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Characterizing the complex spectrum of topological defects in ground states of curved crystals
is a long-standing problem with wide implications, from the mathematical Thomson problem to
diverse physical realizations, including fullerenes and particle-coated droplets. While the excess
number of “topologically-charged” 5-fold disclinations in a closed, spherical crystal is fixed, here,
we study the elementary transition from defect-free, flat crystals to curved-crystals possessing an
excess of “charged” disclinations in their bulk. Specifically, we consider the impact of topologically-
neutral patterns of defects – in the form of multi-dislocation chains or “scars” stable for small lattice
spacing – on the transition from neutral to charged ground-state patterns of a crystalline cap bound
to a spherical surface. Based on the asymptotic theory of caps in continuum limit of vanishing
lattice spacing, we derive the morphological phase diagram of ground state defect patterns, spanned
by surface coverage of the sphere and forces at the cap edge. For the singular limit of zero edge
forces, we find that scars reduce (by half) the threshold surface coverage for excess disclinations.
Even more significant, scars flatten the geometric dependence of excess disinclination number on
Gaussian curvature, leading to a transition between stable “charged” and “neutral” patterns that
is, instead, critically sensitive to the compressive vs. tensile nature of boundary forces on the cap.

I. INTRODUCTION

Optimizing ground state order, typically a trivial af-
fair on planar surfaces, becomes one of a number of un-
solved, century-old problems purely through the intro-
duction of positive Gaussian curvature, arguably the sim-
plest (i.e. most isotropic) non-flat geometry [1]. Motivat-
ing the goal to understand optimal ordering on spheres,
known broadly as the generalized-Thomson problem, is
structure formation in material systems as diverse as vi-
ral capsids [2, 3], fullerenes [4], particle-coated droplets
[5, 6], curved bubble rafts [7], emulsion droplets [8] and
spherical superconductors [9]. Ground states in these
systems are characterized by topological defects, 5- and
7-fold disclinations in otherwise sixfold hexagonal pack-
ing, which carry, respectively, positive and negative topo-
logical charges si = ±π/3 associated with the rotation of
lattice directions around the defect [10]. The preponder-
ance of studies that have addressed this problem consider
closed spherical shells, where the Gauss Bonnet theorem
requires a fixed topological charge S ≡∑i si = 4π, or ex-
actly, twelve more 5-fold than 7-fold defects [5, 11, 13–15].
Far less understood, and the subject this article, is the
progression of order from neutral (S = 0), flat crystals
to topologically-charged (S > 0) bulk order as surface
curvature is increased. In this article, we address this
transition for a “crystalline cap” covering an incomplete
fraction, Φ, of the sphere (see Fig. 1).

The free boundary of the crystal introduces several
complicating factors in determining ground state. Fore-
most among these is possibility of external forces acting
at the boundary, which may be tensile, as in the case
of adhesion between a crystal and spherical substrate,
or compressive, for say a crystalline droplet pinned at
the edge. How external stresses interact with those im-

posed by geometry in the stabilization of lattice defects
is an open question. Even more significant is the fact
that free boundaries allow the net charge of disclinations
in the interior to vary according to energetic consider-
ations, rather than topological constraints. Not only
can the net charge of defects vary with increasing cur-
vature, but so too can the number of neutral 5-7 pairs,
or dislocations, in curved crystals [6]. Extended chains,
or “charged” dislocation scars, where first predicted and
observed in closed spherical crystals of sufficient particle
number [12, 13], where they extend from isolated 5-fold
disclinations, growing in number and pattern complexity
(e.g. multi-arm scars and rosettes) as number of lattice
points grows large [15]. Dislocation chains, or neutral
scars (possessing equal numbers of 5- and 7-fold defects),
are also also stable in weakly-curved crystals possess-
ing no excess disclinations (S = 0) [16, 17] and exper-
iments on negatively-curved colloidal crystals by Irvine
and coworkers further suggest the formation or neutral
scars, or “pleats”, may delay the onset of excess disclina-
tions in curved crystals [6]. Precisely how the large num-
bers of dislocations alters the relative stability of charged
vs. neutral defect states of curved crystals remains un-
known.

In this article, we explore the transition from neutral-
to charged-defect ground states for crystalline caps on
spherical substrates subject to external boundary forces,
σb. Our analysis is based on the continuum elasticity the-
ory of curved 2D crystals and exploits, in particular, a
newly developed asymptotic theory of multi-dislocation
crystals [16, 18] predicated on the principles of “optimal
stress collapse” in scarred zones of the crystal. Beyond
the parameters Φ and σb, the structure and energetics of
crystals is also critically sensitive to the ratio b/W , where
b and W are respective lattice spacing and lateral crys-
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FIG. 1: The model geometry: a 2D circular crystal, radius
W , formed on a (rigid) spherical surface of radius R. A 5-fold
disclination (purple pentagon) is shown at the cap center.

tal size. The number of dislocations in curved-crystal
ground states diverges as W/b in the continuum limit,
the singular limit captured by this asymptotic theory.
Previously, we studied the principles governing the pat-
tern selection of neutral (S = 0) scar patterns of weakly-
curved caps [16], shown [18] to be formally analogous
to the length- and wavelength-selection of optimal wrin-
kle patterns in radially-confined thin sheets [19, 20]. In
the present study, we exploit this asymptotic theory for
crystalline membranes to determine the multi-dislocation
patterns that achieve an optimal level of stress relaxation
for both neutral caps and those possessing a single excess
disclinations, and show, by comparison of the dominant
energetics in the b/W → 0 limit, that excess dislocations
have a profound effect on the relative stability of neutral
vs. charged defect patterns in caps.

While, in the absence of excess dislocations, the critical
curvature separating neutral and charged patterns has a
simple linear dependence on σb, as b/W → 0 and dis-
locations abound, multi-scar patterns are shown to pro-
foundly “flatten” the dependence of this boundary on
geometry (or Φ). This leads to a neutral vs. charged
morphology phase diagram that, in this asymptotic lim-
itm is entirely governed by the tensile (σb < 0) vs. com-
pressive (σb > 0) nature of boundary forces. Hence, we
find that the case of zero boundary forces is a singular
limit, where the stability of neutral vs. charged patterns
is determined by the lowest-order corrections to the en-
ergy for small, but finite b/W . We show by combination
of scaling analysis and numerical simulations, that the
dependence of these sub-dominant energetics on Φ (or
equivalently, curvature) can largely be attributed to the
variation of number of defects needed to perfectly relax
geometrically imposed stresses. Excess dislocations sig-
nificantly shift the transition to charged defect patterns
to lower curvature: from Φ = 1/6 in the absence of dis-
locations to Φ ' 1/12 when dislocation scars proliferate
as W/b→∞.

The remainder of this manuscript is organized as fol-

lows. In Sec. II, we introduce the continuum model of
spherical caps and analyze the transition from neutral to
charged caps in the absence of excess dislocations. In Sec.
III we introduce the principles underlying the structure
of multi-dislocation scar patterns in the b/W → 0 con-
tinuum limit. In Sec. IV we summarize the competing
patterns of stable charged and neutral scars predicted
by this theory and the “defect phase diagram” for the
b/W → 0 continuum limit in Sec. V. In Sec. VI, we
consider the singular limit of vanishing boundary forces
(σb = 0), and show how the finite-b/W corrections to the
energy along this line govern the transition from neu-
tral to charged caps with increasing curvature. Finally,
we conclude with discussion of our results and remaining
open questions regarding defect patterns in curvature-
frustrated crystals.

II. MODEL AND DISLOCATION-FREE LIMIT

We consider a crystalline domain bound to a sphere
of fixed radius, R (Fig. 1). We assume the domain has
circular shape of radius W (e.g. no edge faceting), such
that the surface coverage is simply

Φ =
(W

2R

)2

(1)

. We employ a continuum elastic theory to model the
deformation of hexagonal order in the domains, described
by the energy

E =
1

2

∫
dA σijuij − σb(∆A), (2)

where uij and σij are the respective in-plane elastic strain
and stress tensors, satisfying the linear constitutive rela-
tion uij = Y −1

[
(1 + ν)σij − νδijσkk

]
where Y and ν

are the 2D modulus of Poisson ratios of the hexagonal
crystal. The second term represents the work done an
boundary force σb to change the area of the crystal by
∆A = W

∫
dθ ur(r = W ), where r and θ are polar co-

ordinates. Depending on the physical realization of the
crystalline cap, boundary forces σb may be either tensile
(e.g. due to adhesive spreading on a substrates) or com-
pressive (e.g. due to pinning at cap edge). Note that
it is reasonable to assume that the cap retains its gross
circular shape when the line tension γ at edge exceeds a
critical value γc ≈ YWΦ4/96 [21].

To understand the conditions where the first excess
disclination becomes stable, we restrict our focus to
the nearly-flat caps, Φ � 1, where the elastic stress
of the crystal may be calculated from the Föppl- von
Kármán theory of weakly-deflected, crystalline mem-
branes [10, 22]. The stress is determined by in-plane force
balance ∂iσij = 0, boundary conditions σrr(r = W ) = σb
and the compatibility condition,

Y −1∇2
⊥σii = −R−2 + sδ2(x) +∇⊥ × b(x). (3)
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FIG. 2: Phase diagram spanned by Φ and external boundary
stresses, σb/Y for crystalline caps without excess disclina-
tions, relevant to lattice spacings comparable to cap width,
b .W .

The right-hand side of this equation describes intrin-
sic sources of stress in the sheet, including the imposed
Gaussian curvature, R−2, and two types of topological
defects, disclinations and dislocations. The monopole
source represents the possibility of disclination of charge
s centered at x = 0: s = 0 for neutral caps and
s = +π/3 for charged caps (a 5-fold defect) [39] The
third term derives from the Burger’s density of disloca-
tions b(x) =

∑
α bαδ(x− xα), where bα is the Burger’s

vector of a dislocation at xα. Dislocations are neutral
5-7 disclination dipoles, and like the polarization charge
in electrostatics, gradients [40] of b(x) generate sources
of elastic stress [10].

A key challenge to comparing the structure and sta-
bility of competing defect patterns is the determination
of b(x), as dislocations vary in location, orientation and
number according to their ability relax elastic stress. Be-
low we describe the governing principles and implica-
tions of the optimal dislocation distributions when dislo-
cations are numerous. In this section, we first consider
dislocation-free caps, which arise when self-energy of dis-
locations exceeds their relaxation of geometric stresses,
as quantified by the dimensionless ratio of the self-energy
of dislocations (∝ Y b2) and the elastic energy of geomet-
ric confinement (∝ Y Φ2W 2),

ε = (b/W )2Φ−2 (4)

Caps are dislocation free for ε & 1, as is the case when
crystal widths are comparable to lattice spacing, W &
b. Taking b(x) = 0 and the axisymmetric stress of the

dislocation free cap has the general form,

σdf
rr =

Y s

4π
ln(r/W ) +

Y Φ

4

[
1−

( r

W

)2]
+ σb;

σdf
θθ =

Y s

4π
[ln(r/W ) + 1] +

Y Φ

4

[
1− 3

( r

W

)2]
+ σb

(5)

and σdf
rθ = 0. The first terms in eq. (5) are related

to the disclination induced stresses, with s = +π/3 for
five-fold defects and s = 0 for the neutral state. The
The second contributions derive from curvature-induced
strains, which become increasingly compressive with dis-
tance from the center.

Solving for the strain and displacement fields from σdf
ij

and inserting into eq. (2) we have the total energy of the
dislocation-free state,

Edf(s)

Y πW 2
=

Φ2

24
− (1− ν)σ2

b

Y 2
+

Φσb
Y

+
s2

32π2
− s

2π

(Φ

8
− σb
Y

)

(6)
While the first three terms represent the mechanical en-
ergy of imposed geometric and boundary stresses, the
final terms represent the disclination self-energy and the
mechanical coupling between the disclination and geo-
metric and external stresses. Due to the far-field tensile
nature of five-fold defects, the cost of positive disclina-
tions decreases with increasing external or geometrically-
induced compression.

Comparing the energy of neutral (s = 0) to charged
(s = +π/3) caps, we find the critical surface coverage Φ∗df
above which dislocation-free caps favor an excess discli-
nation (plotted in Fig. 2),

Φ∗df(σb) =
1

6
+
σb
8Y

. (7)

Due to the imperfect screening of the geometric stresses
by singular disclinations, in the absence of external forces
the integrated Gaussian curvature must exceed the point
at which it “neutralizes” the topological charge (i.e.
Φ = 1/12) of the first stable disclination. In terms of in-
tegrated Gaussian curvature, this threshold corresponds
to 2π/3, which is comparable to the threshold curvature
(' 2.5) when a single 5-fold disclination becomes stable
in a parabolic crystal, which is also more than double
what is needed to compensate for the deficit angle of the
disclination [25]. Further, due to the far-field tension gen-
erated by disclinations, boundary compression (σb < 0)
enhances stability, such that they become stable in even
flat caps when σb ≤ −4Y/3.

III. PRINCIPLES OF MULTI-DISLOCATION
STRESS COLLAPSE

In this section, we outline the principles underlying op-
timal multi-dislocation patterns, in the asymptotic limit
ε → 0, where the lattice spacing vanishes with respect
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FIG. 3: (A) Example profiles for dislocation-free stress fields for a cap with a centered 5-fold disclination at Φ = 0.07 and
σb = 0.02Y . Hoop and radial stress components are shown as red and black curves, respectively. (B) Example profiles for stress-
collapsed mechanical state for same conditions as (A), possessing radial scars in an annular region L1 ≤ r ≤ L2, correspond to
the schematic of the “charged scar” pattern in (C), where scars are shown as alternating 5-7 pairs (red pentagons and green
heptagons, respectively).

to W , and the energetic costs of dislocation vanish in
comparison to the costs of geometric frustration. In this
limit the intra-cap stress is profoundly modified from
the dislocation-free case described above by large num-
bers of dislocations which we assume to constitute multi-
dislocation scars. To construct stable patterns of stress
in the b → 0 continuum limit, we note that the elastic
force on a dislocation b is proportional to the total stress
as εijσjkbk. [24] Comparing this to the stabilizing pull
of “self-interactions” of dislocations that drive it towards
the boundary and that scale as b2, it is clear that in the
b → 0 limit components of stress along the Burgers vec-
tor orientation of dislocations must vanish in order that
dislocations are under zero force. To construct a distri-
bution of dislocations satisfying mechanical equilibrium
in axisymmetric caps, we assume their polarization to be

along the hoop direction, of b(x) = bρ(x)θ̂, where ρ(x) is
the areal dislocation density. This defect polarization is
consistent with partial rows of lattice sites added or re-
moved along the radial direction of the crystal, which fa-
cilities the collapse of compressive or tensile hoop stresses
depending on the sign. Therefore, we seek stress distribu-
tions which satisfy perfect stress collapse along the hoop
direction (i.e. σθθ = 0) in regions occupied by (stable)
dislocations.

This “stress-collapse” principle is formally equivalent
to the notion of perfect “screening” of Gaussian cur-
vature, proposed previously for scars on curved crys-
tals [6, 13]. Here we argue that this principle is more than
a heuristic argument, that it becomes quantitatively ac-
curate in the asymptotic limit b/W → 0, provided that it
is generalized to account for the presence of other stresses
in the system (e.g. boundary forces). Outside of the con-
text of strictly crystalline membranes, this stress collapse
principle is the exact analogy to the “tension field”, or
“far-from threshold”, limit exploited in the analysis of
thin sheen wrinkling, where the underlying pattern of
elastic stress supports zero compression in the limit of
vanishing thickness [19, 20].

For both neutral caps and charged caps with centered

disclinations, force-free multi-dislocation patterns can be
described in terms of the following 3-zone solution (see
Fig. 3): zone I, 0 < r < L1 with or without a cen-
tral disclination and dislocation-free; zone II L1 ≤ r <
L2 an annulus possessing azimuthally-orientated disloca-
tions with density ρ(r) 6= 0; and zone III, L2 ≤ r ≤ W ,
the outer dislocation-free zone of the cap. For the inner
zone 0 < r < L1 (zone I) the stress pattern is identical
to the dislocation free cap, up to an additive constant,
which guarantees hoop stress to vanish at the edge of the
scarred zone, at r = L1,

σIθθ
Y

=
s

4π
ln(r/L1)+

3(L2
1 − r2)

16R2
;
σIrr
Y

=
σIθθ
Y
− s

4π
+

r2

8R2
.

(8)
For the scarred annulus L1 ≤ r < L2 (zone II), me-
chanical equilibrium for present dislocations requires van-
ishing hoop stress. Thus, using radial force balance
∂r(rσ

II
rr ) = σIIθθ = 0 and matching radial stress at the

inner zone edge we find

σIIθθ
Y

= 0;
σIIrr
Y

=
( L2

1

8R2
− s

4π

)L1

r
. (9)

Finally, matching radial and hoop stresses at the bound-
ary between the scarred zone at the dislocation-free outer
zone (r = L2) with the we find the stress in zone III for
L2 ≤ r ≤W ,

σIIIθθ

Y
=

s

4π
ln(r/L2) +

3(L2
2 − r2)

16R2
−B

( 1

r2
− 1

L2
2

)
;

σIIIrr

Y
=
σIIIθθ

Y
− s

4π
+

r2

8R2
+

2B

r2
, (10)

where B/L2 = (s/8π)(L2 − L1) − (L3
2 − L3

1)/16R2. [41]
Finally, requiring that radial stresses reach the imposed
boundary force at the edge σIIIrr (R = W ) = σb, we arrive
at an “equation of state” for the scarred caps related to
the positions of the scarred zone edge, L1 and L2, to
the boundary forces, central disclination charge and to
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FIG. 4: (A) shows n-fold symmetric scar energy minimization
simulation results (points and crosses) for the scar ends, L2

(filled circles) and L1 (crosses) for a charged cap (s = π/3)
at surface coverage Φ = 0.075, where predictions for L1 >
0 (σb < 0) and L2 < W (σb > 0) from the equations of
stress collapse are shown as dashed lines. (B) shows the total
number of dislocation Nd scaled by the reduced cap radius,
W/b, compared to predictions given by eq. (13) and (14).

surface curvature,

σb
Y

=
L1

L2

( L2
1

16R2
− s

8π

) (W 2 + L2
2)

W 2

− s

4π

[
ln(L2/W ) +

W 2 − L2
2

2W 2

]
− (W 2 − L2

2)2

16W 2R2
. (11)

This relationship governs the gross structure and domi-
nant energetics of competing multi-dislocation patterns.
The real solutions for scar edges satisfying 0 ≤ L1 ≤
L2 ≤W correspond to patterns of dislocation scars that
achieve mechanical equilibrium in the limit of vanishing
lattice spacing.

Given a solution to this eq. (11) for the boundaries of
the scarred zone, the dislocation density that achieves
the maximal state of stress collapse in the ε → 0 limit
follows directly from the integration of the compatibil-
ity equation, eq. (3), 2π(rbθ)

∣∣r
L1

= 2πY −1(r∂rσ
II
ii )
∣∣r
L1
−

π(r2 − L2
1)/R2 or

bθ(r) =
r

2R2
+
L1

r2

( L2
1

8R2
− s

4π

)
− 2s

πr
, for L1 ≤ r ≤ L2

(12)
We note the respective positive and negative signs of
terms proportional to R−2 and s, respectively, indicat-

ing that curvature- and disclination-induced stress favor
dislocations of opposing polarization in caps.

IV. NEUTRAL- AND CHARGED-CAP
MORPHOLOGIES

Solutions to eqs. (11) and (12) govern the multi-
scar morphologies of both neutral and charged caps in
the continuum limit of vanishingly small lattice spac-
ing. While eq. (11) is a single equation relating the
two unknown positions of scar-zone edges, for low sur-
face coverages solutions that maximize the elastic en-
ergy relaxation of both neutral and charged caps fall into
one of two states: center-bound scars, where L1 → 0
and L2 ≤ W , and edge-bound scars, where L1 ≥ 0 and
L2 →W . Heuristically, maximizing the degree of energy
relaxation by dislocations can be understood as maxi-
mizing the width of the stress collapsed zone L2 − L1.
It can be shown, for example for neutral caps, from eq.
(11) that this corresponds to scars extending to the free
boundary of caps (L2 →W ) for tensile boundary forces,
while for compression, scars are bound to the cap center
(L1 = 0).

As a more critical test, we compare the optimal stress-
collapse states to discrete-dislocation numerical simula-
tions performed by relaxing the number and position of
dipolar sources of stress in the elastic energy (see Ap-
pendix B for details). In these simulations, interactions
between dislocations and other sources of stress (curva-
ture, boundary forces and other defects) [29] and number
and position of dislocations is relaxed numerically assum-
ing an n-fold symmetric pattern of radial scars (optimiz-
ing with respect to scar number) [29]. In Fig. 4, we
plot results for charged (s = π/3) caps, position of scar
ends, L1 and L2, and total dislocation number, Nd, for
simulated caps with W/b = 0.0025 at surface coverage
Φ = 0.075 as a function of σb. Simulation results for
charged caps show remarkable quantitative agreement
with the respective L2 → W and L1 → 0 solutions of
eq. 11 and the total dislocation number derived from
integrating b(r) over the cap Nd = b−1

∫
dA|bθ(r)|. For

sufficiently small curvatures, the polarization of disloca-
tions is constant throughout scars (either clockwise or
counter-clockwise), and number of dislocations in edge-
bound scars has the form

Nd(L2 = W ) =
2π

ε1/2

∣∣∣∣−
2

3

(
1− L3

1

W 3

)
+

σb
Y Φ

ln
(W
L1

)

+
s

2πΦ

(
1− L1

W

)∣∣∣∣, (13)

while for center-bound scars we find

Nd(L1 = 0) =
2π

ε1/2

∣∣∣∣−
2

3

L3
2

W 3
+

s

2πΦ

L2

W

∣∣∣∣. (14)

In both states, the number of dislocations diverges in the
continuum limit as ε−1/2, asymptoticly approaching the
continuous distribution given by bθ(r).
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FIG. 5: A) shows the schematics of six possible states (defect morphologies I-VI) describe in the text. (B) depicts the phase
space spanned by surface coverage, Φ and boundary stresses σb, and delineates the regions of mechanical stability (existence)
for the competing radial scar morphologies. The blue region outlines where neutral scars exist (states III or IV), bounded by
two critical solid lines σ < Tn∗ and σ > −Pn∗ . The red region corresponds to the stable charged caps (states V or VI), bounded
from below by critical curve σ > −P c∗ . The hashed red region (bounded by σ > −P c∗∗) outlines the existence of center-bound,
charged caps (state V) for compressive boundary forces. Dislocation-free states (I & II) exist for all curvatures and boundary
forces.

Based on the equilibrium conditions for edge-bound or
center-bound scar states, six distinct competing “defect
morphologies” of neutral and single-charge caps are pos-
sible at low surface coverage. These are shown schemat-
ically in Fig. 5, and details of the location and existence
criterion for scarred states are given in Appendix A. The
diagram in Fig. 5 shows the range of existence – or,
the necessary conditions for mechanical equilibrium – for
these states in the (Φ, σB) plane:

I) Neutral caps, dislocation-free - Defect free caps exist
for all coverage and boundary force.

II) Charged caps, dislocation-free - Centered-dislocation
caps exist for all coverage and boundary force.

III) Neutral caps, edge-bound scars - Caps with no excess
disclinations and radial scars reaching the outer edge ex-
ists over a range of tensile boundary forces 0 ≤ σb <
Y Φ/2.

IV) Neutral caps, center-bound scars - Caps with no ex-
cess disclinations and radial scars extending from the cen-
ter exists over a range of compressive boundary forces
−Y Φ/4 < σb ≤ 0.

V) Charged caps, edge-bound scars - Centered-
disclination cap with radial scars reaching the outer
edge exists over range of compressive boundary force,
−P c∗ (Φ) < σb ≤ 0, where P c∗ = Y (1/12 − Φ/2) for
Φ < 1/18 and P c∗ = 2−3/2Y Φ−1/2/27 for Φ ≥ 1/18.

VI) Charged caps, center-bound scars - Centered-
disclination cap with radial scars extending from the cen-
ter exists for all tensile boundary forces, σb ≥ 0 and
for Φ > Φc = 1/12, for a range of compressive forces
σb ≥ −P∗ ∗ (Φ), given by eq. (A14).

Table I summarizes the location of the scarred zones for
each morphology, focusing for simplicity in the limiting
behavior as σb → 0. We note that for all morphologies,
scars cover the entire cap as boundary forces vanishes
(that is, L1 → 0 for edge-bound caps and L2 → W for
center-bound caps). That generic fact indicates that the
perfect screening of disclination and curvature-induced
stresses is possible only for vanishing boundary forces,
for all scarred morphologies. Despite the apparent de-
generacy at σb = 0 of all scarred states, the energies of
competing morphologies differ in the approach to σb → 0,
a point we return to below.

Finally, we note the appearance of a critical point
(Φc = 1/12, σb = 0) for center-bound, charged cap mor-
phology (VI), due to existence of an additional root to
eq. 11 for Φ > Φc for σb = 0. For Φ > Φc, a second
stable scar configuration exists with L2 < W at σb = 0.
This solution, which covers only a fraction of the cap will
nevertheless have a higher energy that the solution with
L2 = W that also exists Φ > Φc. However, for any fi-
nite σb, scarred solutions exist only on the branch with
L2 < W , indicating a discontinuous jump of the scar edge
from the boundary for infinitesimal tension for Φ > Φc.
This critical point is located precisely at the point where
the disclination charge balances the integrated Gaussian
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curvature of the cap (Φc = 1/12).

V. CONTINUUM LIMIT PHASE DIAGRAM

The energies of competing defect morphologies in the
ε → 0 limit derive directly from stress-collapsed solu-
tions, eq. 8 - 10, evaluated in the model energy, eq.
(2). Remarkably, despite the fact the dislocations of fi-
nite Burgers vector compose the stress-collapse state and
the number of dislocations needed is dependent on b, the
asymptotic stress and elastic energy itself are independent
of lattice spacing. The stress-collapsed state describes the
ideal relaxation possible via a continuum distribution of
dislocations in the b/W → 0 limit (where dislocations are
sufficiently abundant to completely collapse hoop stress
in the scarred zone). The energy of this limiting stress
pattern represents the first term (called here the domi-
nant energy, Edom) in the asymptotic expansion of the
total energy in powers of ε ∝ (b/W )2, the parameter
which quantifies the dislocation cost relative to the cost
of curvature-imposed stretching. As it is independent of
lattice spacing and remains finite as ε→ 0, Edom is O(ε0).
We first restrict our analysis to the dominant energetics,
while in a later sections show that finite-ε corrections are
essential to resolve the stability of competing defect pat-
terns in the limit of vanishing boundary forces.

The dominant energy, Edom, derives from the stress
profiles, eqs. (8-10), and associated strain and displace-
ment fields. The total dominant energy can be decom-
posed as

Edom = EI + EII + EIII − 2πσbWuIIIr (r = W ) (15)

where Eα is the elastic energy of zone α:

EI =
π

Y

∫ L1

0

drr
[
(σIrr)

2 + (σIθθ)
2 − 2νσIrrσ

I
θθ

]
(16)

EII =
π

Y

∫ L2

L1

drr (σIIrr )2 (17)

EIII =
π

Y

∫ W

L2

drr
[
(σIIIrr )2 + (σIIIθθ )2 − 2νσIIIrr σ

III
θθ

]
(18)

where we use the fact that σI,II,IIIrθ = 0 and σIIθθ = 0. To
determine the work done by boundary forces, we com-
pute the radial displacement of the boundary by integrat-
ing ∂rur = urr − r2/(2R2) from the boundary condition
ur(0) = 0,

uIIIr (W ) = Y −1

∫ L1

0

dr
(
σIrr−νσIθθ

)
+Y −1

∫ L2

L1

dr σIIrr

+ Y −1

∫ W

L2

dr
(
σIIIrr − νσIIIθθ

)
− 2Φ

3
W. (19)

Comparing the dominant energies of competing mor-
phologies, we determine the ground state phase diagram

for continuum limit, shown in Fig. 6. Of the six exist-
ing defect morphologies, four appear as minimal energy
configurations in the phase diagram. The defect-free cap
(disclination and dislocation free) is optimal above the
critical tension σb > Tn∗ = Y Φ/2, while the neutral cap
with edge-bound scars (L2 = W ) is minimal energy be-
tween this threshold and the limit of vanishing bound-
ary tension. Conversely in the tensile regime, the single-
disclination, dislocation-free (i.e. s = 0;b(x) = 0) is op-
timal below the critical compression σb < −P c∗ (Φ), given
by eq. (A9), that defines the existence of the pattern of
edge-bound scars on charged caps. Between this com-
pressive threshold and the limit of zero boundary com-
pression, charged caps with edge-bound scars are mini-
mal energy.

In order to understand the generic energetic prefer-
ence for edge-bound scar morphologies in the continuum
limit phase diagram, we consider competition of neutral
and charged scar patterns as σb → 0. This preference
can ultimately be traced to the elastic cost of pulling the
“tips” of center-bound scars from the free boundary into
the bulk of the cap L2 < W . This is most transparent in
the limit of small σb, where the distance of the scar tips
from the cap edge grows as δ` = W − L2 ∼ |σb|1/2 (see
Table I) for both neutral and charge center-bound scar
states (states IV and VI, respectively) [42]. As demon-
strated in the next section, the dominant cost of scars
derives from inter-scar elastic interactions, resulting from
elastic strains generated by scar tips in the cap. For
a scar with linear dislocation spacing, λ, the rotation
of the crystallographic directions across the scar, like a
low-angle grain boundary, is ∆θ ≈ b/λ [24]. At the far-
field elastic cost of the scar end, therefore behaves as
virtual “disclination” of charge ∆θ [16]. Elastic inter-
actions between disclinations near to a free boundary
grow in magnitude as Y (∆θ)2δ`2 [26] and extend over
a distance proportional to ` due the screening of long-
range stresses by the boundary. Assuming ns scars in
the cap, each tip interacts with roughly nsδ`/W . Us-
ing eq. (12) for the dislocation density ρ(W ) = b(W )/b
at the periphery of the cap and λ(W ) = 2πWρ(W )/ns,
we estimate the total energy of inter-scar interactions as
limδ`→0Einter ≈ Y n2

s(∆θ)
2δ`2 ∼ δ`3 ∼ |σb|3/2.

Due to the isometric radial displacement in the limit
of complete stress collapse (i.e. ur(W ) = −2ΦW/3), all
scarred-morphologies share the same linear dependence
on σb exhibited by f(Φ, σb) as σb → 0. Therefore, the
appearance of the |σb|3/2 scaling of scar-scar interactions
for center-bound scars implies a higher energy than edge-
bound scars, whose distinguishing energetics scale gener-
ically as σ2

b lnL1 ∼ σ2
b ln |σb| in this limit, which follows

from similar arguments for scar tip interactions at the
center of the cap. Hence, we can attribute the generic
stability of edge-bound scars over center-bound scars to
the anomalously larger elastic cost of pulling scar “tips”
from the free edge, into the bulk of the cap. Though
this argument holds only for the asymptotic approach to
σb = 0, we find the stability of center-bound scars over



8

Morphology limσb→0 L1/W limσb→0(1− L2/W ) limσb→0

[
Edom/Y πW

2 − f(Φ, σb)
]

I - neutral, - - Φ2

24
+ σbΦ

3Y

dislocation-free

II - charged, - - Φ2

24
− Φ

48
+ 1

288
+ σb

Y

(
Φ
3

+ 1
6

)
dislocation-free

III - neutral, (2σb/ΦY )1/3 0
σ2
b

Y 2

[
1
3

ln
(

2σb
YΦ

)
− 1

2

]
edge-bound

IV - neutral, 0
√
|σb/|Y Φ 4Φ1/2

3

( |σb|
Y

)3/2
center-bound

V - charged, 24|σb|/Y 0
σ2
b

Y 2 ln
( 24|σb|

Y

)
edge-bound

VI - charged, 0
√

σb/Y
Φc−Φ

, Φ < Φc
4(Φc−Φ)1/2

3

(
σb
Y

)3/2
, Φ < Φc

center-bound Φ−Φc
Φ+Φc/3

+
(
σb
Y

)Φ+Φc/3
Φ−Φc

, Φ > Φc
4(Φ−Φc)5

3(Φ+Φc/3)3
+
(
σb
Y

) 4(Φ−Φc)3

(Φ+Φc/3)
, Φ > Φc

TABLE I: Summary of predicted behaviors of competing morphologies in the limiting case of vanishing boundary forces.
Energy-densities and scar edge positions include only the leading σb-dependence in this limit. Here, Φc = 1/12 corresponds to
a bifurcation for the solutions of center-bound, charged scar states, where for Φ > Φc, to solutions are possible, L2 = W and
L2 < W , where the second branch extends to finite σb.

FIG. 6: Defect phase diagram in the continuum limit where
b/W → 0. Two scarred-morpholgies are favorable for respec-
tive tensile and compressive boundary conditions: neutral,
edge-bound scars (state III) and charged, edge-bound scars
(state V). The boundary between these states is the σb = 0
where all scarred morphologies achieve total stress collapse
through the caps (in the asymptotic ε→ 0 limit).

edge-bound scars persists over the entire range of finite
boundary forces.

VI. VANISHING BOUNDARY FORCE AND
FINITE LATTICE SPACING

Because scars are predicted to cover the entire area
of both charged and neutral caps when boundary forces
vanish, the dominant energies of all scarred patterns, irre-
spective of total topological charge, are degenerate along
the line σb = 0. Thus, resolving the degeneracy between
neutral and charged caps the singular limit σb → 0, re-
quires consideration of the finite-ε contributions to the
energies of competing defect patterns. Here, we show by
a scaling argument that the lowest-order corrections to
dominant energy, the sub-dominant energy, can be as-
sociated with “self-energy” of forming scars from mul-
tiple, elastically-interacting scars, which is proportional
to the total number dislocations in the edge-bound scar
patterns (states III and V) , given by eq. (13). For
clarity, we outline the argument for neutral caps (s = 0),
though the argument extends straightforwardly to single-
disclination, charged caps (see Appendix C).

Beginning with the elastic energy of the dislocation-
free cap Edf ≈ YW 2Φ2 (assuming σb/Y � Φ and, hence,
L1 �W ), we consider the change in the cap energy due
to presence of multi-dislocation scars. The relaxation en-
ergy Erelax is most straightforwardly computed [28, 29]
from the mechanical interaction between dislocations and
the initially compressive stress at the boundary, propor-
tional to −Y Φ, as edge dislocations of width b virtually
“climbs” from the cap edge a distance W − r ≈W relax-
ing energy by

Erelax ≈ −bWY ΦNd ∼ −Edf , (20)

where we used the fact that Nd ∼ ε−1/2 = ΦW/b. Turn-
ing now to elastic interactions between scars, we note
again that dominant far-field elastic effect of the scars
comes from their “tips” [16] at r = L1: For a scar with
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linear dislocation spacing, λ, the rotation of the crys-
tallographic directions across the grain-boundary scar is
∆θ ≈ b/λ. At the far-field, the elastic cost of the scar
end, therefore behaves as virtual “disclination” of charge
∼ ∆θ. Assuming a number of scars ns, the rotation
angle of across scars (and the virtual “charge” of scar
tips) is roughly ∆θ ' bλ ≈ bNd/(nsW ) ≈ Φ/ns. The
elastic interaction between central, like-charged virtual
disclinations is Y (∆θ)2W 2 per pair, leading to a total
interaction energy,

Einter ≈ Y n2
s(∆θ)

2W 2 ∼ Edf . (21)

Like Erelax, the scar interactions contribute at the domi-
nant scale, Edf , and exhibit no dependence on scar num-
ber or on the microscopic scale, b, identifying these terms
with the elastic energy of the dominant stress-collapsed
pattern. The limit of vanishing boundary forces, where
the dominant energy vanishes, therefore corresponds to
a net relaxation of the elastic energy of initial geometric
confinement, as well as the cost of inter-scar repulsions,
through scar formation.

Not accounted for in the balance of dominant energies
above, is the residual elastic “self-energy” of scar forma-
tion, Eself , which arise due to the imperfect cancelation
of geometric stresses for finite b/W (and finite-ε). In ad-
dition to the far-field elastic cost of the singular “tips”
of scars, Y (∆θ)2W 2 per scar, grain boundaries are char-
acterized by a “line tension”, ∼ Y b2λ

[
ln(λ−1/b) + Ec

]
,

where Ec parameterizes the inelastic core energies of dis-
locations [24], from which we estimate the total self en-
ergy of ns scars

Eself ≈
[
n−1
s + ε1/2 ln(nsε

1/2) + const.
]
Edf . (22)

Optimizing the residual elastic energy of scar n∗s ∼
ε−1/2 ∝ Nd, we find Eself ∼ ε1/2 and that the ratio of
this cost relative to the energy of the defect-free state
is proportional to ε1/2 ∼ b/W and hence vanishes as
lattice spacing goes to zero. Therefore, we identify the
self-energy scar formation, which is, O(ε1/2), as the first
correction to the O(ε0) terms identified as the dominant
energy (Erelax and Einter). Because differences between
these O(ε0) terms (which are dominant when σb is finite
and ε→ 0) vanish for scarred patterns as for σb = 0, the
terms which distinguish competing scarred states at zero
boundary force derive entirely from these leading finite-
ε corrections (which are sub-dominant when σb is finite
and ε→ 0) .

To analyze the case of strictly σb = 0 and ε � 1,
but finite, we consider the predicted variation of the scar
self-energies as estimated above, and compare this pic-
ture to numerical simulations of caps along the σb = 0
line. The ratio Eself/Nd ≈ Y b2 from the analysis above
implies the intuitive result that the sub-dominant cost
of the scar pattern is simply the Nd times energy cost
per dislocation. Pushing this observation one step fur-
ther, we propose a heuristic picture where the variation
of sub-dominant energy cost, associated with the finite

O(ε1/2) corrections, is predominantly controlled by vari-
ation of the number of dislocations needed to achieve
stress-collapse in competing neutral- and charged-cap
morphologies. Along the singular line σb = 0, where scars
extend through neutral and charged caps, it is straight-
forward to see that from eq. (13) that Nd is linear func-
tion of Φ for both states. Dislocation number increases
with Φ for neutral caps due to the monotonic increase
of geometric stress with curvature, while for low surface
coverage, Nd decreases with Φ due to the tendency of
curvature to “neutralize” disclination-induced stresses.

These linear Φ-dependencies are confirmed in Fig. 7A
where we compare scaled dislocation number in numeri-
cally minimized patterns of neutral and charged caps for
two ratios of lattice spacing to cap size, b/W = 0.0025
and 0.005. We show further in Fig. 7B that the to-
tal energies of these competing states crosses from fa-
vorable neutral caps to favorable charged caps at value
of surface coverage Φ ' 0.077 ± 0.005, for both lat-
tice spacings. These numerical results imply that in the
asymptotic ε → 0 limit and for strictly zero bound-
ary forces, the presence of multi-dislocation scars re-
duces the threshold value for stable disclinations from
the dislocation-free value of Φ = 1/6, to a value remark-
ably comparable to the geometric “neutrality” condition
of Φc = 1/12 ' 0.083. In the inset of Fig. 7B, we com-
pare the total energies per dislocation of the simulated
charged- and neutral-scar patterns, showing that the en-
ergy per dislocation varies only weakly over the range of
0 < Φ . 1/6 in comparison to relative number of dislo-
cations changes by more than 50% over the same range.
While the number of dislocations in charged caps is pre-
dicted to exceed those in neutral caps up to Φ = 1/8,
we find that charged caps are stabilized below this sur-
face coverage due to a lower mean energy per dislocation,
Ēd: in charged caps, Ēd = 0.01Y b2, compared to roughly
twice this, Ēd = 0.02Y b2, for neutral caps.

Overall, this scaling argument, corroborated by simu-
lations, imply that along the singular line σb = 0 the role
of surface geometry enters through number of disloca-
tions needed to achieve “perfect” stress collapse. In neu-
tral caps, the number of dislocations needed to “screen”
stresses vanishes as Φ → 0, while in the presence of the
central disinclination requires a finite number of disloca-
tions in flat charged caps (∝ W/b). This balance is al-
tered with increasing surface curvature, which increases
Nd for neutral caps due to the increased geometric stress
and alternately lowers the number of necessary disloca-
tions in charged caps, due to the tendency of positive
curvature to “neutralize” the disclination stresses.

VII. DISCUSSION

By exploiting a well-defined asymptotic limit of vanish-
ing lattice spacing, we find that it is possible to compare
the morphologically-rich spectrum of multi-dislocation
patterns exhibited by crystals bound to curved surfaces.
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FIG. 7: Neutral vs. charged scar states for σb = 0 for finite,
but small, b/W . In (A), we compare the scaled total dislo-
cation number for charged and neutral caps from simulations
with two finite lattice spacings, b/W = 0.0025, 0.005. Dashed
curves compare predictions from the predictions of the stress-
collapse state, eq. (13). In (B), we compare the normalized
total energy of simulated states, indicating a transition from
stable neutral scars to charge scars at Φ ' 0.077± 0.005 (the
grey region). The inset shows the total energy of simulated
scar morphologies normalized by Nd, indicating a roughly
constant energy per dislocation in both morphologies.

This theory provides a quantitive framework for the tran-
sition from defect-free flat crystals to the ground states
of positively-curved crystals, possessing one or more ex-
cess five-fold disclinations. Significantly, we find for zero
boundary forces that excess dislocations in the ground
state lead to a substantial reduction of the critical cur-
vature (or surface coverage) needed to stabilize the first
excess disclination in the cap. Moreover, we find that
in the asymptotic limit of vanishing lattice spacing, the
transition between topologically-neutral to topologically-
charged defect patterns becomes relatively insensitive to
surface curvature, exhibiting instead a very sharp (dis-
continuous as ε→ 0) dependence on forces at the bound-
ary of cap. We note, in passing, that identical predictions
hold for crystalline sheets on a constant-negative curva-
ture surface provided we simply invert the sign of surface
curvature (or Φ), disclination charge and boundary forces
in the analysis of the cap.

A key point of comparison of this theory are the ex-
periments of Irvine et al. which studied optimal defect

patterns formed by charge colloids on oil-water droplets,
where the surface coverage was varied through chang-
ing the contact angle with partially wetting surfaces. In
these experiments the ratio crystal dimension to lattice
spacing is far from the continuum limit (W/b ∼ 10− 20)
and the boundary conditions on the crystal at the drop
edge are not precisely defined, yet observed defect pat-
terns are clearly characterized by large scars, suggesting
that multi-dislocation patterns play an important role
in stabilizing excess disclinations. Indeed, these experi-
ments find that the transition from S = 0 to S 6= 0 seems
to fall along topologically-charged neutrality line, consis-
tent with our prediction for the stability condition of the
S = π/3 at σb = 0, as opposed to the geometric “over-
charging” expected in the absence of multi-dislocation
scars. Of course, when comparing to experiments, we
should be careful to note that our model focuses on elastic
energy ground states and not the effect of defect pattern
on cap formation kinetics. The role of defects notwith-
standing, the kinetics of crystallization on curved sur-
faces is not well understood. Recent studies [34] on the
effect of substrate curvature on nucleation and growth of
the 2D crystals on curved substrates argue the critical
size and propagation rate of nuclei is strongly affected by
highly curved substrate (or large surface coverage Φ), al-
though it has also been shown that for slight curvatures
(consistent with the small-slopes limit of this theory) dy-
namics will be only slightly perturbed relative to flat sur-
faces [34, 35]. Into this picture, insertion of defects into
the growing caps is likely to introduce further complex-
ity to the kinetics and structure formation (see e.g. ref.
[27]).

Before concluding, we discuss two further open is-
sues regarding the optimal structural response of crys-
tals confined to spherical surfaces. The first concerns the
crossover from the defect phase diagram for the sheet
is comparable to the lattice dimension, W & b (Fig. 1)
to the asymptotic regime of the continuum limit where
W � b (Fig. 6) . Our results suggest that as the cap
size W/b is increased from order unity to � 1 (corre-
sponding to ε decreasing from order Φ−1 & 1 to � 1)
the phase boundary σ∗(Φ) flattens from a linear func-
tion of Φ (neutral/charged boundary controlled by both
curvature and external force) to the σb = 0 line (transi-
tioned controlled by boundary force only), with a crit-
ical surface coverage shifting from Φ = 1/6 down to
roughly Φ ' 1/12. In this study, we are able to ad-
dress either the limit where boundary forces are finite and
b/W → 0 (in which dominant energy scales are O(ε0)) ,
or instead where boundary forces vanish, while b/W re-
mains small but finite (in which dominant energy scales
are O(ε−1/2)). Determining the behavior of σ∗(Φ) for
small but finite-ε needed to capture the crossover between
the large- and small-lattice spacing regimes requires com-
parison of the competing charged- and neutral-scar pat-
terns when the O(ε0) and O(ε1/2) terms are necessarily
comparable. In this case, the separation of energy scales
cannot be predicated on the limiting assumption of pre-



11

fect stress collapse, which was assumed to optimize the
(dominant) elastic energy in the ε → 0 limit. For fi-
nite b optimal states will achieve a slightly different par-
tition of energy between dislocation relaxation energy,
scar interactions and self-energy that was outlined above
in Sec. VI. One way to see this is from the balance of the
radial Peach-Koehler force εijσjkbk and the radial self-
interaction force of dislocations in a circular crystal [29],
fself(r) = (Y b2/4π)r3/(W 2−r2), which suggest that me-
chanical equilibrium requires σθθ = −fself(r)/b ∝ b in the
scarred zone, rather than the strict assumption perfect
stress-collapse (or σθθ = 0). The degree of this “imper-
fect stress collapse” is dependent on lattice dimension,
implying ε-dependent corrections to the “dominant” elas-
tic energy computed from the perfect-stress collapse con-
dition invoked here. It is likely such b/W corrections to
the “dominant” elastic energy will play an important role
in the evolution of the charge-to-neutral boundary away
from the ε→ 0 limit.

A second important open question involves the compe-
tition of defect-mediated relaxation of curvature-imposed
frustration, with other structure modes possible for a self-
assembled, sheet-like crystal. Here, we find that when
b/W � 1 excess dislocations greatly reduce the cost of
geometric frustration and fundamentally alter the transi-
tion between topologically neutral and charge defect pat-
terns. This is, of course, predicated on the assumption
that crystal boundaries remain roughly circular and the
shape of the crystals conforms perfectly to the imposed
spherical shape. Previous theories [21, 30] and recent
experiments of colloidal crystals on curved droplets [31]
show that when inter-element forces are sufficiently brit-
tle and line-tension of the crystal is sufficiently low, the
optimal state avoids topological defects through reshap-
ing the boundary of the crystal to an anisotropic, ribbon-
like morphology. Moreover, in a previous study we have
addressed the possibility of a wrinkle-to-scar transition
possible when a crystalline cap forms on substrate is suf-
ficiently deformable to allow for both out-of-plane elastic
deformation (e.g. wrinkles, folds) and in-plane, “plastic”
deformation (topological defects). This study compared
wrinkle vs. neutral scar patterns on crystalline caps un-
der adhesive tension. In this regime of parameter space,
we found that the degree of elastic relaxation possible via
dislocation scars in the b → 0 limit is identical to what
can be achieved by highly-wrinkled states for infinitely-
bendable sheets. This connection between the principles
of defect-mediated stress collapse and the so-called “ten-
sion field theory” of infinitely-bendable sheets [20, 32, 33]
implied that the relative stability of wrinkled or scarred
states of the cap is entirely dictated by microscopic en-
ergetics associated with subdominant costs for wrinkles
or defects, since their dominant elastic energies are iden-
tical.

In the present case, where we generalize the problem to
include both the possibility of excess 5-fold disclinations
and compressive boundary stresses, we expect a signif-
icant departure from the “near degeneracy” of wrinkles

and scars predicted under tensile boundary forces. While
out-of-plane deformation of sheets is only able to collapse
compression (through absorbing excess length), disloca-
tions are able to collapse both compression or tension:
flipping the orientation of dislocation changes a removed
partial row of sites to an added partial row. Indeed, we
find the existence of defect morphologies which collapse
tension rather than compression via the reversal of the
Burgers vector along the hoop direction. One of these
states, edge-bound, charged scars (V) becomes energet-
ically favored for σb < 0. This mechanical state, which
sustains compression but excludes tension throughout
the cap, is not achievable via out-of-plane elastic defor-
mation (such as, wrinkling). This implies that compres-
sive boundary forces (and, possibly, also negative cur-
vature) break the degeneracy between “stress-collapse”
states of wrinkled and scarred states of caps, leading to
the selection of cap morphology deriving from the dis-
tinction between the elastic energy relaxation achieved
via defect-mediated vs. wrinkle-mediated response.

VIII. CONCLUSION

Beyond a new understanding of structure forma-
tion in existing materials like particle-coated droplets,
our framework for emergent defect patterns introduces
new directions for 2D materials design. For in-
stance, recent theoretical and experimental work on “de-
signer graphene” indicate that mechanical properties of
atomically-thin sheets can be dramatically remodeled by
the presence of controlled amounts of dislocations [36–
38]. In this light, our framework may be exploited to
direct the number, location, orientation and pattern of
defects on a crystalline sheet through manipulation of
a combination of boundary forces and geometry of the
sheet, which in turn may lead to new paths for engineer-
ing two-dimensional with spatially heterogeneous meta-
material properties.
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Appendix A: Stress-collapsed morphologies

In the following subsections, we summarize the struc-
ture and energetics of competing radial scar morpholo-
gies. Consistent with numerical simulation results
(Fig. 4), we consider, separately the cases of edge-bound
and center-bound scars, by analyzing the equation of
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state, eq. (11), for the respective cases of L1 ≥ 0;L2 =
W and L1 = 0;L2 ≤ W . Additionally, we consider,
alternately, neutral and charged morphologies, corre-
sponding to the respective s = 0 and s = π/3 cases
of the stress-collapsed solutions. For each of these four
competing morphologies — neutral/charged and edge-
bound/center-bound scars — we summarize predictions
for the positions of scarred-zones and dominant energet-
ics. The limiting behavior of these morphologies, as well
as the competing dislocation-free states, is summarized
in Table I. Note that we follow the morphology labels
(I-VI) defined in Fig. 5.

1. Neutral caps, edge-bound scars (morphology III)

Here we consider the case s = 0 and L2 = W for which
the equation of state, eq. ( 11), reduces to the simple
condition,

σb/Y =
L3

1

8R2
, (A1)

which has the solution for the inner-edge of the scarred
zone

L1 = W (σb/T
n
∗ )1/3 (A2)

with Tn∗ ≡ Y Φ/2. In the limit of vanishing tensile
stress, scar edges exhibit a singular approach to the cen-

ter limσb→0+
L1 ∝ σ

1/3
b . The requirement that L1 ≥ 0

and L1 < W define the existence criteria for edge-bound,
neutral scars: 0 ≤ σb < Tn∗ .

The dominant energy of edge-bound, neutral scars is
given by

Edom,III
πW 2

=
σ2
b

Y

[1

3
ln

(
σb
Tn∗

)
− 1

2

]
+ f(Φ, σb), (A3)

where f(Φ, σb) ≡ −σ2
b (1 − ν)/Y + 4Φσb/3 is a

morphology-independent term in the free-energy density
of all stress-collapsed states.

2. Neutral caps, center-bound scars (morphology
IV)

Here, we consider the case s = 0 and L1 = 0 for which
the equation of state, eq. ( 11), reduces to the form,

σb/Y = − (W 2 − L2
2)2

16W 2R2
, (A4)

which has the solution for the outer-edge of the scarred
zone

L2 = W
√

1− (−σb/Pn∗ )1/2 (A5)

with Pn∗ ≡ Y Φ/4. In this state, scars approach the
edge of the cap in the limit of vanishing compression,

as limσb→0−(W − L2) ∝ |σb|1/2. The range of real solu-
tions to eq. (A4) with W ≥ L2 > 0 define the existence
criteria for center-bound, neutral scars: 0 ≥ σb > −Pn∗ .

The dominant energy of this state is given by

Edom,IV
πW 2

= −4Φσb
3

(
1− (−σb/Pn∗ )1/2

)

×
(

1−
√

1− (−σb/Pn∗ )1/2
)

+ f(Φ, σb) (A6)

In the limit of weak compression, the most significant
contribution to the energy difference with competing
morphologies derives from the first term, which scales as
∼ |σb|3/2. The physical origins and consequences of this
singular dependence on boundary forces are discussed in
Sec. V.

3. Charged caps, edge-bound scars (morphology V)

Here, we consider the case of a centered, 5-fold discli-
natiion, s = π/3 and scars extending to the cap edge
L2 = W for which the equation of state, eq. (11), re-
duces to the cubic form,

σb/Y = − L1

8W

(1

3
− 2ΦL2

1

W 2

)
. (A7)

Under weak boundary compression, σb < 0, this equation
can have two real roots for L1, the smaller of which cor-
responds to the lower-energy branch, with scars covering
a larger fraction of the cap. For example, in the limit
of weak compressive forces, the inner edge of the scars
approaches the center as

lim
σb→0−

L1/W = −24σb
Y

[
1 + 216Φ(σb/Y )2

]
, (A8)

which also shows that tendency of the scar edge to pull
away from the cap center with increasing curvature. The
existence of the edge-bound, charged cap is constrained
by two conditions: 1) the existence of real value solutions
for L1, which requires σb ≥ −2−3/2Y Φ−1/2/27 and 2) the
requirement that scar edges are within the cap, L1 ≤W ,
which requires that σb ≥ −Y (1/6 − Φ)/2. These two
conditions meet at a value of cap curvature Φ = 1/18,
such that we may define the existence of the charged-
cap, edge-bound scar state as the range 0 ≥ σb > −P c∗
where

P c∗ =





Y (1/6− Φ)/2, forΦ < 1/18

2−3/2Y Φ−1/2/27, for Φ ≥ 1/18

(A9)

For a solution of eq. (A7) for L1 the dominant energy
of this state is

Edom,V
πW 2

=
Y L2

1

W 2

[ Φ2L4
1

24W 4
− ΦL2

1

48W 2
+

1

288

]
− σ

2
b

Y
ln(W/L1)

+
σbL1

W

( 1

12
− ΦL2

1

8W 2

)
+ f(Φ, σb) (A10)
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Here, we note that the distinguishing costs of this mor-
phology vanish smoothly with vanishing boundary stress,
as ∼ σ2

b lnσb, deriving from the energy of pulling scar
ends from cap center.

4. Charged caps, center-bound scars (morphology
VI)

Here we consider s = π/3 and L1 = 0 for the case of
scars bound to the center of a charged caps. From these
conditions, the equation of state equation of state, eq.
11), has the form

σb
Y

= − 1

12

[
ln(L2/W ) +

W 2 − L2
2

2W 2

]
− Φ

(W 2 − L2
2)2

4W 4

(A11)
This equation has real solutions for L2 ≤ W all tensile
boundary forces, with an L2 that generically decreases
with σb. For example, for extremem limit of large ten-
sions (σb � Y/12) the solution to eq. (A11) has the
solution L2 ' W exp

[
− 12σb/Y

]
, indicating a vanish-

ing, yet finite, scarred zone at the center of the cap.
For the case of vanishing boundary forces there is al-
ways root L2 = W , corresponding to scars covering the
entire cap. To consider the approach as σb → 0+, we
define L2 = W − δ` and expand eq. (A11) for δ/W � 1
yeilding an approximate equation of state,

σb
Y
'
( 1

12
−Φ
)

(δ`/W )2+
( 1

36
+Φ
)

(δ`/W )3, for δ`/W � 1

(A12)
The point at which the quadratic coefficient changes sign
defines a critical surface coverage, Φc = 1/12, which also
corresponds to the point where the integrated curvature
of the cap perfectly neutralized the 5-fold defect. The
limiting behavior of the scar edge as σb → 0 therefore
splits into three regions

lim
σb→0+

δ` = W ×





√
σb/Y
Φc−Φ for Φ < Φc

(
3σb/Y )1/3 for Φ = Φc

Φ−Φc

Φ+1/36 + Φ+1/36
Φ−Φc

(σb/Y ) for Φ > Φc
(A13)

The existence of this state extends over the full ten-
sile regime σb > 0, and somewhat into the compressive
regime for large curvature, when Φ > Φc. In terms of the
critical compression

P c∗∗ = Y

{
0 for Φ < Φc
Φ
4

(
1− Φ2

c

Φ2

)
+ 1

24 ln(Φc/Φ) for Φ > Φc

(A14)
center-bound scars exists on charged caps when σb ≥ P c∗∗.

It terms of a solution for the scar edge, L2, the domi-
nant energy of the center-bound, charged scars state is

Edom,V I
πW 2

=
Y (W 2 − L2

2)2

W 4

[
Φ2

24

(
1 + 2

L2
2

W 2
+ 3

L4
2

W 4

)

− Φ

48

(
1 + 2

L2
2

W 2

)
+

1

288

]
+
σb
3Y

[(1

2
− Φ

)

−
(

1− 4Φ
L2

2

W 2

)L2

W

]
+ f(Φ, σb) (A15)

The energetics simply considerably in the limit of W −
L2 = ` → 0, where by using the limiting form of the
equation of state, eq. (A12), we have

limδ`→0Edom,V I
πW 2

=
4(Φ− Φc)

2

3
δ`3 + f(Φ, σb), (A16)

where the dependence on boundary forces derives from
the σb-dependence of δ` described by eq. (A13). The
∼ δ`3 dependence exhibited here is common to the
center-bound scar morphologies, both charged and neu-
tral. The origin and consequence of this term are dis-
cussed in Section VI.

Appendix B: Discrete dislocation simulations

Here, we briefly summarize the method for numeri-
cally simulating the elastic energy of multi-scar patterns
in neutral and charged caps. This method has been ap-
plied and described previously in refs. [29] and [16]. The
elastic effects of discrete dislocations are modeled from
the solutions to the compatibility equation, main text eq.
(2), for dipolar sources to the bi-harmonic equation for
the Airy stress. From this equation, the stresses gener-
ated by a dislocation with Burgers vector, bα at position
rα may be computed, and in turn, the elastic interactions
of the dislocation with itself, other dislocations and other
sources of stress in the system (i.e. disclinations, bound-
ary forces, curvature) may be derived [29]. From these
expressions, we compute the energy of a cap possessing
an arbitrary array of Nd dislocations as

Etot = Edf +

Nd∑

α=1

[
EDself (bα, rα) + EDrelax(bα, rα)

]

+

Nd∑

α=1

Nd∑

β<α

EDint(bα, rα;bβ , rβ), (B1)

where Edf is the energy of the dislocation-free state, SI
eq. (2). The expressions for elastic self-interaction of
a dislocation, EDself (bα, rα and the pair-wise elastic in-

teraction between dislocations, EDint(bα, rα;bβ , rβ), are
given in ref. [16] (Supporting Material). The coupling
of dislocations to the stresses generated by the cap cur-
vature, boundary stresses and the possible central discli-
nation are encoded in EDrelax(bα, rα), which is derived
from the work done by the Peach-Koehler force on the
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dislocation from “non-dislocation” stresses, σdf
ij (r), when

pulling it along a radial path from the free-boundary into
the bulk of the cap,

EDrelax(b, r) = bθ

∫ W

r

dr′σdf
θθ(r

′), (B2)

where we used the fact that σdf
rθ = 0, while the depen-

dence of hoop stresses on curvature, boundary forces and
the central disclination are given in SI eq. (5). From
this expression, it is clear that the maximal energy relax-
ation is achieved for dislocations polarized along the az-
imuthal direction, corresponding to the addition/removal
of a partial row of lattice positions extending from the
dislocation to the cap edge along the radial direction.
Hence, in our simulated ground states, we assume that

bα = bθ̂ for all dislocations.
Given this discrete-dislocation energy, we simulate the

structure and energetics of “n-fold” patterns of multi-
dislocation scars possessing total dislocation number Nd
for a given W/b ratio and surface coverage Φ, boundary
stress σ/Y and central disclination charge. In this sym-
metry, dislocations are constrained to ns identical radial
lines (scars), equally spaced at angular intervals of 2π/ns
on the cap. It was shown previously [16] that n-fold
symmetric scars emerge spontanously as ground states of
neutral caps provided their length is not too long. Even
in cases where optimal scars are not n-fold symmetric,
the dominant energetics and scaling dependences of the
multi-scar ground state are well-modeled by the behav-
ior of n-fold symmetric patterns. The radial positions of
the Nd/ns = M concentric rings (constrained to an inte-
ger) of dislocations are initialized randomly, then relaxed
via steepest descent according the discrete-dislocation en-
ergy. After relaxation of position, the procedure is re-
peated, varying the scar number to find the optimal ns
for a given Nd, σ, b/W and Φ. We compute the elastic en-
ergy of the simulated system, Etot(Nd;σ, b/W,Φ, s) for a
range of possible dislocation numbers, Nd = N c

d±0.35N c
d ,

where we use the prediction of N c
d from continuum the-

ory, SI eqs. (13) and (14), as the initial guess. From this
set of optimized state, we select Nd corresponding to the
lowest energy state.

For the results shown in main text Figures 3 and 4,
discrete dislocation simulations were carried out over a
curvatures: Φ = 0...0.17, for two different ratios of lattice
spacing to cap size, b/W = 0.0025, 0.005.

Appendix C: Dominant vs. sub-dominant scar
energetics for charged caps

Here, we briefly overview the scaling analysis of the
multi-scar, charged cap morphologies to classify the en-

ergetic contributions of the state into dominant (finite as
b/W → 0) and subdominant (vanishing as b/W → 0).
We follow the same arguments presented in Sec. VI for
the neutral scar morphology again focusing on the limit
σb → 0, and show how these generalize in the presence
of a central disclination. For the charged cap, the energy
of dislocation-free cap can be written as,

lim
σb→0

Edf(s = π/3) = Y πW 2
(Φ2

24
− Φ

12
+

1

288

)

∼ YW 2fE(Φ), (C1)

where fE(Φ) is a dimensionless function remains finite
as Φ → 0. Likewise, stress generate by the combina-
tion of the disclination and curvature, from eq. (5), can
be shown to be proportional to Y times a dimensionless
function of Φ. Therefore, the relaxation energy achieved
by pulling Nd dislocations into the charged caps has a
similar form as main text eq. (11) for the neutral cap
(up to dimensionless function of Φ),

Erelax(s = π/3) ≈ −bWY Nd ∼ −Edffr(Φ). (C2)

where from eq. (13) we have used that Nd ∼ W/b and
fr(Φ) is a dimensionless function that remains finite as
Φ → 0. Thus, the presence of the central disclination,
and the interaction between dislocations in scars with
that central disclination do not alter the conclusion that
Erelax ∼ −Edf and relaxation energy of dislocation scars
remains finite as b→ 0.

The scaling of the energies for interaction between
scars, Einter, and the elastic self energy of scar forma-
tion, Eself , follows the identical argument as presented in
the main text for neutral scars, only modified according
to Nd = W/bfNd

(Φ), where again fNd
(Φ) is a dimen-

sionless function that remains finite as Φ→ 0. Hence, it
is straight forward to show that the central results that
Einter ∼ Edf and Eself ∼ Edf/n

∗
s, where the optimal scar

number n∗s ∼W/b diverges in the continuum limit. Thus,
like the case of the neutral cap, Erelax and Einter, remain
finite as b → 0 and can therefore be associated with the
dominant energetics captured by the elastic free energy
of the stress-collapse solutions, while the self-energy of
scar formation Eself ≈ Y b2Nd ∼ b/W can be associated
with the sub-dominant correction to the limit of perfect
stress collapse only possible with b/W is strictly 0.
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