
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Using local operator fluctuations to identify wave function
improvements

Kiel T. Williams and Lucas K. Wagner
Phys. Rev. E 94, 013303 — Published 25 July 2016

DOI: 10.1103/PhysRevE.94.013303

http://dx.doi.org/10.1103/PhysRevE.94.013303


Using Local Operator Fluctuations to Identify Wave Function Improvements

Kiel T. Williams and Lucas K. Wagner∗

Department of Physics; University of Illinois at Urbana-Champaign, Urbana, IL

A method is developed that allows analysis of quantum Monte Carlo simulations to identify errors
in trial wave functions. The purpose of this method is to allow for the systematic improvement of
variational wave functions by identifying degrees of freedom that are not well-described by an initial
trial state. We provide proof of concept implementations of this method by identifying the need for a
Jastrow correlation factor, and implementing a selected multi-determinant wave function algorithm
for small dimers that systematically decreases the variational energy. Selection of the two-particle
excitations is done using quantum Monte Carlo within the presence of a Jastrow correlation factor,
and without the need to explicitly construct the determinants. We also show how this technique can
be used to design compact wave functions for transition metal systems. This method may provide a
route to analyze and systematically improve descriptions of complex quantum systems in a scalable
way.

I. Introduction

First principles quantum Monte Carlo calculations[1]
for solids are a promising way to go beyond density
functional theory (DFT). These methods directly sim-
ulate electron-electron correlations and can obtain very
high accuracy on challenging materials[2–5] using cur-
rent state of the art techniques like fixed node diffu-
sion Monte Carlo (DMC). Despite this success, the DMC
method’s accuracy is limited by the fixed node approxi-
mation, which allows for polynomial scaling of the com-
putational cost with system size, but results in a DMC
energy that is only an upper bound to the true ground
state energy. In practical calculations, improvement of
the accuracy and efficiency of fixed node diffusion Monte
Carlo is reliant on improving trial wave functions which
determine the fixed nodal surface.

In order for a trial wave function to be appropriate
for quantum Monte Carlo calculations, it should be com-
pact and efficient to calculate. For application to bulk
materials, it must also be size-extensive; that is, the to-
tal energy must scale with the system size. By far the
most common trial wave function is the Slater-Jastrow
wave function[6, 7], which is simple, extensive, and ini-
tial guesses are easily obtainable from DFT codes. While
truncated determinant expansions can be effective in de-
scribing small molecules[8], they cannot be used in bulk
materials because they are not size-extensive. Backflow
wave functions[9], while they have proven effective in
homogeneous[10] and inhomogeneous[11] systems, may
not capture all the correlated physics in a system. It is
thus of great interest, given a Slater-Jastrow wave func-
tion, whether there is a compact wave function that de-
scribes the most important improvements relative to the
ground state.

In this article, we present some initial steps towards
a method that uses fluctuations of the local energy
ĤΨ(R)/Ψ(R), not to optimize a given parameterization,
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FIG. 1. Visual representation of the path through Hilbert
space from the initial to exact wave function taken by the ex-
act (black) and mimicked (red) projection operators respec-
tively.

but to identify directions in Hilbert space that can im-
prove trial wave functions. We first provide a summary
of the imaginary time projector exp(−τĤ) and its use
in improving wave functions, and introduce the notation
that will be used in the article. Then we show a proof of
concept for multi-Slater Jastrow wave functions, in which
this method is used to select determinants in the wave
function. Finally, we show how the local energy fluctu-
ations can be used to determine a priori what terms to
add to a variational wave function for a transition metal
system TiO. These results set the stage for data min-
ing of many-body wave functions to determine how they
should be improved.

II. Theory

In this work, we use ideas that have been known
for a long time for optimizing parameters in wave
functions[12–15], but we follow more the work of Holz-
mann et al.[16] in that we would like to use the Feynman-
Kac formulae to discover which parameterization to add
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to a given wave function. The quantum variational prin-
ciple states that for any appropriately normalized trial
wave function ΨT (R, P ), where R is the many-body elec-
tron coordinate and P is a set of parameter values, the
expectation value of the Hamiltonian of the system in
state ΨT equals or exceeds the ground state energy of
the Hamiltonian:

ET ≥ Eg, (1)

where:

ET (P ) = 〈ΨT |Ĥ|ΨT 〉. (2)

We then minimize ET (P ) with respect to the parameter
set P . Once this is done, we must alter the parameteriza-
tion of the trial wave function to obtain further improve-
ment in the energy estimate. Our ultimate goal will be
not to optimize the parameters within a fixed set P , but
to identify new parameters that must be added to P to
improve the qualitative structure of the particular trial
state.

Iteratively applying the projection operator to a trial
function ΨT produces a sequence of new wave functions:

|ΨH′(τ)〉 = e−τĤ
′ |ΨT 〉, (3)

where Ĥ ′ = Ĥ − Eref, and Eref = 〈Ĥ〉. This converges
to the exact ground-state wave function |ΨGS〉 in the
infinite limit:

lim
τ→∞

|ΨH′(τ)〉 = |ΨGS〉, (4)

Performing this operation directly corresponds to a pro-
jector Monte Carlo method, such as diffusion Monte
Carlo. The challenge in doing this is that compact rep-
resentations of the operator exp(−τĤ ′) are generally not
known, and so the imaginary time dynamics must oper-
ate in very high dimensions. Our objective here will be to
find a compact representation of the short-time projector
operator.

We begin by considering an arbitrary set of linear op-
erators {Âi}. Applying these operators to the trial state
produces a new state |ΨA〉:

|ΨA〉 =

(
1 +

∑
i

aiÂi

)
|ΨT 〉. (5)

Applying this set of operators again to |ΨA〉 and iterating
generates a new sequence of wave functions. For brevity,
we define:

|ΨAi〉 ≡ Âi|ΨT 〉. (6)

We force the minimal set of operators {Âi} to mimic the
projection operator by minimizing the square deviation
of ΨA from ΨH′ :∫

(ΨA(R)−ΨH′(R))2dR. (7)

This minimization procedure provides an estimate of the
set of associated {ai} operator amplitudes. We define

the local operators Ak(R) ≡ ÂkΨT (R)
ΨT (R) and a local energy

EL(R) = Ĥ′ΨT (R)
ΨT (R) . By expanding the projection oper-

ator to first-order and minimizing the square deviation,
we find that:

ak = −τ
∫
Ĥ ′ΨT (R)

ΨT (R)

ÂkΨT (R)

ΨT (R)
Ψ2
T (R)dR. (8)

dak
dτ

= −〈(EL(R)− 〈Ĥ〉)Ak(R)〉, (9)

where we have assumed that elements of the set {ΨAi
}

are orthonormal such that the overlap matrix Sik =
〈ΨAi

|ΨAk
〉 is approximately diagonal. Fig. 1 depicts this

scheme pictorially, with the exact and mimicked projec-
tion operators represented by the black and tangential
red arrows respectively. We see then that the mimicked
projection operator evaluated for τ = 0 can be viewed
as a linearized approximation to the exact path to the
ground state through Hilbert space. In this way, our
approximation to the projection operator identifies the
most significant elements of Hilbert space absent from
an initial trial state.

The derivation of our method is similar in spirit to
the stochastic reconfiguration (SR) of Sorella [12, 17–
20]. The energy fluctutation potential method (EFP)
also shares some similarities with our technique in its
focus on the correlation between the local behavior of
the energy and some chosen operator [14, 21, 22]. A

set of operators Âi is a good set if only a few terms in
Eqn 9 are non-zero, while a set with many small values in
Eqn 9 is not an efficient descriptor of the wave function
improvement.

III. QMC Methodology

We first compute the single-particle Hartree-Fock (HF)
orbitals for a molecular system. We obtain all orbitals
using the GAMESS computational package [23, 24]. Core
electrons were replaced by the corresponding Burkatzki-
Filippi-Dolg pseudopotential [25] with triple-ζ basis sets.

We perform variational Monte Carlo with the QWalk
computational package [26]. We begin with a trial wave
function of the Slater-Jastrow form:

Ψ = exp(U)Det[φi(rj)], (10)

We use the linear method of Umrigar et. al. [13, 27, 28]
to optimize the Jastrow U . The form of the Jastrow
correlation factor U is a function of the electron and ionic
coordinates:

U =
∑
ijI

u(riI .rjI , rij), (11)
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where i and j indices represent electronic coordinates and
I represents ionic coordinates. The functions u are given
by:

u(riI , rjI , rij) =
∑
k

ceik ak(riI)+∑
m

ceembk(rij) +
∑
klm

ceeiklm(ak(riI)al(rjI)+

ak(rjI)al(riI))bk(rij),

(12)

where the ak and bk functions have the general form:

ak(r) =
1− z(r/rcut)

1 + βz(r/rcut)
, (13)

and z(x) is a polynomial chosen to smoothly go to zero at
r = rcut [29]. This form of the Jastrow factor explicitly
incorporates three-body interactions between two elec-
trons and an ion.

IV. Determinant selection

The set of doubles excitation operators given by:

Âij,kl ≡ c†↑kc
†
↓lc↑ic↓j , (14)

where c†σk (cσk) is the one-body creation (annihilation)
operator in the σ spin-channel, offers one possible choice
of linear operators Ak in Eqn 9. If i, j are occupied or-
bitals and k, l are unoccupied orbitals, then applying a
Âij,kl to a Slater determinant generates an excited-state
determinant in which the lower-energy i and j orbitals
are now vacant, and the higher-energy k and l orbitals
are occupied. The elements of the two-body reduced den-
sity matrix (2-RDM) are given by the expectation values
of these two-body creation/destruction operators. We
thus make the analogy with local energy to define a local
density matrix element, given a wave function |ΨT 〉:

ρijkl(R) =
Âij,klΨT (R)

ΨT (R)
. (15)

Or, explicitly:

ρijkl(R) =
∑
a6=b

∫
φ∗i (r

′
a)φ∗j (r

′
b)

×φk(ra)φl(rb)ΨT (R′′ab)Ψ
−1
T (R)dr′adr

′
b.

(16)

where R = (r1, r2, ..., rN ), R′′ab =
(r1, r2, ..., r

′
a, ...r

′
b, ..., rN ) refers to the set of coor-

dinates generated by changing the positions of two
electrons, and we have omitted overall normalization.
We evaluate this 2-body integral in a QMC calculation
by sampling the coordinates r′a and r′b from the sum over
orbitals f(r) =

∑
i φ

2
i (r) and the many-body electron

coordinate R from Ψ2(R) [30]. With this, the expression
given in Eqn 16 can be rearranged to give:

ρijkl(R) =

1

NiNjNkNl

∑
a 6=b

〈 Ψ(R′′
ab)

Ψ(R) φ
∗
i (r
′
a)φ∗j (r

′
b)φk(ra)φl(rb)

f(r′a)f(r′b)

〉
f(r′a),f(r′b)

,

(17)

where the normalization factor is given by:

Ni =

√〈
φ2
i (r
′
a)

f(r′a)

〉
f(r′a)

. (18)

The two particle operators in Eqn 14 are used to evaluate
Eqn 9 and generate a list of important determinants miss-
ing from the initial wave function. Hence, we can select
the determinants most important to the exact ground
state without the need to first evaluate those determi-
nants. The entire process of wave function generation is
summarized as such:

1. Obtain single-particle orbitals from a HF calcula-
tion.

2. Optimize single-determinant Slater-Jastrow:

〈R|Ψ〉 = eU(r,r′)Det[φi(rj)]. (19)

3. Rank 2-RDM elements by covariance of

〈c†↑kc
†
↓lc↑ic↓j〉 with EL.

4. Add determinants identified as significant to the
expansion:

|Ψnew〉 =

|Ψold〉+
∑
i

aie
U [c†↑kc

†
↓lc↑ic↓j ]|Hartree-Fock〉. (20)

5. Optimize coefficients {ai} of |Ψnew〉 using the linear
method.

This process generates a determinantal expansion whose
length is controlled by the user, up to the full size of the
active space.

A. H2 molecule

For the case of H2, we restrict our active Hilbert space
to the set of bonding/antibonding σ-symmetry orbitals.
Fig. 2 shows the contours of the sampled amplitude
ρa↑a↓b↑b↓(R) of the local operator associated with a 2-
body b→ a bonding-to-antibonding excitation in an iso-
lated hydrogen dimer versus the sampled local energy
EL(R) for each of two trial states:

ΨSJ = eUφb↑(r1)φb↓(r2)

ΨMSJ = eU (c1φb↑(r1)φb↓ + c2φa↑(r1)φa↓),
(21)
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FIG. 2. Amplitude of 2-body b → a bonding-to-antibonding
excitation ρa↑a↓b↑b↓(R) versus local energy EL(R) for two
different trial wave functions, with corresponding principal
components of the distribution indicated. The Slater-Jastrow
wave function used to generate the left panel did not include
the CSF corresponding to this 2-body excitation, while the
wave function used to generate the right panel does. The
principal components rotate upon the addition of this CSF.

where ΨSJ and ΨMSJ are the Slater-Jastrow and multi-
Slater Jastrow wave functions containing the bonding φb
and antibonding φa single-particle orbitals respectively.

The line segments on each panel in Fig 2 indicate the
principal components of the resulting distribution. These
components are given by the eigenvectors of the covari-
ance matrix of the local energy distribution taken with
respect to the local operator ρa↑a↓b↑b↓(R):

(
σρ,ρ σρ,EL

σEL,ρ σEL,EL

)

in this two-dimensional representation. The rotation of
the principal components relative to the axes in the left
panel of Fig. 2 shows that the covariance matrix con-
tains nonvanishing off-diagonal elements. It follows that
ρa↑a↓b↑b↓(R) and EL(R) are correlated for this single-
determinant trial state. After the addition of the asso-
ciated b → a determinant to the wave function in the
right panel of Fig. 2, the principal components rotate to
align with the axes, indicating that the covariance ma-
trix has become diagonal. This implies that the covari-
ance between the local energy EL(R) and local opera-
tor ρa↑a↓b↑b↓(R) has vanished, and the two variables now
have zero covariance. That is, a key element absent from
the initial trial state has been identified and added based
on the covariance, pushing the wave function closer to
the exact ground state.

B. Dimer Molecules

As a further proof of concept, we apply the covari-
ance method to select determinants for a set of stretched
molecules: H2 (0.88 Å bond length), N2 (1.7 Å bond
length), O2 (1.6 Å bond length), and F2 (1.5 Å bond
length). By stretching the molecules, the electron cor-
relations are enhanced, increasing the strength of the
covariance signal. We obtain single-particle orbitals
for each system from a restricted open-shell Hartree-
Fock (ROHF) calculation using GAMESS. This method
doubly-fills molecular orbitals (MOs) to the greatest ex-
tent possible, and places remaining unpaired electrons
into singly-filled MOs. We limit our active space to a set
of bonding and antibonding MOs with cylindrical sym-
metry and either σ- or π-symmetry. Other states exist
within the full orbital space, but their inclusion yields
only small improvement to the final wave function and
system energy. Because different methods of determinant
selection produce significantly different rates of energy
convergence [31], the covariance-based method we have
described can yield interesting results even at the level
of a multi-Slater-Jastrow ansatz. Our chief objective in
this section is to show that the covariance technique can
select the most significant determinants for a particular
molecule before performing a variational optimization of
the wave function.

We consider only 2-particle excitations featuring 1 par-
ticle in each spin channel. We compare these results to
those obtained with the usual configuration interaction
method with singles and doubles excitation (CISD). This
is natural for molecules such as N2 with a ground state
singlet spin configuration, though it can lead to the exclu-
sion of significant excitations in molecules like O2 which
contain unpaired electrons. Fig. 3 compares the nor-
malized weight of each CSF in conventional CISD, the
optimized weight of each CSF in a multi-Slater-Jastrow
ansatz, and the local energy covariance for each relevant
CSF in each material respectively. We see that the deter-
minant orderings predicted by both traditional CISD and
our method based on local energy covariance are equiv-
alent for each system across the dominant particle exci-
tations. This indicates that the path to the ground state
through Hilbert space obtained by successively applying
the projection operator is approximately equivalent to
that produced by the usual CI procedure in this case.

From Eqn 9, we see that the covariance signal in a 2-
RDM element should fall identically to zero once the cor-
responding excitation has been added to the trial state.
In practice, we observe that the signal in an added ex-
citation falls significantly once it has been added to the
trial wave function, but it does not vanish entirely. This
is a consequence of the Jastrow factor U in the trial state,
which we assume commutes with the creation and anni-
hilation operators introduced above:

c†↑kc
†
↓lc↑ic↓j(e

U |D〉) ≈ eU (c†↑kc
†
↓lc↑ic↓j |D〉), (22)

where |D〉 is a determinant trial state. Because the Jas-
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Covariance
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FIG. 3. Comparison of normalized signal strength for different
estimators of relative CSF importance for stretched dimers of
H2, N2, O2, and F2 respectively. The indicated bars are the
determinant coefficients taken from a CISD calculation, the
signal drawn from the 〈(EL−〈H〉)Ak〉 estimator, and the de-
terminant coefficients taken from an optimized multi-Slater-
Jastrow wave function respectively. The CSFs are arranged
such that the optimized final CSF weight declines monoton-
ically from top to bottom. Each indicated excitation is a
1- or 2-particle excitation that includes both itself and any
symmetry-related partners. For example, (πi, πi) → (πi, πi)
is a 2-particle excitation that excites a bonding π-orbital elec-
tron to an antibonding π∗ orbital of the same angular mo-
mentum (x or y) in each spin channel. On the other hand,
(πi, πj)→ (πj , πi) involves a two-body exchange.

-1.1635 -1.1625 -1.1615

Slater-Jastrow

(σ, σ) → (σ, σ)

(σ, σ) → (πi, πi)

(σ, σ) → (σ, σ)
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N2 (b)
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Slater-Jastrow
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(πi, σ) → (πi, σ)
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Energy (Hartree)

Slater-Jastrow

(σ, σ) → (σ, σ)

(πi, πi) → (σ, σ)

(σ, ) → (σ, )

(πi, πi) → (σ, σ)

(πi, πi) → (σ, σ)

(πi, πi) → (σ, σ)

F2 (d)

FIG. 4. Added spin-up/spin-down CSF excitations vs. associ-
ated variational Monte Carlo energy in a multi-Slater-Jastrow
wave function for the CSF ordering suggested by conventional
CISD for each considered model system.

trow factor does not commute exactly with the creation
and destruction operators, a small contribution to the
covariance signal is neglected. Practically speaking, this
approximation did not seem to affect the performance of
the technique.

We also find the rate of energy convergence for the
predicted CSF ordering in each model molecular system.
Fig. 4 shows the variational Monte Carlo energy of an
optimized multi-Slater-Jastrow wave function as a func-
tion of the CSFs included in the trial state. The CSFs



6

-0.003 -0.001 0.001
0

0.2

0.4

0.6

0.8

1
H2

(a)

-0.03 -0.01 0.01
0

0.2

0.4

0.6

0.8

1
N2

(b)

-0.02 -0.01 0

Energy Decrease (Hartree)

0

0.2

0.4

0.6

0.8

1

C
ov

a
ri
a
n
ce

S
ig

n
a
l
(d

.u
.)

O2

(c)

-0.03 -0.02 -0.01 0
0

0.2

0.4

0.6

0.8

1
F2

(d)

FIG. 5. The normalized covariance signal of CSFs versus the
decrease in energy obtained from adding a CSF to the trial
state. Significant negative correlations exist between the two
values. The shading is provided as a visual guide.

are ordered here according to the weight given by a con-
ventional CISD calculation. We see that the energy con-
verges rapidly with respect to the number of CSFs in-
cluded in the wave function. This explicitly illustrates
that the CISD method and our covariance-based tech-
nique can drive the initial trial state asymptotically close
to the exact ground state.

Finally, we also assess the degree to which the covari-
ance in a 2-RDM element predicts the energy gain ob-
tained from adding the associated determinant to the
trial state. Fig. 5 compares the decrease in total system
energy obtained from each additional CSF with the cor-
responding covariance signal. We observe that the energy
gain and the covariance signal are negatively correlated
with one another. This correlation indicates that the co-
variance in a 2-RDM element can be used as a proxy for
estimating the energy change from adding a determinant
to the trial state.

As a method of determinant selection for these sys-
tems, this technique is less efficient than using CI to
determine the weights, and the results are similar. We
therefore would not recommend this technique as a se-
lection method for small molecules. However, the point
of this section is that the energy fluctuations can be data
mined to find the correct directions in Hilbert space to
improve trial wave functions. In the case of stretched
dimers, it is well-known that the most important im-
provement over Slater-Jastrow consists of multiple de-
terminants, and the energy fluctuation technique selects
the correct ones.
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θ Parameter
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FIG. 6. The correlator signal 〈Ψ| (Ĥ − 〈H〉) c†1c1|Ψ〉 as
a function of the parameter θ appearing in the trial state
cos θ|D1〉+sin θ|D2〉. In this example, we have chosen ε1 = 0,
ε2 = 1, and allowed ∆ to assume several values between 0 and
1.

C. Using the 1-RDM to Perform Selection in a
Simple Model

Thus far, we have relied upon the covariance of ele-
ments of the 2-RDM with the local energy to construct
wave functions. However, for large systems, it may be
computationally inconvenient to compute the 2-RDM. In
these cases, it may be possible to instead construct wave
functions with the aid of the 1-RDM, which is available
at a much lower numerical cost. We can understand se-
lection using the 1-RDM within the context of a simple
model Hamiltonian.

In this example, we begin by considering a two-
dimensional Hilbert space consisting of the states |D1〉
and |D2〉. We define the creation (destruction) operator

c†1 (c1) such that:

〈D1|c†1c1|D1〉 = 1

〈D2|c†1c1|D2〉 = 0

〈D2|c†1c1|D1〉 = 0.

(23)

That is, the orbital 1 is occupied in state |D1〉 and unoc-
cupied in state |D2〉. Taking the probability amplitudes
to be real-valued, any state |Ψ〉 in this Hilbert space can
be written in the form cos θ|D1〉 + sin θ|D2〉 for a real
parameter θ.

We consider a Hamiltonian Ĥ given by:

Ĥ =ε1|D1〉〈D1|+ ε2|D2〉〈D2|
−∆ (|D1〉〈D2|+ |D2〉〈D1|) . (24)

We take ε1 = 0 and ε2 = 1 to simplify the subsequent
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calculations. For ∆ = 1, the eigenvectors are θ1 = 0.553
(ground state) and θ2 = 2.124 (excited state).

In this system we can analytically compute the corre-
lation in Eq. 9, now taking operator Âk as the number

operator c†1c1 associated with |D1〉. The result is given
by:

〈Ψ| (Ĥ − 〈H〉) c†1c1|Ψ〉

= ∆ sin 2θ

(
cos2 θ − 1

2

)
− sin2 θ cos2 θ,

(25)

If ∆ 6= 0, then there are four roots of this function in the
range [0, π] , two at the high symmetry points θ = 0 and
θ = π

2 and two at the eigenvectors (Fig 6). So, if one eval-
uates the one particle correlation with the Hamiltonian
using a single determinant wave function in the single
particle orbital basis of the determinant, then there is
zero signal, regardless of the value of ∆. However, if the
reference wave function is not a single determinant (such
as a Slater-Jastrow wave function), then the signal can
be nonzero for important orbitals in the expansion. For
example, in the stretched N2 dimer, the elements corre-
sponding to the bonding and antibonding orbitals have a
covariance with the local energy of approximately 0.001
Hartree, while other orbitals have much smaller signals.
This allows us to select which one-particle states may be
important in the determinant expansion without com-
puting the more costly 2-RDM.

V. Comparing real and orbital spaces: TiO
molecule

We now proceed to use the technique to selectively
improve wave function parameterizations in a more chal-
lenging case. As an example of a system where we do
not know a priori the most important degrees of free-
dom, we consider a transition metal molecule, TiO. The
dynamic correlation present in transition metal systems
is larger than in s-p systems like the dimers considered
above, so the Jastrow factor could be expected to play a
larger role[32, 33].

In Fig 7, the covariances of the 1-RDM and the real-
space electron-electron correlation function g(r) distance
are shown. The covariance signal for the 1-RDM is very
small, much smaller than for N2, although we do ob-
tain larger signals for the p and d states as one would
expect. Indeed, we also find very little covariance with
2-RDM matrix elements within the statistical noise. On
the other hand, for our starting wave function, labeled
J12, with 12 three-body parameters per atom, there is
a large spin-dependent covariance with g(r). So, from
these considerations, one might expect that adding de-
terminants would be inefficient, while improving the Jas-
trow factor, in particular spin dependent terms, would be
more fruitful. That is, the dynamic correlation is more
poorly described in our starting wave function than the
static correlation.
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FIG. 7. (a.) The covariance of the 1-RDM with the local
energy EL for TiO in the J12 wave function. (b.) The co-
variance of the pair distribution g(r) with the local energy
EL for the J12, J30, and JS30 wave functions in both spin
channels (right). J12: Slater-Jastrow state with 12 parame-
ters per atom in the 3-body part of the Jastrow factor; J30:
J12, but with 30 3-body terms instead of 12; JS30: J30, but
with a spin-dependent 2-body portion of the Jastrow factor.
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FIG. 8. Total TiO VMC energy vs. the number of included
CSFs using different Jastrow factors. Note that the decline
in energy is quite modest with respect to the number of in-
cluded CSFs, but falls dramatically when spin-dependence is
incorporated in the 2-body portion of the Jastrow factor.

Since the determinant selection of TiO via energy co-
variance was not efficient, we used a CI calculation with
up to sextuple excitations into 8 virtual states to select
CSFs, then formed a set of multi-Slater Jastrow wave
functions. If the covariance analysis was correct, then
we would expect the spin-dependent terms in the Jas-
trow to be most effective in lowering the energy, followed
by either the extra three-body terms or multiple deter-
minants. As can be seen in Fig 8, this supposition is
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correct: with only four parameters, the spin-dependent
terms lower the energy by nearly 10 mHartree, while 30
determinants or a similar number of 3-body parameters
are necessary to achieve that decrease in energy.

This example illustrates some the strengths and weak-
nesses of the covariance-based selection. If the set {Ai} is
selected in a basis that does not describe the needed im-
provement efficiently, in this case the determinant basis,
then it is not the best tool. On the other hand, if sev-
eral different basis sets are used, then the best basis can
be used to improve the wave function. In this case, we
learned that a spin-dependent Jastrow factor can improve
the energy significantly for magnetic molecules, while the
determinant basis is not an efficient way to improve the
wave function for this molecule. The cost for performing
these calculations was about a factor of two larger than
a variational Monte Carlo calculation and much smaller
than the energy optimization technique.

VI. Conclusion

We have presented an outline of a technique to select,
not just terms in a many-body ansatz, but which type of
ansatz with which to proceed. For example, the selection
method can quickly determine whether a determinant-
type basis is appropriate by evaluating the 1-RDM co-
variance with the local energy. Similarly, if an explicitly
correlated approach such as a Jastrow is more appro-
priate, then the covariance of the local energy with the

electron-electron distance g(r) is large. The computa-
tional cost of this assessment is quite low: g(r) is essen-
tially zero cost over a VMC energy evaluation, and the
1-RDM is approximately a factor of two additional, re-
gardless of system size. This is much less expensive than
attempting energy minimization on multiple ansatz.

As proof of concept, we demonstrated that the se-
lection technique both selects the correct directions in
Hilbert within a defined ansatz space, and also can select
between alternate viewpoints of the electron correlation
problem. We demonstrated the former by selecting de-
terminants for stretched dimer molecules, and the latter
by differentiating between short range ’dynamic’ correla-
tion best described by a Jastrow factor and long range
’static’ correlation best described by multiple determi-
nants in the transition metal oxygen system TiO. Using
standard wave functions for this problem, the dynamic
correlation in TiO is more important. This work forms
the base for an algorithm in which the local energy can
be analyzed directly in the many-body space using fea-
ture extraction techniques to describe the most efficient
basis in which to improve many-body wave functions.
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