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We analyze a large number of high-order discrete velocity models for solving the Boltzmann–
BGK equation for finite Knudsen number flows. Using the Chapman–Enskog formalism, we prove
for isothermal flows a relation identifying the resolved flow regimes for low Mach numbers. Although
high-order lattice Boltzmann models recover flow regimes beyond the Navier–Stokes level we observe
for several models significant deviations from reference results. We found this to be caused by their
inability to recover the Maxwell boundary condition exactly. By using supplementary conditions
for the gas-surface interaction it is shown how to systematically generate discrete velocity models
of any order with the inherent ability to fulfill the diffuse Maxwell boundary condition accurately.
Both high-order quadratures and an exact representation of the boundary condition turn out to be
crucial for achieving reliable results. For Poiseuille flow, we can reproduce the mass flow and slip
velocity up to the Knudsen number of 1. Moreover, for small Knudsen numbers, the Knudsen layer
behavior is recovered.

PACS numbers: 47.11.-j, 05.10.-a, 47.61.-k, 47.45.-n

I. INTRODUCTION

Fluid flow at very small scales has gained an increas-
ing amount of attention recently due to its relevance
for engineering applications in micro- and nanotech-
nologies [1, 2], e.g. microelectromechanical systems
(MEMS) and porous media. The characteristic length
scale l0 of the corresponding geometries is in the range
of the mean free path length λ of the gas molecules.
Such flows are often isothermal and characterized by
extremely small Mach numbers. Nevertheless, these
flows can become compressible because of consider-
able pressure gradients caused by viscous effects [3].
Based on the Chapman–Enskog (CE) expansion [4],
the Knudsen number, defined as Kn = λ/l0, can be
considered a measure for the deviation of the flow be-
havior from thermodynamic equilibrium. For suffi-
ciently large Kn non-equilibrium effects become im-
portant and the validity of the Navier–Stokes equa-
tion breaks down. In particular, the gas-surface inter-
action is very complex and cannot be described by the
usual no-slip boundary condition. Within the Knud-
sen layer [5] the notion of the fluid as a continuum is
no longer valid.

A fundamental description of hydrodynamics beyond
the Navier–Stokes equation is provided by the Boltz-
mann equation valid for all values of Kn and all flow
regimes [6]. Accurate simulations of finite Kn flows
are achieved by low-level methods solving the Boltz-
mann equation numerically, e.g. Direct Simulation
Monte Carlo (DSMC) which is traditionally used for
high Mach number flows [8]. However, the application
of the DSMC method to low Mach number microflows

requires a large number of samples to reduce statisti-
cal errors and is computationally very time consum-
ing.
Therefore, reduced-order models of the Boltzmann
equation, such as the Lattice–Boltzmann (LB) ap-
proach, have become attractive alternatives [11–14].
The LB method is based on a reduction of the molecu-
lar velocities to a discrete velocity set in configuration
space. Standard LB models, e.g. the D3Q19 model
with 19 discrete velocities, were developed to describe
the Navier–Stokes fluid dynamics. Nowadays, they
provide a well-established methodology for the com-
putational modeling of various flow phenomena [15].
Furthermore, the LB method achieves promising re-
sults for microflow simulations [16–21]. In particular
the diffuse Maxwell boundary condition for the gas-
surface interaction can be implemented at a kinetic
level [22–25, 27, 28].
A systematic extension of the LB method to high-
order hydrodynamics beyond the Navier–Stokes equa-
tion has been derived by Shan et al. [30]. These mod-
els are based on an expansion of the velocity space
using Hermite polynomials in combination with ap-
propriate Gauss–Hermite quadratures. First analyti-
cal solutions of the high-order LB model D2Q16 were
presented by Ansumali et al. [35] for Couette flow
and by Kim et al. [36] for Poiseuille flow. The col-
lection of LB models in the literature has grown suc-
cessively, see e.g. Refs. [31, 32], but makes no claim
to be complete in any sense. It was shown [35, 36]
that a higher Gauss–Hermite quadrature order sig-
nificantly improves the simulation accuracy for finite
Kn flows compared to standard LB models. However,
several studies [37–40] of high-order LB methods in-
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dicate that the accuracy for finite Kn flows does not
monotonically increase with a higher Gauss–Hermite
order and sensitively depends on the chosen discrete
velocity set. Generally, it was observed that discrete
velocity sets with an even number of velocities perform
better than sets with the same Gauss–Hermite order
but an odd number of velocities. Moreover, there
are some LB models which show considerable devi-
ations from DSMC results for finite Kn despite a high
Gauss–Hermite quadrature order. It has been sug-
gested that this is caused by gas-surface interactions
[40, 41]. The implementation of the diffuse Maxwell
boundary condition using Gauss–Laguerre off-lattice
quadrature models in Ref. [42] shows good results for
Couette flow up to Kn = 0.5. By using an alterna-
tive framework, a high-order LB model with only 27
discrete velocities has been developed by Yudistiawan
et al. [33] and it was shown that the corresponding
moment system is quite similar to Grad’s 26-moment
system. This off-lattice D3Q27 model is able to rep-
resent both, Knudsen layer effects and the Knudsen
minimum for Poiseuille flow.

As an introductory example, we consider the most
commonly used LB modelD3Q19 accompanied by the
diffuse Maxwell boundary condition for unknown dis-
tribution functions at solid walls. It is well-known that
the D3Q19 model shows deviations from reference re-
sults (e.g. DSMC) for increasingKn. As shown in Fig.
1, the normalized mass flow rate for Poiseuille flow be-
comes inaccurate for Kn & 0.05. One reason for this
deficiency is the inability of the D3Q19 velocity set
to represent the diffuse Maxwell boundary condition
accurately. This drawback can be measured by half-
space integrals at the wall [41], we show in this paper
that the integral Wzxx (cf. Eq. (62)) is most relevant.
The standardD3Q19 model evaluates the latter yield-
ing an error of 28% while an alternative LB model
SD3V 15
Q5E24 (see Appendix A) with 15 velocities and the

same quadrature order of 5 yields an error of only 2%.
Figure 1 shows that the result for the mass flow rate of
the latter model is much more accurate compared to
D3Q19. This indicates that the LB model’s represen-
tation of the diffuse Maxwell boundary condition re-
quires high precision. Furthermore, due to the strong
restriction of the configuration space, the standard LB
velocity models capture only the first order of the CE
expansion and therefore the applicability for describ-
ing finite Kn flows is limited [29]. Both models shown
in Fig. 1 are not able to reproduce the Knudsen layer
at solid walls where strong non-equilibrium effects are
relevant. The description of finite Knudsen number
flows must incorporate high-order flow regimes. It
is therefore desirable to obtain high-order LB mod-
els which additionally are capable of representing the
diffuse Maxwell boundary condition accurately.
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FIG. 1. Normalized mass flow rate for Poiseuille flow.
Both LB models D3Q19 and SD3V 15

Q5E24 are of quadrature
order 5 but differ in the accuracy of the wall moment Wzxx

and, consequently, in their capability to recover the diffuse
Maxwell boundary condition.

In this work we systematically develop and investi-
gate a large number of new high-order Gauss–Hermite
LB models (on-lattice) which fulfill a constraint guar-
anteeing an accurate implementation of the diffuse
Maxwell boundary condition. Consequently these
models ensure vanishing errors of the relevant half-
space integrals. We prove a theorem using the CE
expansion which specifies for low Mach number flows
the recovered flow regimes beyond the Navier–Stokes
regime depending on the Gauss–Hermite quadrature
order. First simulation results for Poiseuille flow at fi-
nite Kn show that those high-order LB models which
recover the diffuse Maxwell boundary condition ex-
actly achieve excellent agreement with DSMC results.
In particular these models are able to describe Knud-
sen layer effects at solid walls. We emphasize that
we do not resort to slip-boundary models in order to
achieve these results. Finally, we recommend a pre-
ferred LB model with 96 discrete velocities and a 7th
order Gauss-Hermite quadrature order.
The paper is organized as follows. In Sect. II, a brief
review of LB models and the generation of high-order
discrete velocity models is presented. In Sect. III,
we derive the low Mach number theorem mentioned
above. In Sect. IV, we present the systematic gener-
ation of high-order LB models with the inherent abil-
ity to capture the diffuse Maxwell boundary condi-
tion accurately. In Sect. V, we discuss the numerical
implementation based on second-order accurate dis-
cretization in space and time. In Sect. VI, we compare
first simulation results for Poiseuille flow at finite Kn
with DSMC data and discuss the ability of the new
LB models to describe the Knudsen layer behavior at
solid walls. In Sect. VII, a summary of the major
conclusions is given.
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II. DEFINITION OF LATTICE–BOLTZMANN

MODELS

We consider the one-particle velocity distribution
function f(ξ) governed by the Boltzmann equation
with the Bhatnagar–Gross–Krook (BGK) collision op-
erator,

(∂t + ξ ·∇) f(ξ) = − 1

τ

(

f(ξ)− f (0)(ξ, ρ,u)
)

. (1)

The distribution function f(ξ) relaxes to the equilib-
rium function

f (0)(ξ, ρ,u) =
ρ

(2πθ)D/2
exp

(

− (u− ξ)2

2θ

)

(2)

on the time scale τ . At each point in space and time
the macroscopic quantities are defined as velocity mo-
ments in D-dimensional space,

Mi1...in =

∫

dDξ f(ξ) ξi1 . . . ξin , (3)

such as the density ρ, the velocity u and the temper-
ature θ,

ρ = M , (4a)

ρui = Mi , (4b)

ρ (Dθ + uiui) = Mii . (4c)

Repeated indices are summed over. All quantities are
dimensionless and expressed in units of characteristic
scales, i.e. the length scale l0, the reference density ρ0,
and the isothermal speed of sound c0 =

√
Rθ0 with the

specific gas constant R and the reference temperature
θ0. Since we focus on flows with a low Mach number
Ma = |u|, we assume constant temperature and set
θ = 1 henceforth. The time t as well as the relaxation
time τ is expressed in units of t0 = l0/c0.
Following the work of Grad [9, 10], Shan and He [14]
and Shan et al. [30] we discretize the velocity space
by expanding the distribution function in the Hilbert
space of tensorial Hermite polynomials up to an arbi-
trary order N ,

f(ξ) ≈ fN (ξ) = ω(ξ)

N∑

n=0

1

n!
ai1...inH

(n)
i1...in

(ξ) , (5)

where the Hermite polynomials H(n)
i1...in

(ξ) are intro-
duced by the recurrence relation

H(n+1)
i1...in+1

(ξ) =
(

ξin+1
− ∂

(ξ)
in+1

)

H(n)
i1...in

(ξ) , (6a)

H(0)(ξ) = 1 . (6b)

The lowest-order term of the expansion (5) is given by
the weight function ω,

ω(ξ) =
1

(2π)D/2
e−ξ2/2 , (7)

and the expansion coefficients

ai1...in =

∫

dDξ fN(ξ)H(n)
i1...in

(ξ) (8)

correspond to the moments of the distribution func-
tion.
In the configuration space of a discrete velocity model
the molecular velocities ξα are here restricted to a
Cartesian lattice X with uniform spacing c, called lat-
tice speed, such that the components ξαi/c are integer-
valued. A subset of X containing a number V of these
velocities, the stencil S ⊂ X

S = {ξα|α = 1, . . . , V } , (9)

is used with the corresponding weights wα to compute
the integral in Eq. (3) by quadrature,

Mi1...in =

∫

dDξ ω(ξ) Pi1...in(ξ)

=
∑

α

wαPi1...in(ξα) , (10)

with the function Pi1...in(ξ) = f(ξ)ξi1 . . . ξin/ω(ξ).
For a polynomial Pi1...in(ξ) of degree Q the quadra-
ture (10) is exact as long as it satisfies the orthogo-
nality relation

∫

dDξ ω(ξ)H(n)
i1...in

(ξ)H(m)
j1...jm

(ξ)

=

V∑

α=1

wαH(n)
i1...in

(ξα)H
(m)
j1...jm

(ξα)

=

{

1 if (i1, . . . , in) = perm((j1, . . . , jm))

0 else
,

n+m ≤ Q (11)

up to the Qth order, where perm(j) denotes a (odd
or even) permutation of the vector j = (j1, . . . , jm).
This can be readily seen by expanding Pi1...in(ξ) using
Hermite polynomials

Mi1...in =

Q
∑

m=0

pi1...in,j1...jm

∫

dDξ ω(ξ)H(m)
j1...jm

(ξ)

(12)

with some coefficients pi1...in,j1...jm . If Eq. (11) holds,
the Qth-order polynomial in Eq. (12) is evaluated ex-
actly by the quadrature and hence Eq. (10) holds as
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well. We then refer to the stencil S along with its
weights wα as a discrete velocity model (DVM) with
quadrature order Q. Note that we write the moments
(10) as sums on discrete velocities, implicitly assuming
a sufficiently high quadrature order, unless indicated.
A Lattice–Boltzmann (LB) model solves for the vari-
ables

fα = wα
f(ξα)

ω(ξα)
(13)

in the LB–BGK equation

(∂t + ξαi∂i) fα = − 1

τ

(

fα − f (0)
α

)

, (14)

using a DVM for the evaluation of the macroscopic
variables

ρ =
∑

α

fα , (15a)

ρui =
∑

α

fαξαi , (15b)

ρ (Dθ + uiui) =
∑

α

fαξαiξαi . (15c)

The latter serve the LB model to determine the equi-
librium function

f (0)
α (ρ,u) = wα

f (0)(ξα, ρ,u)

ω(ξα)

= wα

N∑

n=0

1

n!
a
(0)
i1...in

H(n)
i1...in

(ξα) , (16)

expanded to a Hermite order N where the Hermite
coefficients for isothermal flows are given by

a
(0)
i1...in

= ρ ui1 . . . uin . (17)

For any stencil S, the weights wα are obtained by solv-
ing the set (11) of linear equations. We decompose the
stencil S = ∪G

g=1Sg into a number G of velocity sets
(groups), each group Sg containing Vg velocities (s.t.
V =

∑

g Vg) generated by the symmetries of the lat-
tice. These groups Sg can be obtained by reflecting

a single ξ(g) ∈ Sg on those hyperplanes of the lat-
tice which reproduce the lattice itself upon reflection.
Hence, the velocity weights must be identical in each
group,1

wα = wg ∀ {α | ξα ∈ Sg } . (18)

1 Note that the metric norm of the velocities, |ξ|2 = ξiξi, is
not useful to identify the weights. E.g. the velocities (3, 0, 0)
and (2, 2, 1) have the same norm, however, they are not part
of the same group.

It is efficient to rewrite Eq. (11) into the form

Kαβ(S)wβ = 0 ∀α ,
V∑

α=1

wα = 1 , (19)

where K is a symmetric matrix with elements

Kαβ(S) =

Q
∑

m=1

H
(m)
i1...im

(ξα)H
(m)
i1...im

(ξβ) (20)

and where the Hermite tensor indices are contracted.
In view of Eq. (12), it is sufficient to solve Eq. (11) for
n = 0 and m ≤ Q. Obviously, Eq. (19) then follows

from Eq. (11) by multiplication of H(m)
i1...im

(ξβ) and
summing on m. The reverse is true because Eq. (19)
can be written, after multiplication by wα, as

0 = wαKαβ(S)wβ =

Q
∑

m=1

(
∑

α

H(m)
i1...im

(ξα)wα

)2

which requires that each part of the sum be zero. To
obtain the matrix K(S), the scalar product of two
Hermite tensor polynomials is obtained by the recur-
rence formula (no sum on m)

H(m+1)
i1...im+1

(ξ)H(m+1)
i1...im+1

(η) =
(

ξim+1
ηim+1

− ξim+1
∂
(η)
im+1

−ηim+1
∂
(ξ)
im+1

+ ∂
(ξ)
im+1

∂
(η)
im+1

)

H(m)
i1...im

(ξ)H(m)
i1...im

(η) ,

(21)

which follows from Eq. (6).
Finding the weights wα for a stencil reduces to the
task of finding the null space of the symmetric ma-
trix K(S) and normalizing according to Eq. (19). As
a special feature, the matrix K(S) has a parametric
dependence on c (through S) such that for some dis-
crete values c∗ ∈ R its nullity is increased. This means
that by populating the stencil with sufficiently many
velocity groups, we find for each quadrature order Q
a minimal number G of velocity groups such that for
c = c∗

dimkerK(S) = 1 (22)

while for c 6= c∗ the matrix K(S) is regular and no
solution of Eq. (19) can be found. The solutions of
Eq. (19) which obey Eq. (22) with c = c∗ are referred
to as minimal DVMs. We only consider DVMs with
positive weights. Fixing the quadrature order Q and
the number V of velocities, there is a countable in-
finity of minimal DVMs, since S can be chosen from
the (virtually) unbounded lattice X . However, by in-
troducing the integer-valued energy E of a stencil and
limiting it from above,

E =
1

2c2

V∑

α=1

ξα · ξα ≤ Emax (23)
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the number of available Qth-order minimal DVMs be-
comes finite. We are thus able to determine the com-
plete set of minimal DVMs inside the energy sphere
defined by E ≤ Emax. The notation

S
D〈D〉V 〈V 〉
Q〈Q〉E〈E〉 , e.g. D3Q19 → SD3V 19

Q5E15 (24)

is introduced for the DVMs. As a reminder, we refer
to the spatial dimension as D, the quadrature order
as Q, the stencil’s energy as E and the number of
velocities as V . In the sequel, we consider three spatial
dimensions, D = 3. Although small values of V are
desirable for a high computational performance, it is
unclear which choice of the stencil is the most accurate
for finite Kn number flows. It is shown in the next
Sections what are the essential features of a DVM for
the resolution of high-order hydrodynamic regimes.

III. LATTICE–BOLTZMANN

HYDRODYNAMICS

In this Section we study the capability of LB models
with Gauss–Hermite quadrature order Q and Hermite
order N to capture isothermal (θ = 1) microflows
beyond the Navier–Stokes flow regime by using the
Chapman–Enskog (CE) expansion. We restrict our
analysis to low Ma flows. The flow phenomena thus
described bear fixed values of the Reynolds number
Re, Kn and Ma where Ma ≪ 1 is a small number
allowing an expansion.
By taking moments of the discrete LB–BGK equation
(14) with respect to the discrete particle velocities ξα
macroscopic moment equations can be derived. For
the density ρ and the momentum ρu, we obtain the
evolution equations

∂tρ+ ∂i (ρui) = 0 (25a)

∂t (ρui) + ∂jΠij = 0 (25b)

with the momentum flux tensor

Πij =
∑

α

fαξαiξαj . (26)

Equations (25a) and (25b) represent mass and mo-
mentum conservation, respectively, guaranteed by in-
variants of the BGK collision operator. Correspond-
ing equations for higher moments, e.g. Πij , are derived
by taking moments of Eq. (14) with more than one
particle velocity ξα.

A. Chapman–Enskog analysis

The CE analysis [4, 34] is a perturbative method to
solve the Boltzmann equation and is based on the as-
sumption that the distribution function fα deviates

only slightly from the equilibrium f
(0)
α . The CE ex-

pansion introduces a small parameter ǫ into the colli-
sion time τ → ǫτ which controls the perturbative anal-
ysis and is absorbed into τ after finishing the analysis.
Physically, the parameter ǫ may be identified with the
Knudsen number, which measures the deviation from
equilibrium. The first, second, and third orders corre-
spond to the Navier–Stokes, the Burnett, and Super–
Burnett flow regimes, respectively. Consequently the
LB–BGK equation (14) becomes

(∂t + ξαi∂i) fα = − 1

ǫτ

(

fα − f (0)
α

)

(27)

and the distribution function is expanded in powers
of ǫ

fα = f (0)
α + ǫf (1)

α + ǫ2f (2)
α + . . . . (28)

The CE expansion is a multiple-scale expansion of
both f and t

∂t = ∂
(0)
t + ǫ∂

(1)
t + ǫ2∂

(2)
t + . . . (29)

with the solvability conditions

∑

α

f (n)
α = 0 ,

∑

α

f (n)
α ξαi = 0 , n ≥ 1 . (30)

Therefore, high-order contributions f
(n)
α (n ≥ 1) of the

CE expansion do not contribute to the macroscopic
density and flow velocity. By inserting the CE ansatz
(28) and (29) into the Boltzmann equation (27) we
find the general solution for n ≥ 1

f (n)
α = −τ

[

∂iξαif
(n−1)
α +

n−1∑

m=0

∂
(m)
t f (n−m−1)

α

]

. (31)

Furthermore, the solvability conditions (30) are equiv-
alent to the relations

∂
(0)
t

[
ρ
ui

]

=

[ −∂i (ρui)
−uj∂jui − 1

ρ∂iρ

]

(32a)

∂
(n)
t

[
ρ
ui

]

=

[

0

− 1
ρ∂jΠ

(n)
ij

]

, n ≥ 1 , (32b)

where

Π
(n)
ij =

∑

α

f (n)
α ξαiξαj . (33)

The CE analysis is expected to be valid for flow
regimes where the system is not too far from equi-
librium [45].
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B. Navier-Stokes and Burnett flow regimes

The Navier–Stokes momentum flux tensor Π
(1)
ij can be

calculated by taking the second moment of Eq. (31)
for n = 1

Π
(1)
ij = −τ

(

∂
(0)
t Π

(0)
ij + ∂kQ

(0)
ijk

)

(34)

with

Q
(n)
ijk =

∑

α

f (n)
α ξαiξαjξαk . (35)

Using Hermite polynomials and the orthogonality re-
lation (11) we obtain

Π
(0)
ij = ρδij + ρuiuj (36)

and

Q
(0)
ijk = ρ [uiδjk + ujδik + ukδij ] + ρuiujuk . (37)

Inserting these results into Eq. (34) and evaluating
the time derivative with respect to Eq. (32a) yields the

Navier–Stokes momentum flux tensor Π
(1)
ij for isother-

mal flows,

Π
(1)
ij = −τρ (∂iuj + ∂jui) . (38)

The standard LB models with accuracy order Q = 5
(e.g. D3Q19) do not capture the last term in Eq. (37)

and thus cause an error |∆Π
(1)
ij | = τ |∂k (ρuiujuk)| =

O
(
Ma3

)
[46]. On the other hand, if a DVM with

quadrature order Q ≥ 6 and Hermite order N = 3 is
used, we exactly recover the Navier–Stokes momen-

tum flux tensor Π
(1)
ij . Evidently, the momentum flux

tensor is O (Ma) and higher-order Ma terms do not
contribute when considering low Ma values.

The Burnett momentum flux tensor Π
(2)
ij can be cal-

culated by taking the second moment of Eq. (31) for
n = 2

Π
(2)
ij = −τ

(

∂
(0)
t Π

(1)
ij + ∂

(1)
t Π

(0)
ij + ∂kQ

(1)
ijk

)

. (39)

The third moment of Eq. (31) for n = 1 yields

Q
(1)
ijk = −τ

(

∂
(0)
t Q

(0)
ijk + ∂nR

(0)
ijkn

)

(40)

with

R
(0)
ijkn =

∑

α

f (0)
α ξαiξαjξαkξαn . (41)

By applying the Hermite polynomial the tensor R
(0)
ijkn

can be expressed as

R
(0)
ijkn = ρ (δijδkn + δikδjn + δinδjk)

+ ρ(uiujδkn + uiukδjn + uiunδjk + ujukδin

+ ujunδik + ukunδij) + ρuiujukun . (42)

Inserting this result together with relation (37) into

Eq. (40) we can compute the tensor Q
(1)
ijk, which is

required for the evaluation of Π
(2)
ij . After an exten-

sive calculation of all terms in Eq. (39) by considering

the multiple-scale time derivatives ∂
(0)
t and ∂

(1)
t we

obtain the Burnett momentum flux tensor for isother-
mal flows,

Π
(2)
ij = 2ρτ2

[

(∂kui) (∂kuj)

+
1

ρ2
(∂iρ) (∂jρ)−

1

ρ
∂i∂jρ

]

. (43)

The Burnett tensor for an incompressible flow field is

Π
(2)
ij = O(Ma2) and thus does not contribute to the

momentum dynamics in the low Ma regime. However,
for finite Kn the flow behavior can become compress-
ible even for low Ma [3] and in that case we obtain
contributions from the last term of Eq. (43). We will
show in the following Section that these low Ma terms
are recovered even for LB models with accuracy order
Q = 5.

C. Low–Mach truncation error

Depending on the quadrature accuracy order Q a LB
model is able to recover different flow regimes. In this
Section we analyze the quadrature error with respect
to the power of Ma and discuss the ability to capture
high-order flow regimes especially for low Ma flows.
For this purpose we consider the kth moment of the
nth CE level, which is defined by

M
(n)
i1...ik

=
∑

α

f (n)
α ξαi1 . . . ξαik , (44)

where k ≥ 2 because of the solvability conditions (30).
An equation for this moment can be derived by tak-
ing the kth moment of Eq. (31) with respect to the
discrete particle velocities ξα

M
(n)
i1...ik

= −τ
[

∂
(0)
t M

(n−1)
i1...ik

+ ∂
(1)
t M

(n−2)
i1...ik

+ . . .

+∂
(n−1)
t M

(0)
i1...ik

+ ∂jM
(n−1)
i1...ikj

]

. (45)

Based on this relation it can be easily shown by in-

duction that the moment M
(n)
i1...ik

is completely de-
termined by moments of the equilibrium distribu-
tion. Because of a finite accuracy order of the Gauss–
Hermite quadrature higher moments of the CE expan-
sion are only approximately captured and therefore
high-order flow regimes are not accurately recovered.



7

In order to discuss such a truncation error for a mo-
ment M

(n)
i1...ik

we define the quadrature error

∆M
(n)
i1...ik

= M
(n)
i1...ik

−M
(n)DVM
i1...ik

, (46)

where M
(n)DVM
i1...ik

is a possibly inaccurate moment, cal-
culated by a DVM.

Due to the fact that a general CE moment M
(n)
i1...ik

can
be expressed by equilibrium moments it is important
to consider, in a first step, the quadrature error for
equilibrium moments

M
(0)
i1...ik

=
∑

α

f (0)
α ξαi1 . . . ξαik , (47)

with the equilibrium function given by Eq. (16). Note

that the Hermite coefficients, see Eq. (17), yield

a
(0)
i1...in

= O (Man) . (48)

The product ξαi1 . . . ξαik in Eq. (47) can be expressed

by the Hermite polynomialH(k)
i1...ik

(ξα), H
(k−2)
i1...ik−2

(ξα),

and terms with lower-order Hermite polynomials

ξαi1 . . . ξαik = H(k)
i1...ik

(ξα)

+
∑

r<s

H(k−2)
i1...ir−1ir+1...is−1is+1...ik

(ξα) δiris + . . . .

(49)

Therefore we obtain

M
(0)
i1...ik

=

N∑

n=0

1

n!
a
(0)
j1...jn

∑

α

wα

[

H(n)
j1...jn

(ξα)H
(k)
i1...ik

(ξα) +
∑

r<s

δirisH
(n)
j1...jn

(ξα)H
(k−2)
i1...ir−1ir+1...is−1is+1...ik

(ξα) + . . .

]

.

(50)

An exact evaluation of the moment M
(0)
i1...ik

requires
a sufficiently high Hermite order N ≥ k of the
equilibrium (16) to ensure that the contributions of
all Hermite polynomials in the brackets of Eq. (50)
are included [31]. Due to the orthogonality relation
(11) higher Hermite polynomials in the equilibrium,

H(n)
i1...in

with n > k, do not contribute to the moment

M
(0)
i1...ik

. In addition, we need an adequate Gauss–
Hermite quadrature with an accuracy orderQ ≥ k+N
to guarantee the correct evaluation of all Hermite con-
tractions in Eq. (50). Otherwise we obtain quadrature
errors, which are analyzed in detail in Appendix C.
The result of this error estimate for equilibrium mo-

ments M
(0)
i1...ik

is given by

∆M
(0)
i1...ik

=







0 for k +N ≤ Q, k ≤ N

O
(
MaN+1

)
for k +N ≤ Q, k > N

O
(
MaQ−k+1

)
for k − 1 ≤ Q < k +N

O
(
Ma0

)
for Q < k − 1 .

(51)

At this point, it is worth to discuss the optimal
choice of the Hermite order N of the equilibrium func-
tion (16) in order to ensure an exact evaluation of

all M
(0)
i1...ik

with maximal k. Using Eq. (51) this is

achieved for N = 1
2Q. Usually Q is an odd num-

ber and N is an integer, which allows either N =

1
2 (Q+ 1) or N = 1

2 (Q− 1).
For an odd Gauss–Hermite quadrature order Q we fix
in the following the Hermite order of the equilibrium
(16) to N = 1

2 (Q− 1). For this particular choice we
obtain for the quadrature error (51) the relation

∆M
(0)
i1...ik

=







0 for 2k + 1 ≤ Q

O
(
MaQ−k+1

)
for k − 1 ≤ Q < 2k + 1

O
(
Ma0

)
for Q < k − 1

= Θ (2k −Q) O
(

Mamax(Q−k+1,0)
)

, (52)

where Θ is the Heaviside step function. If we choose
the other possibility, N = 1

2 (Q+ 1), we get for the
estimate of the quadrature error the same result (52).
But we want to point out that the quadrature error
for N = 1

2 (Q− 1) is different from the choice N =
1
2 (Q+ 1), however, the leading power of Ma in the
error term is the same.

The dominant quadrature error (with respect to Ma)
of a quantity consisting of several equilibrium mo-
ments is determined by the highest equilibrium mo-

ment M
(0)
i1...ik

. Based on the recurrence relation (45)

for a CE moment M
(n)
i1...ik

and the error estimate (52)
for equilibrium moments, we are able to prove the fol-
lowing theorem:
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Theorem : For any LB model with an odd Gauss–Hermite quadrature order Q and a Hermite order N =

(Q − 1) /2 of the equilibrium (16) the truncation error of the kth velocity moment M
(n)
i1...ik

in the nth CE level

is given, for low Ma values, by

∆M
(n)
i1...ik

= (−τ)
n
∂j1 . . . ∂jn∆M

(0)
i1...ikj1...jn

+ subleading terms (53)

and can be estimated by

∆M
(n)
i1...ik

= Θ(2(k + n)−Q) O
(

Mamax(Q−k−n+1,0)
)

, (54)

where k ≥ 2 and Θ is the Heaviside step function.

The theorem is proved by induction in Appendix D.
It is in agreement with the accuracy determinations
of LB models given by Shan et al. [30]. Moreover, the
theorem presented here enables to identify the recov-
ered flow regimes for low Ma values by analyzing the
truncation error.
In the following we discuss the macroscopic momen-
tum dynamics

∂t (ρui) + ∂jΠij = 0 (55)

with the momentum flux tensor

Πij =
∑

n

Π
(n)
ij (56)

and analyze the recovered flow regime of a LB model
with Gauss–Hermite accuracy order Q by using the
theorem. Based on the error estimate (54) the relevant
error of the momentum flux tensor of the nth flow
regime Π

(n)
ij with respect to the Ma power is given by

∆Π
(n)
ij = Θ(2n+ 4−Q) O

(

Mamax(Q−n−1,0)
)

.

(57)

LB models with quadrature order Q = 5
For LB models with quadrature order Q = 5 the

Navier-Stokes momentum flux tensor Π
(1)
ij is not eval-

uated exactly for all Ma numbers, because the highest

equilibrium moment Q
(0)
ijk is only recovered up to an

error O(Ma3) in accordance with relation (54). The

leading momentum flux error is given by ∆Π
(1)
ij =

−τ∂k∆Q
(0)
ijk = O(Ma3). It is interesting to notice that

even LB models with accuracy Q = 5 recover the Bur-

nett momentum flux tensor Π
(2)
ij for low Ma values.

Because of relation (57) we obtain ∆Π
(2)
ij = O(Ma2),

which indicates that low Ma contributions are recov-
ered. Considering the isothermal Burnett tensor we
observe that only the last term on the right-hand side
of Eq. (43) includes low Ma contributions for com-
pressible finite Kn flows.

LB models with quadrature order Q = 7
LB models with Q = 7 recover the Navier-Stokes mo-
mentum flux tensor (38) exactly whereas the Burnett

tensor includes an error of ∆Π
(2)
ij = O(Ma4) accord-

ing to relation (57). This is caused by an inaccurate

evaluation of the equilibrium moment R
(0)
ijkn. Further-

more, the momentum flux tensor Π
(3)
ij is captured up

to an O(Ma3) error and Π
(4)
ij up to an O(Ma2) error.

Therefore, LB models with quadrature accuracy order
Q = 7 recover the momentum dynamics up to the 4th

flow regime (Π
(4)
ij ) for low Ma flows.

LB models with arbitrary quadrature order Q
In general the error estimate (57) states that for low
Ma flows LB models with Gauss–Hermite quadrature
order Q capture the correct momentum dynamics up

to the (Q − 3)th flow regime, because of ∆Π
(Q−3)
ij =

O(Ma2). On the other hand, higher flow regimes are
not described correctly. For example, the error of

∆Π
(Q−2)
ij = O(Ma) corrupts the leading order terms

of the momentum dynamics. Fortunately, such effects
are suppressed by a term O(KnQ−2) which is suffi-
ciently small for Kn < 1.

IV. GAS–SURFACE INTERACTION

For wall-bounded flows at finite Kn the gas-surface
interaction is of crucial importance because of its in-
fluence on the Knudsen layer. It is known that the
diffuse Maxwell reflection model [6] is sufficiently ac-
curate to describe flows for a wide range of Kn. Its
numerical implementation in the LB framework has
been reported in Refs. [24–28]. Although high-order
LB models recover flow regimes beyond the Navier–
Stokes level, there are some models, e.g. D3Q121,
which show significant deviations to reference results
for wall-bounded flows at finite Kn (see Sect. VI). The
reason for this failure will be shown to be caused by
the inability of these models to recover the diffuse
Maxwell boundary condition accurately. We define
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wall moments and introduce a wall accuracy order and
thus assess the capability of a LB model to capture the
diffuse Maxwell boundary condition.
In this Section we discuss a systematic way to generate
DVMs which inherently exhibit the diffuse Maxwell
boundary condition.

A. Diffuse Maxwell boundary condition

The diffuse Maxwell reflection model suggests that
particles emitted from the solid surface do not depend
on anything prior to their surface impact and their
velocities are normalized by the equilibrium distribu-
tion. This notion infers that the scattering kernel only
depends on the emitted velocities. We can then write
[24] the distribution function of particles emitted by
the wall as

f(ξ) = Ψf (0)(ξ, ρw, 0) for n · ξ > 0 (58)

where n = ez is the inward wall normal vector and the
scalar Ψ ensures mass conservation across the (imper-
meable and stationary) surface,

Ψ =

∫

n·ξ′<0 d
3ξ′f(ξ′)

∣
∣n · ξ′

∣
∣

∫

n·ξ>0
d3ξf (0)(ξ, ρw, 0) |n · ξ| . (59)

The equilibrium function f (0)(ξ, ρw, 0) is evaluated for
the density ρw and the macroscopic velocity u = 0 at
the wall. It was shown in Ref. [37] that for steady
unidirectional flows Ψ = 1. The discussion of this
Section allows Ψ to be arbitrary.

B. Equilibrium wall moments

At the wall, the velocity moments (3) are decomposed
into a part connected to the fluid domain and a part
which is influenced by the wall

Mi1...in =

∫

n·ξ<0

d3ξ f(ξ) ξi1 . . . ξin

+

∫

n·ξ>0

d3ξ f(ξ) ξi1 . . . ξin . (60)

The second integral is completely determined by dis-
tributions coming from the wall representing the gas–
surface interaction. Using Eqs. (58) and (59), we can
write

Mi1...in =

∫

n·ξ<0

d3ξ f(ξ) ξi1 . . . ξin +ΨρwWi1...in

(61)

where the equilibrium wall moments Wi1...in were in-
troduced as

Wi1...in =

∫

d3ξ Θ(n · ξ) ω(ξ) ξi1 . . . ξin . (62)

The capability of a DVM to capture the Maxwell
boundary condition can now be investigated by ana-
lyzing the equilibrium wall moments. It is straightfor-
ward to obtain exact solutions for Wi1...in , expressing
them by the scalar integrals
∫ ∞

−∞

dξx

∫ ∞

−∞

dξy

∫ ∞

0

dξz ω(ξ)ξ
mz
z ξmy

y ξmx
x

=

√
2
mx+my+mz

8
√
π
3 (1 + (−1)mx) (1 + (−1)my )

× Γ

(
mx + 1

2

)

Γ

(
my + 1

2

)

Γ

(
mz + 1

2

)

,

(63)

with the Euler Gamma function Γ. We will now show
how to evaluate the equilibrium wall moments (62)
numerically with a discrete velocity model.

C. Discrete velocity models with wall

constraints

In the discrete velocity space the wall moments (62)
are computed by quadrature. Note, however, that
the evaluation of nth wall moments Wi1...in cannot
be performed in an exact manner by Gauss-Hermite
quadratures with order Q = n. This is due to the
non-analyticity of the Heaviside function at the wall
where an expansion of the integrand does not ex-
ist. Although alternative quadratures can be intro-
duced using functions orthogonal in the half-space
[42, 43, 48], we would like to cope with this difficulty
within the conventional framework of Gauss-Hermite
quadratures. We employ the quadrature prescription

WDVM
i1...in =

∑

n·ξα>0

wαξαi1 . . . ξαin , (64)

and demand that—while defining the stencil—the
supplementary constraints

WDVM
i1...in = Wi1...in . (65)

be fulfilled, aside from the orthogonality condition
(11). We thus ensure that the wall moments (62) are
computed exactly. To this end the kernel of the ma-
trix K, see Eq. (20), is augmented by adding groups

of velocities, yielding {w(1)
α ,w

(2)
α , . . . ,w

(J)
α } as an or-

thogonal basis of the J-dimensional null space. Any
weight vector

wα = xjw
(j)
α (66)
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in this null space then defines a quadrature where the
freedom in the coefficients xj is used to implement the
wall constraints (65). We achieve this by solving the
set of linear equations

Akjxj = bk , 1 ≤ k ≤ L , (67)

where the vector b comprises the non-trivial equilib-
rium wall moments of Eq. (65),

b = (W, Wz, Wxx, Wzzz , Wzxx, Wxxxx, Wxxyy,

Wzzzzz , Wzzzxx, Wzxxxx, Wzxxyy, Wxxxxxx,

Wxxxxyy, Wzzzzzzz , Wzzzzzxx, Wzzzxxxx,

Wzzzxxyy, Wzxxxxxx, Wzxxxxyy, . . . ) (68)

and the matrix A is given by

Akj =
∑

n·ξα>0

Tα
k w

(j)
α , (69)

with the symbols Tα
k defined as

Tα = (1, ξαz, ξ
2
αx, ξ

3
αz , ξαzξ

2
αx, ξ

4
αx, ξ

2
αxξ

2
αy,

ξ5αz , ξ
3
αzξ

2
αx, ξαzξ

4
αx, ξαzξ

2
αxξ

2
αy, ξ

6
αx,

ξ4αxξ
2
αy , ξ

7
αz , ξ

5
αzξ

2
αx, ξ

3
αzξ

4
αx,

ξ3αzξ
2
αxξ

2
αy , ξαzξ

6
αx, ξαzξ

4
αxξ

2
αy, . . . ) . (70)

The index k in Eq. (67) runs from 1 to L where for
Q = 7 we find L = 19 non-trivial equilibrium wall
moments. For Q > 7, additional components need to
be appended to the vectors b and Tα.2

By solving the supplementary Eq. (67) we obtain sten-
cils suitable as Qth-order quadratures for the gas-
surface interaction as well as the bulk flow. As shown
in Sect. VI, LB models of a given quadrature order
Q show strongly different behavior depending on the
quantities

σi1...in =
(
Wi1...in −WDVM

i1...in

)/
Wi1...in (71)

which measure the numerical error of the gas-surface
interaction. It is convenient to use the expression

σΣ =

∑Q
n=0

∑

i1...in
|σi1...in |e−n

∑Q
n=0

∑

i1...in
e−n

(72)

2 The wall moments are determined for n ≤ Q, i.e. the quadra-
ture’s accuracy at the wall is not required to exceed the
accuracy in the bulk. Note that the integrals in Eq. (63)
vanish by symmetry if mx or my are odd. Since this sym-
metry is preserved by the stencils, the quadrature then au-
tomatically yields correct results. For even mx and my ,
the equilibrium wall moments (62) are automatically exact
for even mz = 2, 4, . . . (see the discussion following Eq.
(78)). The components of the vectors b and T

α are nested
in the order of increasing n, decreasing mz and decreasing
mx where mx ∈ {0, 2, 4, . . . }, my ∈ {0, 2, 4, . . . | my ≤ mx},
mz ∈ {0, 1, 3, 5, . . . }, and mx +my +mz ≤ Q.

assessing the net effect of non-trivial wall errors.
We put forward the so-called wall accuracy index

Λindex for indicating a DVM’s ability to evaluate the
wall integrals (62). The wall accuracy index is defined
as the binary number

Λindex = (λL . . . λ2λ1)2 (73)

where the λk are numerical booleans which determine
whether the kth wall constraints in Eq. (67) is satis-
fied,

λk =

{

0 for Akjxj 6= bk
1 for Akjxj = bk

(74)

For instance, a DVM with one single wall constraint,
σzxx = 0, can be characterized by the wall accuracy
index

Λindex = 00000000000000100002 = 16 . (75)

In Eq. (75), it is shown that the wall accuracy index
can be given by a decimal number as well. We thus use
Λindex as an abbreviation bearing lots of information
on the validity of the wall constraints (65).
Furthermore, we define the wall accuracy order Λ by
the highest rank of equilibrium wall moments (62) up
which the quadrature is exact,

σi1...in = 0 ∀ {n, i1 . . . in | n = 0, 1, . . . ,Λ} . (76)

If Eq. (76) is false for any Λ ≥ 0, we set Λ = −1.
It can be shown (see Appendix E) that a DVM with
wall accuracy order Λ is able to exactly evaluate the
Maxwell boundary factor Ψ, see Eq. (59), up to the
(Λ−N − 1)th CE level.

D. Complete sets of discrete velocity models

Several sets of DVMs, denoted by Sn, n = 1, 2, . . . ,
are introduced in this paper to alleviate the discus-
sion on efficiency and accuracy of the DVMs. An
overview of these sets is given in Tab. I. Each set
is defined by its dimension D, its quadrature order
Q, the upper limit Emax of the stencil’s energy and
the wall accuracy index Λindex. A set Sn contains a
number # of minimal DVMs with Vmin being the min-
imal velocity count. While in one spatial dimension,
it is well-known how to find Vmin for Gauss-Hermite
quadratures, in higher dimensions this is not obvious.
For most common quadratures in three dimensions,
V > Vmin.
A set of DVMs can only be complete if an upper bound
on the stencil energy is provided. Defining the set S1,
we arbitrarily chose Emax = 500 but of course this
number may be increased. S1 includes 4677 three-
dimensional, 7th-order DVMs. The lowest velocity
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count within S1 yields Vmin = 38. There are two
models of this kind, displayed in Tabs. VI-VII. All
tables of DVMs are deferred to the Appendix. The set
S2 comprises 618 three-dimensional, 9th-order DVMs
with Emax = 625. The lowest velocity count yields
Vmin = 79. This DVM which is noted in Tab. X com-
plements previously known DVMs with minimal ve-
locities [31]. A widely used 9th-order DVM is the one
shown in Tab. XI, also known as D3Q121 [28].

D Q Emax # Vmin σ... = 0 Λindex

S1 3 7 500 4677 38 - 0
S2 3 9 625 618 79 - 0
S3 3 7 - 500 - σzxx 16
S4 3 7 2500 45863 80 σ, σij , σijnm, σijnmpq 6245
S5 2 7 250 1188 16 - 0
S6 2 9 300 592 33 - 0
S7 2 7 1000 21952 20 σ, σij , σijnm, σijnmpq 549

TABLE I. Overview of DVM sets Sn which comprise a
number # of minimal DVMs with dimension D, quadra-
ture order Q, and upper limit Emax for the stencil energy.
The 6th column shows the minimal velocity count Vmin.
For each set Sn, it is indicated in the 7th column which
wall moment errors vanish. Finally, the wall accuracy in-
dex Λindex is given. The symbol ‘-’ is used where a quantity
is not considered.

The two DVM sets S3 and S4 shown in Tab. I are
designed for wall-bounded flows, taking into account
some of the equilibrium wall moments (65), hence
Λindex > 0. In particular, the DVM set S3 comprises
500 stencils for D = 3 and Q = 7 with the supplemen-
tary constraint

σzxx = 0 . (77)

As shown in Sec. VI, a minimal equilibrium wall mo-
ment error |σzxx| is crucial to the resolution of correct
mass flow and slip velocity in finite Kn flows. Further
optimization (see below) yields the stencils SD3V 77

Q7E672

and SD3V 107
Q7E1023 shown in Tables XII and XIII. Note

that these are augmented DVMs: they are based on
DVMs for minimal DVMs and the last two velocity
groups are added to account for the wall constraint
(77). The wall accuracy order for S3 yields Λ = −1.
For the DVM set S4, where D = 3 and Q = 7, we
split the domain of numerical integration across the
wall, i.e. the stencils do not contain velocities parallel
to the wall, n · ξα 6= 0 ∀α. A noteworthy property of
these models is that they enforce wall interaction of
the stencil nearest to the wall. The occurrence of bal-
listic particles as described in Ref. [18] is thus avoided.
We refer to the stencils without wall-parallel velocities
as scattering stencils.
Considering Qth order polynomials P (ξ) invariant for

n · ξ −→ −n · ξ (78)

(even functions included) the relation

∫

d3ξ Θ(n · ξ)ω(ξ)P (ξ) =
1

2

∫

d3ξ ω(ξ)P (ξ)

=
1

2

∑

α

wαP (ξα)

=
1

2

∑

n·ξα=0

wαP (ξα) +
∑

n·ξα>0

wαP (ξα) (79)

is exact for quadratures with order Q. For scattering
stencils, the first sum in Eq. (79) is absent by defi-
nition (n · ξα 6= 0) and therefore the customary wall
quadrature prescription (64) yields exact results for
even wall moments,

σi1...i2n = 0 ∀ {n, i1 . . . i2n | 0 ≤ 2n ≤ Q} . (80)

On the other hand, wall-parallel and zero velocities
infer a quadrature error using Eq. (64) because their
contribution to Eq. (79) is neglected. This circum-
stance is an advantage of scattering stencils such as
D2Q16 and it also explains why DVMs with an even
number of velocities are superior to others in the con-
text of wall-bounded flows. Such stencils necessarily
lack the rest velocity ξ = 0 which typically comes
with a relatively large weight w0 in the quadrature.
The rest velocity causes a considerable error neglect-
ing the term 1

2w0P (0) in Eq. (79) whilst using the wall
quadrature prescription (64). This error is suppressed
by stencils with an even number of velocities.
The wall accuracy order of S4 is found, according to
Eq. (76) as Λ = 0. On the other hand, the wall accu-
racy index yields

Λindex = 00000011000011001012 = 6245 . (81)

The energies of the stencils in S4 are limited by
Emax = 2500 which yields 45863 DVMs with the prop-
erty (80). Among those, we picked out the DVMs
SD3A96
Q7E1932 and SD3A112

Q7E1764, for reasons explained in Sec.
VI, and we present them in Tables XIV and XV.
Finally, Tab. I lists the sets S5, S6, and S7, which
concern the popular research area of LB models in 2
spatial dimensions. Details about these models can
be found in Appendix B.

V. NUMERICAL METHOD

For the numerical solution of our test case shown be-
low, we include an external force Fα in the LB–BGK
equation (14) by writing

(∂t + ξαi∂i) fα = − 1

τ
(fα − feq

α ) (82)
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where we introduced the generalized equilibrium func-
tion

feq
α = f (0)

α + τFα (83)

which must be expanded using Hermite polynomials
[30]. Using the Hermite order N = 3, this yields for
the equilibrium

f (0)
α (ρ,u) = ρwα

[

1 + uiξαi +
1

2

(

(uiξαi)
2 − uiui

)

+
1

6
uiξαi

(

(ujξαj)
2 − 3ujuj

)]

(84)

and for the body force term

Fα = ρwα (giξαi + (giξαiujξαj − uigi))

+
wα

2
(Πij − ρδij)

(

gkξαk H(2)
ij (ξα)− 2giξαj

)

.

(85)

Here, g denotes the acceleration of an external body
force field. The numerical solution of Eq. (82) in space
x and time t can be achieved by integrating along a
characteristic for a time interval ∆t using the trapez-
ium rule

fα(x+ ξα∆t, t+∆t)− fα(x, t)

= − 1

τ

∫ ∆t

0

dt′ [fα(x+ ξαt
′, t+ t′)

−feq
α (x+ ξαt

′, t+ t′)]

= − 1

τ

∆t

2
[(fα(x, t) − feq

α (x, t))

+ (fα(x+ ξα∆t, t+∆t)− feq
α (x+ ξα∆t, t+∆t))]

+O
(
∆t3

)
, (86)

resulting in a second-order implicit differencing
scheme. By introducing a modified distribution func-
tion [47]

f̄α = fα +
∆t

2τ
(fα − feq

α ) (87)

the scheme (86) is transformed into a fully explicit
scheme of second order accuracy

f̄α(x + ξα∆t, t+∆t) = f̄α(x, t)

− ∆t

τ + ∆t
2

(
f̄α(x, t) − feq

α (x, t)
)
. (88)

The macroscopic density ρ and velocity u are given
by

ρ =
∑

α

fα =
∑

α

f̄α (89a)

ρui =
∑

α

fαξαi =
∑

α

f̄αξαi +
∆t

2
ρgi (89b)

where we have used
∑

α Fαξαi = ρgi.
The relaxation time τ in the LB–BGK equation (14) is
chosen to adjust the viscosity of the bulk flow. Based
on the Navier-Stokes momentum flux tensor (38) τ is
determined by

τ = ν =
ν̃

c0l0
(90)

where ν̃ is the kinematic viscosity in physical units.
We write the quantities ν, λ with tildes if they are
expressed in physical units.
Because of the nature of intermolecular collisions there
is no well-defined definition of the mean free path. The
conventional solution to this problem is to consider
a model gas with hard sphere molecules, where the
mean free path can be expressed exactly [4, 6, 7]. For
the present study we use Cercignani’s definition of the
mean free path based on the viscosity [6, 7]

λ̃ =

√
π

2

ν̃

c0
(91)

which is very close to the analytical result of a hard
sphere gas3. Thus, Kn is given by

Kn =
λ̃

l0
=

√
π

2

ν̃

c0l0
=

√
π

2
τ (92)

which is—up to a factor—identical to the relaxation
time τ .
For the interaction of gas molecules with a solid wall
surface we implement the diffuse Maxwell boundary
condition (58) for a non-moving rigid wall using the
expanded equilibrium function (84)

fα(xw, t) = Ψf (0)
α (ρw,u = 0) (93)

with

Ψ =

∑

n·ξα<0 fα |n · ξα|
∑

n·ξβ>0 f
(0)
β (ρw, 0)

∣
∣n · ξβ

∣
∣

(94)

Unknown distribution functions near solid walls which
cannot be calculated by the standard propagation step
are set to the distribution function of the diffusive
Maxwell boundary condition (93). For the test case
investigated here, the density is uniform and the flow
behavior is steady and unidirectional which implies
Ψ = 1 [37]. As for the half-way bounce-back scheme,
the wall is located at a distance of half a lattice spac-
ing from the first fluid collision center [25, 26]. For
a numerical calculation the boundary condition (93)
needs to be transformed with Eqs. (83) and (87) into a
corresponding form for the modified distribution func-
tion f̄α.

3 The CE result for the mean free path in a hard sphere gas is
λ̃ = 16

5
√

2π
ν̃
c0

[44].
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VI. POISEUILLE FLOW

In this section, we check DVMs for their capability
of describing Poiseuille flow for various values of Kn.
The DVMs considered here are organized in the sets
S1, S3, and S4 shown in Tab. I, to be discussed in
Sect. VIA, VIB, and VIC, respectively. This order
is chosen with increasing value of the wall accuracy
index Λindex representing a more accurate computa-
tion of the wall moments. It should be possible to
find a DVM with all wall moments evaluated exactly,
i.e. wall accuracy order Λ = Q, following the proce-
dure given in Sect. IVC and solving the wall equa-
tion (67) as a constraint. However, since the stencil
would then become prohibitively large, we relax some
of these constraints and minimize the remaining wall
errors instead.
Two parallel plates are located at z = ±l0/2 and the
flow is driven by a constant pressure gradient, ρg,
in x-direction. We use periodic boundary conditions
in the x- and y-directions. The body force is small
enough so that we can assume low Ma flow. Due to
symmetry, the only non-trivial velocity component is
u(z) = ux(x). Below, we will discuss the slip velocity
at the wall,

us =
u
(
l0
2

)

u(0)
, (95)

as well as the normalized mass flow rate

ṁ =
1

4ucKn

1

B

∫ B

0

dy
1

l0

∫ l0/2

−l0/2

dz u(z) , (96)

where B is the extension of the flow domain in y-
direction. The Navier–Stokes equation with no-slip
boundary condition, us = 0, yields the centerline ve-
locity uc = u(0) = gl20/(8ν̃) and the mass flow rate

ṁ =
1

6Kn
. (97)

A. DVMs of set S1 without wall constraints

Figures 2 and 3 show the mass flow rate and the slip
velocity at the wall for two known LB models, D3Q19
and D3Q121, and some new models of set S1 com-
pared with DSMC data. For small Kn the D3Q19
model (accuracy order Q = 5) and the D3Q121 model
(accuracy order Q = 9) agree very well with the ref-
erence data. However, for higher Kn both models ex-
hibit strong deviations from the DSMC results. Simi-
larly, the new model SD3V 38

Q7E399 with an accuracy order
Q = 7 and a minimal number of 38 velocities fails for
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FIG. 2. (Color online) Mass flow rate for common LB
models and some exclusive S1 models (Λindex = 0).
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FIG. 3. (Color online) Slip velocity for common LB models
and some exclusive S1 models (Λindex = 0).

higher Kn. Although the high-order models D3Q121
and SD3V 38

Q7E399 recover flow regimes beyond the Navier-

Stokes level (for a detailed discussion see Sect. III) the
results remain unsatisfactory for finite Kn.

The new LB models of set S1 are of Gaussian quadra-
ture order Q = 7 and thus able to recover the momen-
tum dynamics for small Ma up to the 4th flow regime

(∆Π
(4)
ij = O(Ma2)). If we analyze these models we

observe for finite Kn, nevertheless, quite different re-
sults and considerable deviations from the DSMC re-
sults for both the mass flow rate and the slip velocity.
The Gaussian quadrature order Q is very important
to recover high-order flow regimes, but not sufficient
to guarantee accurate results of a LB model for finite
Kn. This is also found for high-order LB models in
D = 2 dimensions [37].
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FIG. 4. (Color online) Correlation between σzxx and ṁ
for Kn = 0.4514. Every dot represents a DVM within S1.

DVM Q σ σz σxx σzxx σΣ

D3Q19 5 −0.6667 −0.2764 −0.6667 −0.2764 0.5506

D3Q121 9 −0.4767 −0.1292 −0.4767 −0.1292 0.3685

SD3V 38
Q7E399 7 −0.4902 −0.1505 −0.5926 −0.2109 0.4042

SD3V 64
Q7E447 7 −0.0443 −0.0750 −0.1212 −0.0258 0.0621

SD3V 59
Q7E408 7 −0.0367 0.0932 −0.0794 0.0658 0.0576

TABLE II. Wall moment errors of standard LB model
D3Q19, the common DVM SD3V 121

Q9E594 also known as
D3Q121, as well as some exclusive S1 models. Q is the
quadrature order.

The reason for the failure of many high-order LB mod-
els for finite Kn is their weak ability to recover the
diffuse Maxwell boundary condition exactly. We as-
sess this ability by considering the errors of the wall
moments in Table II. The exact definition of the mod-
els listed here can be found in Appendix A. We here
identified DVMs of the set S1 with wall moment errors
as small as possible which thus ensure a good realiza-
tion of the diffuse Maxwell boundary condition. For
the two different models SD3V 64

Q7E447 and SD3V 59
Q7E408 some

wall moment errors are given in Table II and the flow
results are shown in Figs. 2 and 3. Due to smaller wall
moment errors we observe for both models a signifi-
cantly higher accuracy for finite Kn.

The errors in the slip velocity are nearly the same
whereas the predicted mass flow rate of the model
SD3V 64
Q7E447 is more accurate. By using the CE analysis

(see Sect. III) one can show that the relevant low Ma
contributions to the momentum dynamics up to the
Super-Burnett flow regime are affected by the third
and fifth equilibrium moments. Therefore the higher
accuracy of model SD3V 64

Q7E447 in the mass flow prediction
is caused by a more accurate representation of the
third wall moment Wzxx (see Table II).

If we consider the influence of the wall moment error
σzxx on the mass flow rate within all S1 models we ob-
serve a strong correlation between σzxx and ṁ. This is
shown in Fig. 4 for a Knudsen number ofKn = 0.4514.
Pearson’s linear correlation coefficient yields the value
−0.98, exceeding in magnitude all other correlations
of ṁ. It is interesting to notice that all models with
a nearly vanishing wall moment error σzxx predict a
mass flow rate which is very close to the DSMC results
of ṁDSMC = 1.76 for Kn = 0.4514.

These results confirm that a reliable LB model for
finite Kn flows requires both a high quadrature order
Q and small wall moment errors which guarantees a
precise realization of the diffuse Maxwell boundary
condition.

B. DVMs of set S3 with wall constraints

In this section we discuss the set S3 of DVMs. These
models are of Gaussian order Q = 7 and include a
wall moment constraint which ensures that the σzxx

error vanishes. Consequently, the wall accuracy index
has the value Λindex = 16, see Eq. (75). From this set
of models we select the SD3V 107

Q7E1023 and SD3V 77
Q7E672 models

which additionally have a small overall wall moment
error σΣ (see Table III). The results for the mass flow
rate, shown in Fig. 5, are in excellent agreement with
the DSMC results due to the wall constraint σzxx = 0.
Additionally, the Knudsen minimum at Kn ≈ 1 is
very well reproduced. For the slip velocity (Fig. 6) we
observe slight differences to the reference data which
may be caused by remaining inaccuracies of other wall
moments.

LB model Q σ σz σxx σzxx σzzzxx σxxzzzzz σΣ

SD3V 107
Q7E1023 7 −0.0998 0.0247 −0.1482 0.0 0.0027 −0.0083 0.0849

SD3V 77
Q7E672 7 −0.0816 0.0343 −0.1339 0.0 0.0132 −0.0710 0.0765

TABLE III. Wall moment errors of some exclusive S3 models, where Q is the quadrature order.
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FIG. 5. (Color online) Mass flow rate of selected S3 models
(Λindex = 16).
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FIG. 6. (Color online) Slip velocity of selected S3 models
(Λindex = 16).

C. DVMs of set S4 with wall constraints

Another set of wall moment LB models, S4, is char-
acterized by a Gaussian quadrature order Q = 7 and
scattering stencils which guarantee that all even wall
moments up to the quadrature order Q = 7 are rep-
resented exactly,

σ = σi1i2 = σi1...i4 = σi1...i6 = 0. (98)

Consequently, the wall accuracy index has the value
Λindex = 6245, see Eq. (81). Similar to the model
sets S1 and S3 discussed previously, we observe for S4

models a strong correlation between the wall moment

LB model Q σ σz σxx σzxx σΣ

SD3V 112
Q7E1764 7 0.0 0.0373 0.0 0.000005 0.0090

SD3V 96
Q7E1932 7 0.0 0.0386 0.0 0.0114 0.0101

TABLE IV. Wall moment errors of some exclusive S4 mod-
els, where Q is the quadrature order.
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FIG. 7. (Color online) Correlation between σzxx and ṁ
for Kn = 0.4514. Every dot represents a DVM within S4.
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FIG. 8. (Color online) Correlation between σzxx and us

for Kn = 0.4514. Every dot represents a DVM within S4.

Wzxx and the flow results as well. Figure 7 shows the
correlation between σzxx and the mass flow and Fig. 8
shows the correlation between σzxx and the slip veloc-
ity. Because of the strengths of these correlations we
select the models SD3V 112

Q7E1764 and SD3V 96
Q7E1932 with small

errors |σzxx| (see Table IV). The Poiseuille flow results
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FIG. 9. (Color online) Mass flow rate of selected S4 models
(Λindex = 6245).
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FIG. 10. (Color online) Slip velocity of selected S4 models
(Λindex = 6245).

for these models are shown in Figs. 9 and 10. Both
the mass flow rate and the slip velocity at the wall
are in excellent agreement with the DSMC results up
to Kn = 1. The crucial point for the success of these
models are very low errors for all wall moments up to
the quadrature order (Q = 7). However these mod-
els cannot predict the Knudsen minimum which was
reproduced by models of groups S1 and S3.

D. Velocity profiles

Figs. 11 - 19 show the streamwise velocities of the
considered LB models for several Knudsen numbers.
At Kn = 0.05 all models agree well with the DSMC
results, however D3Q19 and SD3V 38

Q7E399 slightly over-
predict the slip velocity at the walls. For higher Kn

the models D3Q19, D3Q121 and SD3V 38
Q7E399 no longer

perform well due to errors of the wall moments. On
the other hand, the models SD3V 64

Q7E447, SD3V 77
Q7E672 and

SD3V 96
Q7E1932 show a significantly better prediction of

the velocity field because of more accurate wall mo-
ments yielding a more precise realization of the diffuse
Maxwell boundary condition.

In particular, the SD3V 96
Q7E1932 model guarantees a high

accuracy for all wall moments up to the Gaussian
quadrature order Q = 7 and therefore remains quan-
titatively accurate at least up to Kn ≈ 1. Only for
Knudsen numbers higher than Kn = 2 we observe a
slight overestimation of the slip velocity.
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FIG. 11. (Color online) Streamwise velocity profile for
Kn = 0.05.
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FIG. 12. (Color online) Streamwise velocity profile for
Kn = 0.05.
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FIG. 13. (Color online) Streamwise velocity profile for
Kn = 0.451.
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FIG. 14. (Color online) Streamwise velocity profile for
Kn = 0.903.
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FIG. 15. (Color online) Streamwise velocity profile for
Kn = 1.128.
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FIG. 16. (Color online) Streamwise velocity profile for
Kn = 0.451.
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FIG. 17. (Color online) Streamwise velocity profile for
Kn = 0.903.
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FIG. 18. (Color online) Streamwise velocity profile for
Kn = 1.128.
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FIG. 19. (Color online) Streamwise velocity profile for
Kn = 2.257.
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FIG. 20. (Color online) Streamwise velocity profile for
Kn = 2.257.

E. Knudsen layer

An even stronger requirement for the DVMs than cor-
rect evaluation of mass flow and slip velocity is to yield
the correct velocity profile beyond the Navier–Stokes
flow regime. For this purpose, we define for each so-
lution u(z) a quadratic velocity profile by

u(NS)(z) = u(0)

×
(

1− 3

(

1− 1

l0

∫ l0/2

−l0/2

dz′
u(z′)

u(0)

)(
z

l0/2

)2
)

(99)

which gives the same mass flow as u(z). The non-
equilibrium content of u(z) is measured by its devia-

tion from the quadratic profile (99),

u(neq)(z) = u(z)− u(NS)(z) . (100)

Using the DSMC data for u(z), we find a reference
function u(neq)(z) for each Kn number the DVMs
compete with. As shown for Kn = 0.05 in Fig. 21,
the DSMC data show a small velocity defect at the
vicinity of the wall—the Knudsen layer—such that
u(neq) < 0.
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FIG. 21. (Color online) Non-equilibrium velocity profile
for Kn = 0.05.
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FIG. 22. (Color online) Non-equilibrium velocity profile
for Kn = 0.226.

In turn, there is an exceed of non-equilibrium velocity
in the bulk, u(neq) > 0, by definition of Eq. (99). The
standard model D3Q19 is not able to show a Knudsen
layer, due to its low quadrature order, Q = 5. It yields
a strictly quadratic profile with u(neq)(z) = 0. The
model D3Q121 with higher quadrature order, Q =
9, shows some velocity defect, however, it does not
quite match the DSMC result for its wall moments are
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inaccurate. On the other hand, the DVM SD3V 96
Q7E1932,

which has both a high quadrature order and (almost)
correct wall moments, shows excellent agreement with
DSMC data in the Knudsen layer for Kn = 0.05.
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FIG. 23. (Color online) Non-equilibrium velocity profile
for Kn = 0.451.

This hierarchy of DVMs remains for higher Kn num-
bers. For Kn = 0.226, the Knudsen layer is more
pronounced, see Fig. 22. While the models D3Q19
and D3Q121 are unsatisfactory, the model SD3V 96

Q7E1932 is
able to describe the Knudsen layer. Increasing the Kn
number further high-order flow regimes gain more im-
portance, causing the DVMs presented here to cease
to be valid for evaluating the non-equilibrium velocity
profile. This is exemplified for Kn = 0.451 in Fig. 23.

VII. CONCLUSION

In this paper we presented high-order Lattice–
Boltzmann (LB) models for solving the Boltzmann–
BGK equation for finite Kn number flows.
It was shown how to derive new discrete velocity mod-
els (DVMs) for any quadrature order using an efficient
algorithm. The energy of a stencil was bounded from
above in order to be able to define complete sets of
minimal DVMs. These sets comprise more than 50000
models with 7th quadrature order in D = 3 spatial
dimensions. In future investigations, the collection of
minimal discrete velocity models for high-order LB
simulations can be systematically extended.
We analytically derived a theorem via the Chapman–
Enskog expansion which enables us to identify the re-
covered flow regimes of any LB model, i.e. Navier–
Stokes, Burnett, Super–Burnett, and so on. For
isothermal flows, this theorem rigorously relates the
velocity space discretization error of a velocity mo-
ment for low Ma values with the quadrature order Q

of a LB model. Thus, one can tell from the quadrature
order Q which flow regime is exactly recovered by the
LB model for Ma → 0. In particular, it was shown for
isothermal flows that even the standard models with
Q = 5 recover the Burnett momentum dynamics for
Ma → 0. The 7th order LB models we focused on here
recover the momentum flux tensor of non-equilibrium
gas flows up to the 4th flow regime for Ma → 0.

Aside from non-equilibrium effects in the bulk, wall-
bounded high Kn number flows require a LB model to
correctly describe the gas-surface interaction. We ob-
served that several high-order LB models show signifi-
cant deviations from reference results because of their
poor ability to recover the diffuse Maxwell boundary
condition accurately. In order to characterize this ca-
pability we defined an analytical constraint for a DVM
for the exact implementation of the diffuse Maxwell
boundary condition. It was shown how to generate
in a systematic way high-order DVMs with the in-
herent ability to fulfill the diffuse Maxwell boundary
condition. Alternatively, it is possible to arrive at dis-
crete velocity models which obey the constraint for
even velocity moments at the wall by simply using
scattering stencils. The wall accuracy index Λindex

was put forward to label the velocity moments at the
wall evaluated correctly by a discrete velocity model.
The 7th order model SD3V 96

Q7E1932, e.g., was found with
a wall accuracy index Λindex = 6245 and an almost
exact representation of the wall moments up to the
7th order. The circumstance that models with even
numbers of discrete velocities perform better than for
odd numbers can be due to the low net weight of erro-
neous wall-parallel (and zero) velocities in half-space
quadratures. For an exact integration of particle ve-
locities emitted by the wall, we derived a sufficient
condition on the wall accuracy order Λ.

At finite Kn, we compared our Poiseuille flow LB re-
sults with those of DSMC. We found the agreement
is strongly correlated with the wall constraint on the
one hand and requires the use of high-order DVMs
(Q ≥ 7) on the other. Therefore, the correct evalua-
tion of highKn number Poiseuille flow requires both, a
sufficiently high quadrature order and an exact repre-
sentation of the diffuse Maxwell boundary condition.
Consequently, the model SD3V 96

Q7E1932 yields an excellent
agreement with DSMC for both the mass flow and
the slip velocity, using Kn numbers up to Kn ≃ 1. In
the velocity profiles one can clearly recognize that the
discrete velocity model SD3V 96

Q7E1932 recovers the Knud-
sen layer in the vicinity of the wall for Kn . 0.3,
while standard discrete velocity models utterly fail.
The increased computational effort compared to the
commonly used standard modelD3Q19 is about a fac-
tor of 5− 6. Nevertheless this is still much faster than
any DSMC simulation especially for low Mach number
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flows, where DSMC methods require a large number
of samples to reduce statistical errors. Thus we rec-
ommend using SD3V 96

Q7E1932 for finite Kn number flows.
For Kn & 0.3, the results for the non-equilibrium ve-
locity profile departs from the DSMC results, because
the flow regimes are only recovered up to the 4th
Chapman–Enskog level and there are remaining er-
rors in high-order wall moments. However, we expect
that for LB models with a sufficiently high quadra-
ture order and wall accuracy order, a more precise
representation of the Knudsen layer phenomenon can
be obtained. This will be part of our future inves-
tigations. Moreover, it remains to be seen whether
the Knudsen layer turns out to be a nonperturbative
phenomenon in the sense of the Chapman–Enskog ex-
pansion.
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Appendix A: Three-dimensional DVMs

Here we present DVMs generated by the algorithm
shown in Sect. II and used in the introductory ex-
ample and the numerical test case in Sect. VI. The
stencil’s symbol is explained in Eq. (24), c is the lat-
tice speed, g counts the stencil groups Sg generated
by the symmetries of the lattice from a single veloc-

ity ξ(g) yielding Vg velocities. Each velocity in Sg is
weighted by wg, see Eq. (18), when using the quadra-
ture prescription (10).

SD3V 15

Q5E24 c = 1.2247448713915890

g ξ(g)/c Vg wg

1 (0,0,0) 1 3.8888888888888889e-1
2 (2,0,0) 6 2.7777777777777778e-2
3 (1,1,-1) 8 5.5555555555555556e-2

TABLE V. DVM used for the introductory example.

Appendix B: Two-dimensional DVMs

In this Appendix, we present minimal DVMs for D =
2. As shown in Tab. I above, there are three sets of
DVMs concerned with D = 2. The y component is
absent. For all but the wall accuracy index Λindex,
the definitions are the same as for D = 3. Since there

SD3V 38

Q7E399 c = 0.75000000000000000

g ξ(g)/c Vg wg

1 (1,0,0) 6 7.2239858906525573e-2
2 (4,0,0) 6 6.3648834019204390e-3
3 (2,2,0) 12 4.3895747599451303e-2
4 (6,0,0) 6 4.1805473904239336e-5
5 (4,4,4) 8 1.7146776406035665e-4

TABLE VI. DVM with minimal velocity count within the
set S1.

SD3V 38

Q7E219 c = 0.86602540378443865

g ξ(g)/c Vg wg

1 (1,0,0) 6 6.7724867724867725e-2
2 (2,0,0) 6 5.5555555555555556e-2
3 (2,2,2) 8 4.6296296296296296e-3
4 (2,2,0) 12 1.8518518518518519e-2
5 (6,0,0) 6 1.7636684303350970e-4

TABLE VII. DVM with minimal velocity count within the
set S1.

SD3V 59

Q7E408 c = 0.74685634388439233

g ξ(g)/c Vg wg

1 (0,0,0) 1 2.0080700829205231e-2
2 (1,1,1) 8 8.9344539381631413e-2
3 (4,0,0) 6 1.8287317703258027e-3
4 (3,3,3) 8 5.2273139486813077e-4
5 (3,3,0) 12 2.3272910797607214e-3
6 (3,1,1) 24 9.2533853908214560e-3

TABLE VIII. Selection of DVMs within the set S1. See
Sect. VI for a discussion.

SD3V 64

Q7E447 c = 0.69965342816864754

g ξ(g)/c Vg wg

1 (2,0,0) 6 5.9646397884737016e-3
2 (1,1,1) 8 8.0827437008387392e-2
3 (5,0,0) 6 1.1345266793939999e-3
4 (3,3,3) 8 9.5680047874015889e-4
5 (3,3,0) 12 3.9787631334632013e-3
6 (3,1,1) 24 1.0641080987258957e-2

TABLE IX. Selection of DVMs within the set S1. See Sect.
VI for a discussion.

are no y components of wall moments, we have to
set my = 0 in Eq. (63). The wall accuracy index is
then defined as before, see Eq. (73), but there are only
L = 14 components in the vector

Tα = (1, ξαz , ξ
2
αx, ξ

3
αz , ξαzξ

2
αx, ξ

4
αx,

ξ5αz , ξ
3
αzξ

2
αx, ξαzξ

4
αx, ξ

6
αx,

ξ7αz , ξ
5
αzξ

2
αx, ξ

3
αzξ

4
αx, ξαzξ

6
αx) , (B1)
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SD3V 79

Q9E471 c = 1.0000000000000000

g ξ(g)/c Vg wg

1 (0,0,0) 1 1.0570987654320988e-1
2 (1,0,0) 6 3.8095238095238095e-2
3 (2,0,0) 6 2.8645833333333333e-2
4 (1,1,1) 8 4.9479166666666667e-2
5 (2,2,2) 8 5.2083333333333333e-4
6 (2,2,0) 12 5.2083333333333333e-3
7 (6,0,0) 6 2.7557319223985891e-6
8 (3,3,3) 8 9.6450617283950617e-6
9 (3,1,1) 24 1.3020833333333333e-3

TABLE X. DVM with minimal velocity count within the
set S2. For a description of the symbols, see Tab. VI.

SD3V 121

Q9E594 c = 1.1969797703930744

g ξ(g)/c Vg wg

1 (0,0,0) 1 3.0591622029486006e-2
2 (0,0,-1) 6 9.8515951037263392e-2
3 (1,1,-1) 8 2.7525005325638124e-2
4 (0,0,-3) 6 3.2474752708807381e-4
5 (2,2,-2) 8 1.8102175157637424e-4
6 (2,0,-2) 12 4.2818359368108407e-4
7 (1,0,-2) 24 6.1110233668334243e-3
8 (3,3,-3) 8 6.9287508963860285e-7
9 (1,1,-3) 24 1.0683400245939109e-4
10 (2,0,-3) 24 1.4318624115480294e-5

TABLE XI. Common DVM (D3Q121 [28]) within the set
S2. For a description of the symbols, see Tab. VI.

SD3V 77

Q7E672 c = 0.62590566441325041

g ξ(g)/c Vg wg

1 (2,0,0) 6 6.5178619315224175e-3
2 (1,1,1) 8 5.8638132347907334e-2
3 (6,0,0) 6 1.0066312290789269e-3
4 (3,3,3) 8 2.1962967289288607e-3
5 (3,3,0) 12 4.8042518606023833e-3
6 (3,1,1) 24 1.5528601406828448e-2
7 (0,0,0) 1 2.9560614762917757e-2
8 (4,4,0) 12 6.8996146397277359e-4

TABLE XII. Selection of DVMs within the set S3. See
Sect. IVC for a discussion.

whereas bk are the components of the vector

b = (W, Wz, Wxx, Wzzz , Wzxx, Wxxxx, Wzzzzz ,

Wzzzxx, Wzxxxx, Wxxxxxx, Wzzzzzzz ,

Wzzzzzxx, Wzzzxxxx, Wzxxxxxx) , (B2)

cf. Eqs. (70) and (68).
The set S5 comprises all 1188 minimal DVMs with
quadrature order Q = 7 in the energy sphere given
by E ≤ 250. These are discrete velocity models with
the wall accuracy index being Λindex = 0. The DVM
with lowest velocity count Vmin = 16 is SD2V 16

Q7E58 and it
is shown in Tab. XVI. Increasing the quadrature or-

SD3V 107

Q7E1023 c = 0.61887631323925978

g ξ(g)/c Vg wg

1 (1,1,1) 8 5.4242093013777495e-2
2 (2,1,0) 24 2.4637212114133877e-3
3 (5,0,0) 6 1.5469959015615954e-3
4 (3,3,3) 8 1.9425678925800591e-3
5 (3,3,0) 12 7.2337497640759286e-3
6 (3,1,1) 24 1.4384326790070621e-2
7 (0,0,0) 1 4.4998866720663948e-2
8 (6,2,2) 24 2.1182172560744541e-4

TABLE XIII. Selection of DVMs within the set S3. See
Sect. IVC for a discussion.

SD3V 96

Q7E1932 c = 0.37787639086813054

g ξ(g)/c Vg wg

1 (1,1,1) 8 1.2655649299880090e-3
2 (3,3,3) 8 2.0050978770655310e-2
3 (3,1,1) 24 2.7543347614356814e-2
4 (4,4,4) 8 4.9712543563172566e-3
5 (7,1,1) 24 3.6439016726158895e-3
6 (6,6,1) 24 1.7168180273737716e-3

TABLE XIV. Selection of DVMs within the set S4. See
Sect. IVC for a discussion.

SD3V 112

Q7E1764 c = 0.40531852273291520

g ξ(g)/c Vg wg

1 (1,1,1) 8 3.3503407500643648e-3
2 (3,1,1) 24 2.8894128958152456e-2
3 (4,4,4) 8 4.5930345162087793e-3
4 (3,2,2) 24 4.4163148398082762e-3
5 (7,1,1) 24 2.3237070220062610e-3
6 (5,5,1) 24 3.3847240912752922e-3

TABLE XV. Selection of DVMs within the set S4. See
Sect. IVC for a discussion.

der to Q = 9, we find 592 DVMs in the set S6 where
Emax = 300. The DVM with the lowest velocity count
in S6 is SD2V 32

Q7E944, see Tab. XVII, and it yields V = 33.
Finally, we identified 21952 DVMs with quadrature
order Q = 7 which have scattering stencils, i.e. their
wall accuracy index is Λindex = 549. The stencil en-
ergy is bounded for these models by Emax = 1000 to
define the set S7. The DVM with the lowest velocity
count gives Vmin = 20. Optimizing for both σzx and
σΣ yields the DVM SD2V 32

Q7E944 shown in Tab. XVIII.
The latter is expected to give back excellent results
for planar Poiseuille flow.

Appendix C: Error estimate of equilibrium

moments

For a detailed analysis of the quadrature error of an

equilibrium moment ∆M
(n)
i1...ik

= M
(n)
i1...ik

− M
(n)DVM
i1...ik
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SD2V 16

Q7E58 c = 0.86602540378443865

g ξ(g)/c Vg wg

1 (1,0) 4 1.5802469135802469e-1
2 (2,0) 4 6.1728395061728395e-2
3 (2,2) 4 2.7777777777777778e-2
4 (4,0) 4 2.4691358024691358e-3

TABLE XVI. DVM with the lowest velocity count Vmin =
16 in the set S5 where D = 2, Q = 7, and E ≤ 250 (see
Tab. I).

SD2V 33

Q9E132 c = 1.1587791906520175

g ξ(g)/c Vg wg

1 (0,0) 1 1.6198651186147246e-1
2 (1,0) 4 1.4320396528198750e-1
3 (1,1) 4 3.3883996404301766e-2
4 (2,0) 4 5.5611157082744134e-3
5 (2,2) 4 8.4479885070276616e-5
6 (3,0) 4 1.1325437650467775e-3
7 (2,1) 8 1.2816907733721003e-2
8 (4,4) 4 3.4555225091487045e-6

TABLE XVII. DVM with the lowest velocity count Vmin =
33 in the set S6 where D = 2, Q = 9, and E ≤ 300 (see
Tab. I).

SD2V 32

Q7E944 c = 0.34040702226615838

g ξ(g)/c Vg wg

1 (1,1) 4 8.4201053650845727e-2
2 (2,2) 4 5.0708714918479963e-2
3 (5,1) 8 4.4541157350549509e-2
4 (6,4) 8 1.2646044225450934e-2
5 (12,3) 8 3.5791413933671213e-4

TABLE XVIII. DVM with optimal values for the wall er-
rors in the set S7 where D = 2, Q = 7, E ≤ 1000, and
σi1...i2n = 0. (see Tab. I).

we distinguish four different cases.

Case 1: k ≤ N and k +N ≤ Q

The Hermite order N is high enough to cap-
ture all contributions of the Hermite polynomials

H(k)
i1...ik

,H(k−2)
i1...ik−2

, . . . and the quadrature order guar-

antees an exact evaluation of all terms in Eq. (50).

Thus the moment M
(0)
i1...ik

is exactly recovered and

∆M
(0)
i1...ik

= 0 . (C1)

Case 2: k ≤ N and k +N > Q

Although the Hermite order is high enough, the
quadrature order Q = n0 + k, with n0 < N , is not
high enough to evaluate M

(0)
i1...ik

exactly. For low Ma
values, the leading term of the quadrature error in Eq.
(50) is the smallest value of n exceeding n0, due to the
relation (48). This term is the one with n = n0 +1 in
Eq. (50) and we can write

∆M
(0)
i1...ik

=
1

(Q− k + 1)!
a
(0)
i1...iQ−k+1

∑

α

wαH(Q−k+1)
i1...iQ−k+1

(ξα)H
(k)
i1...ik

(ξα) + subleading terms

= O
(
MaQ−k+1

)
, (C2)

where the subleading terms contain errors with a
higher Ma power compared to the first term. Ob-

viously, the quadrature error ∆M
(0)
i1...ik

is finite for
low Ma values, see Eq. (50). Consequently we obtain

∆M
(0)
i1...ik

= O
(
Ma0

)
for Q− k + 1 < 0.

Case 3: k > N and k +N ≤ Q

The Hermite order N is not high enough to capture

the moment M
(0)
i1...ik

completely whereas the quadra-
ture order guarantees the exact evaluation of all terms
in Eq. (50). Therefore errors are produced by the ab-
sence of terms in the equilibrium function which are
beyond the Hermite order N . The leading term in the

quadrature error is thus ∼ a
(0)
i1...iN+1

and with Eq. (48)
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we get

∆M
(0)
i1...ik

= O
(
MaN+1

)
. (C3)

Case 4: k > N and k +N > Q

Neither the Hermite order N is high enough to recover

M
(0)
i1...ik

nor the quadrature order Q guarantees an ex-

act evaluation. The relevant quadrature error in the
sense of the Ma expansion of the equilibrium function
f (0) is determined analogously to case 2 by

∆M
(0)
i1...ik

= O
(
MaQ−k+1

)
(C4)

for Q−k+1 ≥ 0 and ∆M
(0)
i1...ik

= O
(
Ma0

)
otherwise.

These cases can be summarized into a more compact
relation

∆M
(0)
i1...ik

=







0 for k +N ≤ Q and k ≤ N

O
(
MaN+1

)
for k +N ≤ Q and k > N

O
(
MaQ−k+1

)
for k − 1 ≤ Q < k +N

O
(
Ma0

)
for Q < k − 1 .

(C5)

Appendix D: Proof of the quadrature error

theorem

In order to prove the theorem in Sect.
III C we assume that the moment
M

(n)
i1...ik

(∂(0)ρ, ∂
(1)
j1

ρ, ∂
(2)
j1j2

ρ, ..., ∂(0)ui, ∂
(1)
j1

ui, ∂
(2)
j1j2

ui, ...)
is an algebraic expression of ρ, ui and their spatial

derivatives, where ∂(0) = 1 and ∂
(q)
j1...jq

= ∂j1 . . . ∂jq .

By using the relations (32) for the multiple-scale time

derivatives the equation for M
(n)
i1...ik

can be written as

M
(n)
i1...ik

=− τ

[

∂
(0)
t M

(n−1)
i1...ik

− 1

ρ

n−1∑

m=1

∑

q

∂M
(n−m−1)
i1...ik

∂(∂
(q)
j1...jq

us)
∂
(q)
j1...jq

(

∂rΠ
(m)
rs

)

+ ∂jM
(n−1)
i1...ikj

]

. (D1)

The sum on q ≥ 0 in Eq. (D1) accounts for all deriva-

tives of ρ and ui the moment M
(n)
i1...ik

depends on.

In order to discuss the relevant truncation error for a
CE moment M

(n)
i1...ik

we show in the following that the

multiple-scale time derivative ∂
(0)
t in Eq. (D1) does

not alter the Ma power of the truncation error of an
inaccurate CE moment. For this purpose, we consider

a CE moment M
(n)
i1...ik

which is recovered by a Gauss–
Hermite quadrature up to an error

∆M
(n)
i1...ik

= O (Mam) (D2)

with Ma power m. The time derivative ∂
(0)
t of M

(n)
i1...ik

is given by

∂
(0)
t M

(n)
i1...ik

= ∂
(0)
t

(

M
(n)DVM
i1...ik

+∆M
(n)
i1...ik

)

= ∂
(0)
t M

(n)DVM
i1...ik

−
∑

q

∂∆M
(n)
i1...ik

∂(∂
(q)
j1...jq

ρ)
∂
(q)
j1...jq

(∂jρuj)

−
∑

q

∂∆M
(n)
i1...ik

∂(∂
(q)
j1...jq

uj)
∂
(q)
j1...jq

(

us∂suj +
1

ρ
∂jρ

)

(D3)

which implies

∆∂
(0)
t M

(n)
i1...ik

= −
∑

q

∂∆M
(n)
i1...ik

∂(∂
(q)
j1...jq

ρ)
︸ ︷︷ ︸

O(Mam)

∂
(q)
j1...jq

∂j (ρuj)

−
∑

q

∂∆M
(n)
i1...ik

∂(∂
(q)
j1...jq

uj)
︸ ︷︷ ︸

O(Mam−1)

∂
(q)
j1...jq




us∂suj
︸ ︷︷ ︸

O(Ma2)

+
1

ρ
∂jρ
︸︷︷︸

O(Ma)




 .

(D4)

For finite Kn flows density gradients ∂jρ can be of
order O (Ma), even in the low Ma flow regime. Con-

sequently, we find that the time derivative ∂
(0)
t does

not lower the order in Ma number of the error term
(D2)

∆∂
(0)
t M

(n)
i1...ik

= ∂
(0)
t ∆M

(n)
i1...ik

= O (Mam) . (D5)

The error of the time derivative of a moment equals
the time derivative of the moment error.
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Using the recurrence relation (D1) for a CE moment

M
(n)
i1...ik

, the error estimate (52) for equilibrium mo-
ments and relation (D5) for the multiple-scale deriva-

tive ∂
(0)
t , we prove the the theorem in Sect. III C by

induction. Based on Eq. (D1) the truncation error of

M
(1)
i1...ik

is determined by

∆M
(1)
i1...ik

= −τ
[

∆∂
(0)
t M

(0)
i1...ik

+ ∂j1∆M
(0)
i1...ikj1

]

.

(D6)

Because of Eq. (52) the relevant error with respect to
the Ma power is produced by the highest equilibrium

moment which is contained in the second term on the
right-hand side. The first term does not contribute
to the dominant truncation error, because it consists
of a lower equilibrium moment and the multiple-scale

derivative ∂
(0)
t does not change the Ma power of this

error term. Consequently we find

∆M
(1)
i1...ik

= −τ∂j1∆M
(0)
i1...ikj1

+ subleading terms

(D7)

and with Eq. (52) the estimate

∆M
(1)
i1...ik

=







0 for 2(k + 1) + 1 ≤ Q

O
(
MaQ−k

)
for k ≤ Q < 2(k + 1) + 1

O
(
Ma0

)
for Q < k

. (D8)

For the next CE moment we obtain from Eq. (D1)

M
(2)
i1...ik

= −τ

[

∂0
tM

(1)
i1...ik

− 1

ρ

∑

q

∂M
(0)
i1...ik

∂(∂
(q)
j1...jq

us)
∂
(q)
j1...jq

(

∂rΠ
(1)
rs

)

+ ∂jM
(1)
i1...ikj

]

. (D9)

The error of the first term on the right-hand side is

given by Eq. (D8) where the time derivative ∂
(0)
t does

not affect the Ma power

∆∂
(0)
t M

(1)
i1...ik

= ∂
(0)
t ∆M

(1)
i1...ik

=







0 for 2(k + 1) + 1 ≤ Q

O
(
MaQ−k

)
for k ≤ Q < 2(k + 1) + 1

O
(
Ma0

)
for Q < k

.

(D10)

With respect to Eq. (52) we get for the error of the

next term

∆
∂M

(0)
i1...ik

∂(∂
(q)
j1...jq

us)
=







0 for 2k + 1 ≤ Q

O
(
MaQ−k

)
for k ≤ Q < 2k + 1

O
(
Ma0

)
for Q < k

(D11)

where we have to take into account that the Ma power
of the error term is decreased by one by the derivative

∂/∂(∂
(q)
j1...jq

us). Based on Eq. (D8) we obtain

∆Π(1)
rs =







0 for 7 ≤ Q

O
(
MaQ−2

)
for 2 ≤ Q < 7

O
(
Ma0

)
for Q < 2

(D12)

and for the last term in Eq. (D9)

∆M
(1)
i1...ikj

=







0 for 2(k + 2) + 1 ≤ Q

O
(
MaQ−k−1

)
for k + 1 ≤ Q < 2(k + 2) + 1

O
(
Ma0

)
for Q < k + 1

. (D13)

Due to k ≥ 2 the error estimate of all terms in Eq. (D9) implies that the relevant quadrature error of
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M
(2)
i1...ik

is contained in the last term of Eq. (D9) and thus we get

∆M
(2)
i1...ik

= −τ∂j2∆M
(1)
i1...ikj2

+ subleading terms

= (−τ)2∂j1∂j2∆M
(0)
i1...ikj1j2

+ subleading terms.

(D14)

In the last step of the proof we have to show the rela-
tion (53) for an integer n assuming that the relation
is valid for n− 1, n− 2, . . . , 1. We analyze the error of
all terms on the right-hand side of Eq. (D1).

∆M
(n)
i1...ik

= −τ

[

∆∂
(0)
t M

(n−1)
i1...ik

−∆

{

1

ρ

n−1∑

m=1

∑

q

∂M
(n−m−1)
i1...ik

∂(∂
(q)
j1...jq

us)
∂
(q)
j1...jq

(

∂rΠ
(m)
rs

)
}

+ ∂j∆M
(n−1)
i1...ikj

]

. (D15)

Using Eq. (53) for n− 1 we find

∆∂
(0)
t M

(n−1)
i1...ik

= ∂
(0)
t ∆M

(n−1)
i1...ik

= (−τ)n−1∂
(0)
t ∂j1 . . . ∂jn−1

∆M
(0)
i1...ikj1...jn−1

+ subleading terms

=







0 for 2(k + n− 1) + 1 ≤ Q

O
(
MaQ−k−n+2

)
for k + n− 2 ≤ Q < 2(k + n− 1) + 1

O
(
Ma0

)
for Q < k + n− 2

(D16)

where ∂
(0)
t does not affect the Ma power of the error term. Furthermore, we can estimate the error of

∂M
(n−m−1)
i1...ik

/∂(∂
(q)
j1...jq

us) for m = 1, . . . , n− 1 by using Eq. (53) for n−m− 1 in combination with Eq. (52)

∆
∂M

(n−m−1)
i1...ik

∂(∂
(q)
j1...jq

us)
=







0 for 2(k + n−m− 1) + 1 ≤ Q

O
(
MaQ−k−n+m+1

)
for k + n−m− 1 ≤ Q < 2(k + n−m− 1) + 1

O
(
Ma0

)
for Q < k + n−m− 1

(D17)

where the derivatives ∂/∂(∂
(q)
j1...jq

us) reduce the Ma power of the error term by one. The error of the quantity

Π
(m)
rs for m = 1, . . . , n− 1 can be determined by applying the theorem (53) for m

∆Π(m)
rs = (−τ)m+2∂j1 . . . ∂jm∆M

(0)
rsj1...jm

+ subleading terms

=







0 for 2(m+ 2) + 1 ≤ Q

O
(
MaQ−m−1

)
for m+ 1 ≤ Q < 2(m+ 2) + 1

O
(
Ma0

)
for Q < m+ 1

(D18)

where m = 1, . . . , n− 1. The error of the last term of Eq. (D1) is given by

∆M
(n−1)
i1...ikj

= (−τ)n−1∂j1 . . . ∂jn−1
∆M

(0)
i1...ikjj1...jn−1

+ subleading terms

=







0 for 2(k + n) + 1 ≤ Q

O
(
MaQ−k−n+1

)
for k + n− 1 ≤ Q < 2(k + n) + 1

O
(
Ma0

)
for Q < k + n− 1

(D19)

where we have used Eq. (52) and applied Eq. (53) for
n − 1. Because of k ≥ 2 and m = 1, . . . , n − 1 the

estimate of all errors occurring in Eq. (D15) implies
that the last term on the right-hand side of Eq. (D15)
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contains the relevant error with respect to the Ma
power. This yields

∆M
(n)
i1...ik

= −τ∂jn∆M
(n−1)
i1...ikjn

+ subleading terms

= (−τ)n∂j1 . . . ∂jn∆M
(0)
i1...ikj1...jn

+ subleading terms

(D20)

and therefore the theorem is proved for any CE level
n.

Appendix E: Maxwell boundary factor Ψ

We now turn to the evaluation of the factor Ψ, see
Eq. (59), of the diffuse Maxwell boundary condition.
Assuming that the CE expansion, cf. Eq. (28), is ap-
plicable we write

Ψ =
∑

n=0

Ψ(n) (E1)

with

Ψ(n) =

∑

n·ξα<0 f
(n)
α |n · ξα|

∑

n·ξβ>0 f
(0)
β (ρw, 0)

∣
∣n · ξβ

∣
∣

(E2)

where we have set the expansion parameter ǫ = 1.
The denominator in Eq. (E2),

Z =
∑

n·ξβ>0

f
(0)
β (ρw, 0)

∣
∣n · ξβ

∣
∣ = ρwniW

DVM
i , (E3)

is captured exactly by the DVM if the wall accuracy
order yields Λ ≥ 1. The numerator in Eq. (E2) can
be analyzed by using Eq. (31),

Ψ(0) =− ni

Z
Y

(0)
i (E4a)

Ψ(1) =− ni

Z
(−τ)

[

∂
(0)
t Y

(0)
i + ∂jY

(0)
ij

]

(E4b)

Ψ(2) =− ni

Z

[

(−τ)2
(

∂
(0)
t ∂

(0)
t Y

(0)
i + 2∂

(0)
t ∂jY

(0)
ij

+ ∂j∂kY
(0)
ijk

)

+ (−τ)∂
(1)
t Y

(0)
i

]

(E4c)

· · ·

Ψ(n) =Ψ(n)
(

Y
(0)
i1

. . . Y
(0)
i1...in+1

)

(E4d)

where we have introduced the moments

Y
(0)
i1...ik

=
∑

n·ξα<0

f (0)
α (ρw,u) ξαi1 . . . ξαik . (E5)

The equilibrium (16) expanded up to the Hermite or-
der N can be expressed by

f (0)
α (ρw,u) = wα

N∑

n=0

1

n!
a
(0)
i1...in

H(n)
i1...in

(ξα)

= wα

N∑

n=0

bi1...inξαi1 . . . ξαin (E6)

with some coefficients bi1...in . Thus, the moments

Y
(0)
i1...ik

are determined by the equilibrium wall mo-
ments

Y
(0)
i1...ik

=

N∑

n=0

(−1)n+kbj1...jnW
DVM
j1...jni1...ik

. (E7)

In general, the nth CE contribution of Ψ is a function

of the moments Y
(0)
i1...ik

with k ≤ n+ 1, see Eq. (E4),
which can be directly expressed by the equilibrium
wall moments WDVM

i1...im
with m ≤ N + n + 1. As a

consequence, a sufficiently high accuracy of the equi-
librium wall moments, characterized by the wall ac-
curacy order Λ, guarantees an exact evaluation of the
Maxwell boundary factor Ψ up to the nth CE level
with

n = Λ−N − 1 . (E8)
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