(x→x′)

〉
F

= a ≤ 1, (62)

〈
PR|m
PF |m

〉

F |m
=
〈
elog ρτ (x′)−log ρ0(x)−βQ(x→x′)

〉
F |m

= bm ≤ 1. (63)

By perturbing the initial state by an arbitrarily small amount, we can make PR/PF finite
everywhere (excluding divergences in Q), and so a 6= 1 and bm 6= 1 are in some sense
unstable. We can use Jensen’s inequality on each of these to extract a Second Law:

D(PF‖PR) ≥ − log a ≥ 0 (64)

D(PF |m‖PR|m) ≥ − log bm ≥ 0. (65)
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Thus these integral fluctuation theorems contain within them the results from the positivity
of relative entropy, (29) and (37).

We note that integral fluctuations theorems with forms similar to (62) and (63) have been
derived previously in the context of feedback control [6]. Up to divergences in PR|m/PF |m
and PR/PF , these integral fluctuation theorems are equivalent to (62) and (63) in the present
context. This is despite the fact that the existing fluctuation theorems do not take into ac-
count Bayesian updating. This equivalence between Bayesian and non-Bayesian fluctuation
theorems is unexpected and a direct consequence of (57).

The relation (62) is related to the Jarzynski equality, or nonequilibrium work relation [1]

〈
e−W

〉
= e−∆F . (66)

Here, W is the work performed between initial and final states and ∆F is the free-energy dif-
ference between the equilibrium states corresponding to the initial and final conditions. For
this equality we do not require that the system actually attains an equilibrium distribution
at the end of the experiment, even though the result is phrased in terms of the equilibrium
free energy. Our (62), by contrast, refers to the actual initial and final distributions, what-
ever they may be, and does not invoke equilibrium quantities. But it is straightforward to
show that (62) implies (66) if we assume microscopic reversibility of the underlying dynam-
ics. Consider an initial distribution ρ0(x) that is in equilibrium. The distribution ρτ (x

′)
will in general not be in equilibrium, but we can imagine extending our protocol from τ to
τ ′, keeping fixed all of the control parameters, until an equilibrium distribution ρτ ′(x

′′) is
reached. The work done on the system can be defined in terms of the energy of a microstate
E(x) and the heat flow (21) through

E(x′′)− E(x) = Q[x(t)] +W [x(t)], (67)

while the free energy F can be defined for an equilibrium distribution through

ρeq(x) =
1

Z
eF−E(x). (68)

For the extension period from τ to τ ′ (when the control parameters are fixed), microscopic
reversibility implies that the heat flow satisfies

Q[xτ→τ ′(t)] ≡ log
πF [xτ→τ ′(t)]

πR[xτ→τ ′(τ ′ − t)]
= log

ρτ ′(x
′′)

ρτ (x′)
= E(x′′)− E(x′), (69)

consistent with our intuition that no work is performed during this period. We can consider
a version of (62) that is expressed in terms of specific paths (rather than simply endpoints)
by replacing Q → Q and including an average over these paths in the expectation value.
Then applying this to the entire process from equilibrium at t = 0 to a different equilibrium
at t = τ ′, we have

〈
elog ρτ ′ (x

′′)−log ρ0(x)−Q(x→x′′)
〉
F

=
〈
e∆F−∆E−Q(x→x′′)

〉
F

= e∆F
〈
e−W

〉
F

= a. (70)

This recovers the Jarzynski equality (66), in the generic case when a = 1.
We see that (63) provides a generalized integral fluctuation theorem which includes

Bayesian updating. Importantly, (63) holds independently for each possible measurement
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outcome. A similar type of integral fluctuation theorem has been proven in the context
of two-time measurements of a quantum system without Bayesian updating [34–36]. Taken
together, (62) and (63) demonstrate that for any experiment, two different classes of integral
fluctuation theorems hold. If we partition a large set of experimental trials based on mea-
surement outcomes, each subset obeys its own integral fluctuation theorem, (63). However,
if we consider all experimental trials together, (62) holds. This leads us to the relation

∫
dm P (m)bm = a. (71)

Finally, we note that there are also integral fluctuation theorems corresponding to the
monotonicity inequalities. Consider

〈
PR
PF

ρ0

ρ̃

〉

F

=

∫

PF 6=0

dxdx′
PR(x, x′)∫
dy′ PR(x, y′)

ρ0(x) ≤ 1. (72)

Applying Jensen’s inequality reproduces the monotonicity result:

D(PF‖PR) ≥ D(ρ0‖ρ̃). (73)

The refined Bayesian Second Law follows similarly from the integral fluctuation theorem,
〈
PR|m
PF |m

ρ0|m

ρ̃m

〉

F |m
= cm ≤ 1. (74)

This may be re-expressed as:
〈
elog ρτ (x′)−log ρ0(x)−βQ(x→x′)+log[ρ0|m(x)]−log[ρ̃m(x)]

〉
F |m

= cm. (75)

We see that (75) extends (63) by also including the information loss from the stochastic
evolution of the system. As was the case for (63), (75) holds independently for each possible
measurement outcome.

B. Non-Markovian Measurements

It is worth making a brief digression to include the possibility of non-Markovian mea-
surements. Previously, in (10), it was assumed that the behavior of the measuring device
was completely determined by the current state of the system. In particular, the measure-
ment probability was defined by P (m|x′). As such, the measurement can be thought of as
a Markovian process. However, in a more generic measurement framework, one could allow
the measurement outcome to depend on previous states of the system. This dependence on
past states makes the measurement non-Markovian. As a result, the behavior of the mea-
suring device is defined in terms of the conditional probability distribution P (m|x, x′). In
general, this distribution is dependent on the trajectory of states, but we will only consider
dependence on the end points for notational simplicity.

The introduction of non-Markovian measurements has several immediate results. The
simple relation shown in (20) is instead replaced by,

PR|m(x, x′)

PF |m(x, x′)
=
PR(x, x′)

PF (x, x′)
· P (m|x′)
P (m|x, x′) . (76)
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As a result, the integrands of (62) and (63) are no longer equal. However, (71) still holds
and thus (63) may still be thought of as a partition of (62) into measurement dependent
integral fluctuation theorems. In this case though, the partitioning non-trivially involves the
integrand and not just the probability density PF |m(x, x′).

As was done before, one may express these integral fluctuation theorems in terms of
the entropy production along a trajectory in state space. Written in terms of the updated
distributions, one finds,

〈
PR|m
PF |m

〉

F |m
=
〈
elog(ρτ |m(x′))−log(ρ0|m(x))−βQ−I(m:x′|x)

〉
F |m

, (77)

where I(m : x′|x) is a conditional pointwise mutual information. However, to make contact
with existing integral fluctuation theorems for the entropy production in the literature, it is
useful to make use of the unupdated distributions. This then gives,

〈
PR|m
PF |m

〉

F |m
=
〈
elog(ρτ (x′))−log(ρ0(x))−βQ−I(m:x|x′)

〉
F |m

. (78)

It should be noted that the pointwise mutual information I(m : x|x′) arises solely due to the
non-Markovian nature of the measurement. For Markovian measurements, I(m : x|x′) = 0
and (63) is recovered.

VI. APPLICATIONS

As a way to build some intuition for the Bayesian point of view we have been discussing,
we will go through a few simple examples and special cases.

A. Special Cases

Perfect Complete Measurement. If a measurement does not yield any new informa-
tion, then the updated probabilities are identical to the prior probabilities and the Bayesian
Second Law reduces to the ordinary Second Law. On the other hand, consider a measuring
device that is able to tell us with certainty what the exact microstate of the system is at
the time of measurement. The outcome m of the experiment is then a single point in phase
space. If we employ such a device, we have the following simplified expressions:

ρ0|m(x) =
ρ0(x)πF (x→ m)

ρτ (m)
, (79)

ρτ |m(x′) = δ(x′ −m), (80)

πF |m(x→ x′) = δ(x′ −m)θ(πF (x→ m)), (81)

ρ̃m(x) = πR(m→ x). (82)

Using these simplifications, we find

D(PF |m‖PR|m) = D(ρ0|m‖ρ̃m), (83)
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so the refined Bayesian Second Law is always saturated. This is because marginalization of
the joint distribution over the final endpoint results in no loss of information: we are still
conditioning on the measurement outcome m, which tells us the final endpoint.

The Boltzmann Second Law of Thermodynamics. In the Boltzmann formulation
of the Second Law, phase space is partitioned into a set of macrostates. Each microstate
is assigned to a macrostate; the entropy of a microstate x is defined as the entropy of its
associated macrostate Σ(x), which is the logarithm of the macrostate’s phase space volume
|Σ|. We can reproduce this formulation as a special case of the Bayesian measurement
formalism: the measuring device determines which macrostate the microstate belongs to
with absolute certainty. If the measurement outcome m indicates that the system is in some
particular macrostate (but doesn’t include any additional information), we have

P (m|x) = 1m(x) ≡
{

1 if x ∈ m,
0 if x 6∈ m. (84)

We also choose our initial distribution to be uniform over an initial macrostate Σ0:

ρ0(x) =
1

|Σ0|
1Σ0(x). (85)

Then we have the identities

〈− log ρ0(x)〉F |m = log |Σ0| = S(ρ0), (86)

〈− log ρτ (x)〉F |m = −
∫
dx ρτ |m(x) log ρτ |m(x) +

∫
dx ρτ |m(x) log

ρτ |m(x)

ρτ (x)
(87)

= S(ρτ |m) +D(ρτ |m‖ρτ ). (88)

Then the refined Bayesian Second Law (56) simplifies to

∆Sm + 〈Q〉F |m ≥ D(ρ0|m‖ρ̃m)−D(ρτ |m‖ρτ ). (89)

The left-hand side of this inequality is not quite the same as in the Boltzmann formula-
tion, because S(ρτ |m) is not the entropy associated with any of the previously established
macrostates. But we do have the inequality S(ρτ |m) ≤ log |m|, which is the entropy of the
final macrostate. So the left-hand side of (89) can be replaced by the usual left-hand side
of the Boltzmann Second Law while maintaining the inequality.3

The right-hand side of the Boltzmann Second Law is zero, while in (89) we have the
difference of two positive terms. The Boltzmann Second Law can be violated by rare fluc-
tuations, and here we are able to characterize such fluctuations by the fact that they render
the right-hand side of our inequality negative. We can also give an explicit formula for the
term D(ρτ |m‖ρτ ) that comes in with a minus sign:

D(ρτ |m‖ρτ ) = − log

∫

m

dx′ ρτ (x
′) = − logP (m) = Im, (90)

where Im is the self-information associated with the measurement outcome m. When the
observed measurement is very surprising, the entropy change has the opportunity to become
negative. This gives quantitative meaning to the idea that we gain information when we ob-
serve rare fluctuations to lower-entropy macrostates. In particular, the entropy change may
be negative if the information gain from the measurement is greater than the information
loss due to irreversible dynamics.

3 And, as we have discussed previously, the coarse-grained Q can be replaced by the path-space Q as well.
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B. Diffusion of a Gaussian in n Dimensions.

As our final analytic example, we consider a dynamical model that can be solved analyt-
ically. Let the configuration space be Rn, and suppose the time evolution of the probability
density is diffusive. That is,

ρτ (x
′) =

∫
dnx

1

(2πDτ)n/2
e−
|x−x′|2
2Dτ ρ0(x). (91)

Then we can identify the transition function with the heat kernel:

πF (x→ x′) =
1

(2πDτ)n/2
e−
|x−x′|2
2Dτ . (92)

We will assume for simplicity that the diffusion is unaffected by time reversal, so that
πF = πR ≡ π, and that the states x are also unaffected by time reversal. (Alternatively, we
can assume that time-reversal is some sort of reflection in x. The distributions we consider
will be spherically symmetric, and hence invariant under such reflections.) Note that since
π(x → x′) = π(x′ → x), this implies Q = 0. We will analyze the system without including
measurement, again for simplicity, and we will also assume that the initial density profile is
Gaussian with initial width σ. Diffusion causes the Gaussian to spread:

ρτ (x) =
1

(2π(σ +Dτ))n/2
e−

x2

2(σ+Dτ) . (93)

We can also calculate the entropy as a function of time:

S(τ) =

∫
dnx

1

(2π(σ +Dτ))n/2
e−

x2

2(σ+Dτ)

[
x2

2(σ +Dτ)
+
n

2
log(2π(σ +Dτ))

]
(94)

=
n

2
log(σ +Dτ) +

n

2
log 2πe. (95)

Therefore we have ∆S = n
2

log(1+Dτ
σ

). The relative entropyD(ρ0‖ρ̃) is also easy to calculate,
since in this case ρ̃ = ρ2τ :

D(ρ0‖ρ̃) =
n

2

[
log

(
1 +

2Dτ

σ

)
− 2Dτ

σ + 2Dτ

]
. (96)

The refined Second Law from monotonicity of the relative entropy says that ∆S ≥ D(ρ0‖ρ̃).
Let us see how strong this is compared to ∆S ≥ 0. For small τ , we have D(ρ0‖ρ̃) ≈
n(Dτ/σ)2, as compared to ∆S ≈ nDτ/2σ. So the bound from monotonicity is subleading in
τ , so perhaps not so important. For large τ , though, we have D(ρ0‖ρ̃) ≈ n

2

[
log Dτ

σ
− log e

2

]
,

as compared to ∆S ≈ n
2

log Dτ
σ

. Now the bound is fairly tight, with the relative entropy
matching the leading behavior of ∆S.

C. Randomly Driven Harmonic Oscillator

As a slightly more detailed – and potentially experimentally realizable – example to
which we can apply the Bayesian Second Law, we consider the harmonic oscillator. Imagine
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a single, massive particle confined to a one-dimensional harmonic potential, with spring
constant and potential minimum treated as time-dependent control parameters, coupled
to a heat bath which generates dissipative and fluctuating forces. Such a system may be
described by the Fokker-Planck equation,

∂ρ(x, p, t)

∂t
=

2

τ∗
ρ(x, p, t) +

(
k(t) [x− z (t)] +

2

τ∗
p

)
∂ρ(x, p, t)

∂p

− p

M

∂ρ(x, p, t)

∂x
+

2M

βτ∗

∂2ρ(x, p, t)

∂p2
. (97)

Here we have defined τ∗ to be the dissipation time-scale, k(t) to be the spring constant, z(t)
to be the location of the potential’s minimum, M to be the mass of the oscillator, and β
to be the inverse temperature of the heat bath. For simplicity, we choose to work in units
natural for this system by taking β = 1, M = 1, and k(t = 0) = 1. We also choose τ∗ = 1,
so that we are in the interesting regime where the dissipation and oscillation time scales are
comparable.

We assume that the experimenter is only capable of measuring the position of the particle
and not its momentum. For a microstate with position x, we assume that P (m|x) is given
by a Gaussian distribution in m centered at x with standard deviation σ = 0.2. This means
that the experimenter is likely to find a measured value m within a range ±0.2 of the true
position x. This measuring device is therefore quite sensitive when compared to the typical
size of thermal fluctuations, which is of order unity.

There is no analytical solution to (97) in the regime of interest, so the system must be
modeled numerically. This can be done by discretizing phase space on a lattice and using
finite-difference methods to evolve the discrete probability distribution. We have performed
this process using the finite element solver package FiPy [37] for the Python programming
language. To elucidate different aspects of the BSL, we consider three different simulated
experiments. The phase space evolution of these experiments is shown in Figures 3 - 5,
found in Appendix A, while the thermodynamic quantities calculated are tabulated in Table
II. The source code which was used to carry out these simulations and animations of the
evolution are also available.4

We first consider the simple experiment shown in Figure 3. The system begins in thermal
equilibrium, Figure 3(a). The experiment is carried out under a “trivial” protocol, where the
experimenter fixes k(t) = 1 and z(t) = 0. Under this protocol, the system is allowed to evolve
from t = 0 to t = 1 before a measurement is performed. As seen in Figure 3(b), the thermal
distribution is nearly unchanged by this evolution. (Due to finite-size effects, the thermal
distribution is not perfectly stationary.) At the end of the experiment, a measurement of
the position is made and we assume that the unlikely fluctuation m = 2 is observed. The
experimenter can then use this information to perform a Bayesian update on both the initial
and final distributions as shown in Figures 3(d) and 3(e). To evaluate the irreversibility
of this experiment, the experimenter must also examine the time-reversed process. The
updated cycled distribution which results from evolving under the time-reversed protocol is
shown in Figure 3(f).

While this experiment and its protocol are fairly simple, they illustrate several key fea-
tures of the Bayesian Second Law. Before the final measurement is performed, the exper-
imenter would state that ∆S = 0.07. After performing the measurement, this becomes

4 See: http://preposterousuniverse.com/science/BSL/
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Figure 3 Figure 4 Figure 5

S(ρ0) 2.84 0.31 0.31

S(ρτ ) 2.91 2.93 2.96

∆S 0.07 2.61 2.65

〈Q〉F −0.04 5.99 7.99

∆S + 〈Q〉F 0.02 8.61 10.64

D(ρ0‖ρ̃) 0.01 7.68 10.64

S(ρ0|m) 2.47 −0.43 0.31

S(ρτ |m) 1.23 1.12 1.23

∆Sm −1.61 0.81 0.92

D(ρ0|m‖ρ0) 1.01 0.70 < 0.01

D(ρτ |m‖ρτ ) 2.71 1.37 1.24

H(ρ0|m, ρ0) 3.48 0.26 0.31

H(ρτ |m, ρτ ) 3.94 2.49 2.47

∆H 0.46 2.23 2.16

〈Q〉F |m −0.40 6.14 8.47

∆H + 〈Q〉F |m 0.06 8.36 10.64

D(ρ0|m‖ρ̃m) 0.04 7.65 10.63

LHS of Eqn 56 −2.01 6.94 9.39

RHS of Eqn 56 −2.03 6.235 9.39∣∣LHS−RHS
LHS

∣∣ < 0.01 0.10 < 0.01〈
PR
PF

〉
F

1.00 1.00 1.00〈
PR
PF

ρ0
ρ̃

〉
F

1.00 1.00 1.00〈
PR|m
PF |m

〉
F |m

1.00 1.00 1.00
〈
PR|m
PF |m

ρ0|m
ρ̃m

〉
F |m

1.00 1.00 1.00

TABLE II. List of thermodynamic properties calculated for three numerically simulated experi-

ments.

∆Sm = −1.61 with a heat transfer of 〈Q〉F |m = −0.40. Naively using these updated

quantities in (29) leads to an apparent violation of the usual Second Law of Thermody-
namics. However, this is remedied when one properly takes into account the information
gained as a result of the measurement. A more careful analysis then shows ∆H = 0.46 and
D(ρ0|m|ρ̃m) = 0.04. As such, we see that (55) is satisfied and that the inequality is very
tight.

We will now consider the same (trivial) protocol with a different initial distribution.
The experimenter knows the initial position of the oscillator and the magnitude, but not
the direction, of its initial momentum with a high degree of certainty. As such, there are
two regions of phase space the experimenter believes the system could be in. The initial
distribution is shown in Figure 4(a). The system is then allowed to evolve until t = 0.5
as shown in Figure 4(b). At the end of the experiment, the position of the oscillator is
measured to be m = 2. The impact of this measurement can be seen in Figures 4(d) and
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4(e).

Due to the outcome of the measurement, the experimenter is nearly certain that the
oscillator had positive initial momentum. One therefore expects this information gain to be
roughly one bit and this is confirmed by D(ρ0|m‖ρ0) = 0.70 ≈ log 2. Despite this sizable
information gain for the initial distribution, we note that the information gain for the final
distribution is even greater with D(ρτ |m‖ρτ ) = 1.37. This is expected because, regardless of
the measurement outcome, the experimenter will always gain at least as much information
about the final distribution than the initial when performing a measurement. Evaluating
the remaining terms, see Table II, we once again find that the BSL is satisfied.

Lastly, consider an experiment that starts with the same initial state but uses a non-
trivial protocol where the potential is “dragged”. The experimenter keeps k(t) = 1 fixed
but varies z(t). For times between t = 0 and t = 1, the experimenter rapidly drags the
system according to z(t ≤ 1) = 2t. After this rapid dragging motion, the experimenter
keeps z(t > 1) = 2 and allows the system to approach equilibrium until a measurement
performed at t = 5. Importantly, this gives the system a significant amount of time to reach
its new equilibrium distribution before the measurement is performed. The experimenter
then measures the oscillator’s position and finds it to be centered in the new potential
(m = 2). The evolution of this system is shown in Figure 5.

Due to the change in protocol, the experimenter gains an appreciable amount of informa-
tion about the final distribution of the system, but negligible information about the initial
distribution. Specifically, we find that D(ρτ |m‖ρτ ) = 1.24, while D(ρ0|m‖ρ0) < 0.01. This
is because the system is given time to fully thermalize before the measurement, so any in-
formation about the initial state is lost by the time the measurement is performed. Also
of interest is the difference between the forward and reverse protocol. As shown in Figures
5(a) and 5(b), the forward protocol results in most distributions reaching the new thermal
equilibrium. However, the same is not true of the reverse protocol: the distributions in
Figures 5(c) and 5(f) are not near equilibrium. This is due to the asymmetry between the
forward and reverse protocols.

We also calculated the quantities appearing in the Bayesian integral fluctuation theorems
derived in Section V; they appear in Table II. We find that for all three experimental
protocols considered, these are well defined and equal to unity.

VII. DISCUSSION

We have shown how to include explicit Bayesian updates due to measurement outcomes
into the evolution of probability distributions obeying stochastic equations of motion, and
derived extensions of the Second Law of Thermodynamics that incorporate such updates.
Our main result is the Bayesian Second Law, which can be written in various equivalent
forms (37), (42), (47), (49):

D(PF |m‖PR|m) ≥ 0, (98)

∆H(ρm, ρ) + 〈Q〉F |m ≥ 0, (99)

∆Sm + 〈Q〉F |m ≥ −D(ρτ |m‖ρτ ) +

∫
dx (ρ0(x)− ρ0|m(x)) log ρ0(x), (100)

∆S(ρm) + 〈Q〉F |m ≥ D(ρ0|m‖ρ0)−D(ρτ |m‖ρτ ). (101)
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We note that inequalities similar to (98) exist in the literature but our Bayesian perspective
and use of updated distribution functions are novel. We also used monotonicity of the
relative entropy to derive refined versions of the ordinary Second Law and the BSL, (34)
and (55):

∆S + 〈Q〉F ≥ D(ρ0‖ρ̃) ≥ 0, (102)

∆H(ρm, ρ) + 〈Q〉F |m ≥ D(ρ0|m‖ρ̃m) ≥ 0. (103)

Once again, we note that the unupdated inequality (102) has been discussed in the literature
but its Bayesian counterpart, (103), has not. Finally, we applied similar reasoning to obtain
Bayesian integral fluctuation theorems, such as (63):

〈
PR|m
PF |m

〉

F |m
= bm ≤ 1. (104)

It was shown that the Bayesian integral fluctuation theorems are functionally equivalent to
the unupdated integral fluctuation theorems. This surprising result is a direct consequence
of the fact PR|m/PF |m is equal to PR/PF . In the remainder of this section we briefly discuss
some implications of these results.

Downward fluctuations in entropy. As mentioned in the Introduction, there is a
tension between a Gibbs/Shannon information-theoretic understanding of entropy and the
informal idea that there are rare fluctuations in which entropy decreases. The latter phe-
nomenon is readily accommodated by a Boltzmannian definition of entropy using coarse-
graining into microstates, but it is often more convenient to work with distribution functions
ρ(x) on phase space, in terms of which the entropy of a system with zero heat flow will either
increase or remain constant.

The BSL resolves this tension. The post-measurement entropy of the updated distribution
ρτ |m can be less than the original starting entropy ρ0, as the right-hand side of (100) can
be negative. On the rare occasions when that happens, there is still a lower bound on their
difference. From the information-theoretic perspective, downward fluctuations in entropy at
zero heat flow are necessarily associated with measurements.

This perspective is also clear from the refined Bayesian version of the Boltzmann Second
Law (89), in which the right-hand side can be of either sign. We can see that downward
fluctuations in entropy at zero heat flow occur when the amount of information gained by
the experimenter exceeds the amount of information lost due to irreversible dynamics.

The usefulness of the BSL is not restricted to situations in which literal observers are
making measurements of the system. We might be interested in fluctuating biological or
nanoscale systems in which a particular process of interest necessarily involves a downward
fluctuation in entropy. In such cases, even if there are no observers around to witness the
fluctuation, we may still be interested in conditioning on histories in which such fluctuations
occur, and asking questions about the evolution of entropy along the way. The BSL can be
of use whenever we care about evolution conditioned on certain measurement outcomes.

The Bayesian arrow of time. Shalizi [38] has previously considered the evolution of
conservative systems with Bayesian updates. For a closed, reversible system, the Shannon
entropy remains constant over time, as the distribution evolves in accordance with Liou-
ville’s Theorem. If we occasionally observe the system and use Bayes’s rule to update the
distribution, our measurements will typically cause the entropy to decrease, because condi-
tioning reduces entropy when averaged over measurement outcomes, 〈S(ρm)〉m ≤ S(ρ). At
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face value, one might wonder about an apparent conflict between this fact and the tradi-
tional understanding of the arrow of time, which is based on entropy increasing over time.
This should be a minor effect in realistic situations, where systems are typically open and
ordinary entropy increase is likely to swamp any decrease due to conditioning, but it seems
like a puzzling matter of principle.

Our analysis suggests a different way of addressing such situations: upon making a mea-
surement, we can update not only the current distribution function, but the distribution
function at all previous times as well. As indicated by (101), the entropy of the updated
distribution can decrease even at zero heat transfer. We have identified, however, a different
quantity, the cross entropy H(ρm, ρ) of the updated distribution with respect to the unup-
dated one, which has the desired property of never decreasing (99). For a closed system,
both the updated entropy and the cross entropy will remain constant; for open systems the
cross entropy will increase. It is possible to learn about a system by making measurements,
but we will always know as much or more about systems in the past than we do about them
in the present.

Statistical physics of self-replication. The application of statistical mechanics to
the physics of self-replicating biological systems by England [7] was one of the inspirations
for this work. England considers the evolution of a system from an initial macrostate, I,
to a final macrostate, II, and finds an inequality which bounds from below the sum of the
heat production and change in entropy by a quantity related to the transition probabilities
between the two macrostates. This inequality, however, does not explicitly make use of a
Bayesian update based on the observation of the system’s final macrostate: as we have seen
previously, the inclusion of Bayesian updates can significantly change one’s interpretation
of the entropy production.

In seeking to interpret England’s inequality within our framework, we consider the form
of the BSL in an experiment where the initial distribution has support only on the initial
macrostate, and the measurement at the conclusion determines the final macrostate. This
is a slight generalization of the Boltzmann setup considered in Section VI A above. We
then have the option to consider the difference between the entropy of the updated final
distribution and the entropy of either the updated or unupdated initial distribution.

First, making use of the unupdated initial state, it can be shown that

S(ρτ |II)− S(ρ0) + 〈Q〉F |II ≥ − log
π(II→ I)

π(I→ II)
+ S(ρ0|II)− S(ρ0). (105)

This inequality is similar in spirit to England’s: when S(ρ0|II) ≥ S(ρ0), England’s inequality
immediately follows. Alternatively, using the updated initial state, we find

S(ρτ |II)− S(ρ0|II) + 〈Q〉F |II ≥ D(ρ0|II‖ρ̃II) +D(ρ0|II‖ρ0)−D(ρτ |II‖ρτ ) ≥ − log
π(II→ I)

π(I→ II)
.

(106)
This differs from England’s result only in that the entropy of the initial state has been
replaced by the entropy of the updated initial state. Making this adjustment to England’s
inequality, we recover his bound from the bound given by the BSL. (We thank Timothy
Maxwell for proving this relation.)

Future directions. In this paper we have concentrated on incorporating Bayesian up-
dates into the basic formalism of statistical mechanics, but a number of generalizations and
applications present themselves as directions for future research. Potential examples include
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optimization of work-extraction (so-called “Maxwell’s demon” experiments) and cooling in
nanoscale systems, as well as possible applications to biological systems. It would be inter-
esting to experimentally test the refined versions of the ordinary and Bayesian Second Laws,
to quantify how close the inequalities are to being saturated. We are currently working to
extend the BSL to quantum systems.
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Appendix A: Oscillator Evolution

Here we show plots of the distribution functions for the three numerical harmonic-
oscillator experiments discussed in Section VI C.
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FIG. 3. Evolution of a damped harmonic oscillator coupled to a heat bath in initial thermal

equilibrium under a trivial protocol. Units are chosen such that M = 1, k(t = 0) = 1, and β = 1.

Each graph shows the phase space probability distribution with respect to position and momentum

at different points in the experiment.



37

−4 −2 0 2 4
Position (Dimensionless)

−4

−2

0

2

4
M

om
en

tu
m

(D
im

en
si

on
le

ss
)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

ρ
0(

x,
p)

(a)Initial distribution

−4 −2 0 2 4
Position (Dimensionless)

−4

−2

0

2

4

M
om

en
tu

m
(D

im
en

si
on

le
ss

)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

ρ
τ
(x

,p
)

(b)Final distribution

−4 −2 0 2 4
Position (Dimensionless)

−4

−2

0

2

4

M
om

en
tu

m
(D

im
en

si
on

le
ss

)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

ρ̃
(x

,p
)

(c)Cycled distribution

−4 −2 0 2 4
Position (Dimensionless)

−4

−2

0

2

4

M
om

en
tu

m
(D

im
en

si
on

le
ss

)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

ρ
0|

m
(x

,p
)

(d)Updated initial distribution

−4 −2 0 2 4
Position (Dimensionless)

−4

−2

0

2

4

M
om

en
tu

m
(D

im
en

si
on

le
ss

)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

ρ
τ
|m

(x
,p

)

(e)Updated final distribution

−4 −2 0 2 4
Position (Dimensionless)

−4

−2

0

2

4

M
om

en
tu

m
(D

im
en

si
on

le
ss

)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

ρ̃
m

(x
,p

)

(f)Updated cycled distribution

FIG. 4. Evolution of a damped harmonic oscillator coupled to a heat bath with known position and

magnitude of momentum under a trivial protocol. Units are chosen such that M = 1, k(t = 0) = 1,

and β = 1. Each graph shows the phase space probability distribution with respect to position

and momentum at different points in the experiment.
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FIG. 5. Evolution of a damped harmonic oscillator coupled to a heat bath in initial thermal

equilibrium under a “dragging” protocol. Units are chosen such that M = 1, k(t = 0) = 1, and

β = 1. Each graph shows the phase space probability distribution with respect to position and

momentum at different points in the experiment.


