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Flows of hard granular materials depend strongly on the interparticle friction coefficient µp and
on the inertial number I, which characterizes proximity to the jamming transition where flow stops.
Guided by numerical simulations, we derive the phase diagram of dense inertial flow of spherical
particles, finding three regimes for 10−4 . I . 10−1: frictionless, frictional sliding, and rolling.
These are distinguished by the dominant means of energy dissipation, changing from collisional to
sliding friction, and back to collisional, as µp increases from zero at constant I. The three regimes
differ in their kinetics and rheology; in particular, the velocity fluctuations and the stress ratio both
display non-monotonic behavior with µp, corresponding to transitions between the three regimes
of flow. We rationalize the phase boundaries between these regimes, show that energy balance
yields scaling relations between microscopic properties in each of them, and derive the strain scale
at which particles lose memory of their velocity. For the frictional sliding regime most relevant
experimentally, we find for I ≥ 10−2.5 that the growth of the macroscopic friction µ(I) with I is
induced by an increase of collisional dissipation. This implies in that range that µ(I)−µ(0) ∼ I1−2b,
where b ≈ 0.2 is an exponent that characterizes both the dimensionless velocity fluctuations L ∼ I−b
and the density of sliding contacts χ ∼ Ib.

Dense flows of granular media are central to many in-
dustrial processes and geophysical phenomena, includ-
ing landslides and earthquakes [1–3]. At a fundamental
level, describing such driven materials remains a chal-
lenge, in particular near the jamming transition where
crowding effects become dominant and flow stops. In the
last decade, progress was made by considering the limit of
perfectly rigid grains, for which dimensional analysis im-
plies that the strain rate ε̇, the pressure P and the grain
density ρ can only affect flows via the inertial number
I = ε̇D

√
ρ/P , whereD is grain diameter [4–6]. In partic-

ular, for stationary flows the packing fraction φ and stress
anisotropy µ = σ/P , where σ is the shear stress, are func-
tions of I. From the constitutive relations φ(I) and µ(I)
the flow profile can be explained in simple geometries
[4, 7–9]. Here we focus on dense flows I . 0.1 for which
the networks of contacts between grains span the system
and particle motion is strongly correlated [10, 11], and
do not consider the quasi-static regime I . 10−4 where
flow appears intermittent [5, 12–14]. In this intermediate
range one finds

µ(I) = µc + aµ Iαµ , φ(I) = φc − aφ Iαφ , (1)

where µc and φc are non-universal and depend on de-
tails of the grains. Experiments on glass beads and sand
find exponents αµ ≈ αφ ≈ 1, consistent with numerical
simulations using frictional particles reporting αµ = 0.81
and αφ = 0.87 [15]. Despite their importance, constitu-
tive laws Eq.1 remain empirical. Building a microscopic
framework to explain them would shed light on a range
of debated issues, including transient phenomena [2, 16],
non-local effects [17–19], and the presence of S-shaped
flow curves when particles are soft [20–22].

To make progress, it is natural to consider the limit-
ing case where particles are frictionless, a situation that

10−2 10−1 100 101

10−3

10−2

10−1

10−2 10−1 100 101

10−3

10−2

10−1

Frictionless

Frictional
Sliding

Rolling

µp

I

FIG. 1. (Color online) Phase diagram of dense homogeneous
inertial frictional flow. In the frictionless and rolling regimes,
most energy is dissipated by inelastic collisions, while in the
frictional sliding regime energy dissipation is dominated by
sliding. Along the phase boundary, grains dissipate equal
amounts of energy in collisions and in sliding. For I & 0.1,
one enters the dilute regime [9]. The dashed line has slope 2.

has received considerable attention in the jamming liter-
ature [23–26]. For hard particles, two geometrical results
key for inertial flows are as follows. First, as the density
increases, the network of contacts becomes more coordi-
nated, implying that motion becomes more constrained.
This leads to a divergence of the velocity fluctuations
〈δV 〉 when constraints are sufficient to jam the material
[27–30]. Thus the contact network acts as a lever, whose
amplitude is characterized by the dimensionless number
L ≡ 〈δV 〉/(ε̇D). At the same time, the rate at which
new contacts are made increases, and the creation of each
contact affects motion on a growing length scale. These
effects imply that velocity fluctuations decorrelate on a
strain scale εv that vanishes at jamming [31]. The the-
ory of Ref. [31], which uses the fact that dissipation can
only occur in collisions for frictionless particles, predicts
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FIG. 2. (Color online) Ratio of dissipation due to sliding,
Dslid, to dissipation from collisions, Dcoll, vs µp. The triangle
has slope 1.

αµ = αφ = 0.35, L ∼ I−1/2 and εv ∼ I. Encourag-
ingly, these results agree with the numerics of Ref. [32],
which found αµ ≈ αφ ≈ 0.38 and L ∼ I−0.48. How-
ever, αµ and αφ differ significantly from their values for
frictional grains stated above, suggesting the presence
of different universality classes. Currently, why friction
qualitatively affects flows and potentially leads to sev-
eral universality classes, how many universality classes
exist, and what differs between them microscopically are
unresolved questions.

In this work we use numerical simulations to answer
these questions. We systematically study dense flows
over a large range of I and µp. By focusing on the mi-
croscopic cause of dissipation, we show the existence of
three universality classes, as illustrated in Fig. 1. At low
friction, there exists a frictionless regime in quantitative
agreement with the theory of Ref. [31], in particular
we establish that εv ∼ I. As the friction increases, one
enters the frictional sliding regime, where dissipation is
dominated by sliding at contacts instead of collisions, and
for which εv ∼ I holds true but L ∼ I−b with b ≈ 0.22.
We relate the exponent b to the density of sliding con-
tacts, χ ∼ Ib. Most importantly, we show that although
the value of µc in Eq.1 reflects sliding dissipation, the
dependence of µ with I is governed by collisional dissi-
pation when I ≥ 10−2.5, leading to αµ = 1 − 2b. Fi-
nally, at even larger µp one enters a rolling regime where
dissipation is once again dominated by collisions, and
where exponents are consistent with those of frictionless
particles, both for kinetic observables and constitutive
laws. We derive the phase boundary between the fric-
tionless and the frictional sliding regime. Overall, our
work explains why friction qualitatively changes physical
properties, and paves the way for a future comprehensive
microscopic theory of dense granular flows.

Numerical Protocol— To model inertial flow of fric-
tional particles, we use a standard discrete element
method [33] in two dimensions, described in more de-
tail in Appendix 1. Collisions are computed by modeling
grains as stiff viscoelastic disks: when grains overlap at a

contact α, they experience elastic and viscous forces ~feα,
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FIG. 3. (Color online) Lever L vs I, (a) for µp ≤ 0.3, and (b)

for µp ≥ 0.3. The dashed lines are ∝ I−1/2, while the dotted
line is ∝ I−0.22.

and ~fvα, respectively, leading to a restitution coefficient
which we choose to be e = 0.1 [34]. The tangential (nor-

mal) components ~fα
T (fNα ) are restricted by Coulomb

friction to satisfy |~fαT | ≤ µpf
N
α ; contacts that saturate

this constraint are said to be sliding, while those that
obey a strict inequality are said to be rolling.

Shear is imposed with rough walls bounding the upper
and lower edges on an x−periodic domain. We perform
our numerics at imposed global shear rate and constant
pressure, following a system preparation described in Ap-
pendix 1. We discard data that do not satisfy strict crite-
ria for homogeneity of the flow, as specified in Appendix
1. Grain stiffness is such that relative deformation at
contacts is ∆ ≈ 10−3.8, within the rigid limit established
previously [5], and system size is large enough to ensure
the absence of finite-size effects. Independence of our re-
sults with respect to ∆, e, and N is shown in Appendix
2.

Partitioning dissipated power— Frictional particles can
dissipate energy either through inelastic collisions, at a
rate Dcoll, or by sliding at frictional contacts, at a rate
Dslid. In our contact model, inelasticity is due to the
viscous component of contact forces; therefore the colli-
sional dissipation rate Dcoll can be written

Dcoll ≡
∑
α∈C

fN,vα UNα +
∑
α∈CR

~fα
T,v · ~UTα , (2)

where ~Uα is the relative velocity at contact α, decom-
posed into normal and tangential components, UNα and
~UTα . Here C denotes all contacts, of number Nc, and
CR denotes rolling contacts. The dissipation rate due to
sliding is

Dslid ≡
∑
α∈CS

~fα
T · ~UTα , (3)

where CS is the set of sliding contacts. In steady state,
dissipation must balance the work done at the boundaries
[35]. The energy input from the shear stress is Ωσε̇, where
Ω is the system volume, and for large systems, additional
contributions from fluctuations of the normal position
of the wall are insignificant. We define dimensionless
dissipation rates per particle D̃coll ≡ Dcoll/(Ωpε̇), D̃slid ≡
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FIG. 4. (Color online) Autocorrelation of particle velocities,

C̃(ε) = 〈V yi (0)V yi (ε)〉/〈V yi (0)2〉 for µp = 0.3 and indicated

I. (b) C̃(ε) vs ε/εv. In (b), unfilled symbols correspond to
strains larger than 0.01, not used for fitting, and the solid line
shows the fitted form.

Dslid/(Ωpε̇), so that [36]

µ = D̃coll + D̃slid. (4)

To investigate which source of dissipation dominates in
Eq. 4, we consider the ratio Dslid/Dcoll, shown in Fig.2.
As expected, collisional dissipation dominates in the fric-
tionless limit, but sliding dissipation becomes more im-
portant as µp is increased, and becomes dominant at in-
termediate friction coefficients and small inertial num-
ber, consistent with earlier simulations for µp = 0.3 [36].
Strikingly, the dependence on µp is non-monotonic: when
µp reaches ≈ 0.2, this trend abruptly reverses, and
Dslid/Dcoll decreases with µp, implying that collisional
dissipation dominates as µp →∞.

To define phase boundaries, we use the inertial number
at which Dslid/Dcoll = 1, resulting in the phase diagram
of Fig. 1. From the non-monotonicity of Dslid/Dcoll with
µp, this leads to two phase boundaries merging at I ≈
0.1, where the dense flow regime ends [9, 36]. This defines
three flow regimes: frictionless, frictional sliding, and
rolling, where sliding dissipation dominates only in the
intermediary regime. Later in this work, we will show
that this phase diagram correctly classifies kinetics as
well as constitutive laws.

Connecting dissipation to key kinetic observables— In
the rigid limit, collisions become very short in duration,
and the power dissipated in collisions can be expressed in
terms of microscopic observables [31], as we now recall.
Each time a particle changes its direction with respect
to its neighbors, a finite fraction of its kinetic energy
∼ mδV 2 must be dissipated, where m is the particle mass
(we consider finite restitution e < 1). Since εv is the
characteristic strain at which velocities decorrelate, this
occurs at a rate ∝ ε̇/εv, thus Dcoll ∼ N(ε̇/εv)m〈δV 2〉 and

D̃coll ∝
N(ε̇/εv)mδV

2

NDdpε̇
∝ I

2L2

εv
(5)

The rate of sliding dissipation can be directly esti-
mated from its microscopic expression, Eq. (3). We
assume that the force at the sliding contact is typical,

i.e. |~fTα | = µpf
N
α ∼ µppD

d−1, and that the sliding
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FIG. 5. (Color online) (a) Decorrelation strain scale, εv, vs
I for selected µp. The dotted, dashed, and dot-dashed lines
are ∝ I1.25, I1.1 and I0.9, respectively. (b) The fraction of
sliding contacts, χ, vs I, for various µp (symbols as in Fig.
3). Dotted, dashed, and dot-dashed lines have slopes 0.43,
0.41, and 0.27, respectively.

velocity is of the order of the velocity fluctuation, i.e.

|~UTα | ∼ δV . These assumptions hold true in the slid-
ing frictional regime where they matter (they eventually
break down in the rolling regime where sliding contacts
become rare and atypical, see Appendix 3). We get the
estimate

D̃slid ∝
Ncχ〈|~fT |〉S〈|~UT |〉S

NDdpε̇
∼ µpχL, (6)

where 〈·〉S denotes an average over sliding contacts,
whose fraction is χ. Using Eqs. (4,5,6) we now get the
following constraints on the different regimes:

µ ∼ I2L2ε−1
v Frictionless, Rolling (7)

µ ∼ µpχL, Frictional Sliding (8)

We now test these scaling relations and use them to com-
pute the boundary of the frictionless regime.

Measuring kinetic observables– We measure the lever
effect defined as L ≡ 〈δV 〉/(ε̇D), where 〈δV 〉 is the typ-
ical magnitude of velocity fluctuation about the mean
velocity profile [37]. Our results are shown in Fig.3. For
any µp, L grows as I → 0. In the frictionless limit, we
find L ∝ I−0.50, in agreement with earlier results [32]
and the prediction [31]. A striking result is that the am-
plitude of this growth is non-monotonic in µp, with a
minimum around µp ≈ 0.2, thus closely paralleling the
phase diagram of Fig.1. Moreover, in the µp →∞ limit,
the divergence is again close to L ∝ I−0.50. In contrast,
curves that are fully in the frictional sliding regime, as oc-
curs for µp = 0.1 or µp = 0.3, are well fitted by L ∝ I−b
with b = 0.22, close to experiments finding L ∝ I−1/3

[11, 38].
We now turn to the strain scale εv beyond which a

particle loses memory of its velocity. It can be ex-
tracted from the decay of the autocorrelation function
[39] C(ε) = 〈V yi (0)V yi (ε)〉, where we use the vertical com-
ponent of velocity at particle i, V yi , averaged over all
particles and initial time steps. The normalized correla-
tion function C̃(ε) = C(ε)/C(0) is shown for µp = 0.02
and various I in Fig. 4a. We see that beyond a scale εv,
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C̃(ε) decays as a power-law, as observed numerically in

over-damped suspensions [31, 39]. For all µp, C̃(ε) has
a similar form; we find that for ε . 10−2 it is well-fitted
by [1 + (ε/εv(I))ν)]−η, with ν = 1.1 and η dependent
on µp. By rescaling ε to obtain a collapse, shown in
Fig. 4b, we obtain the scale εv. Repeating this process
for all µp leads to the results shown in Fig. 5a for selected
µp; other µp are shown in Appendix 4. We observe that
for all I and all µp, we have approximately εv ≈ I, al-
though our best exponent for the rolling regime is closer
to εv ≈ I1.28. This result is thus in excellent agreement
with the prediction of [31] for the frictionless case, and
also with experimental measurements finding εv ∼ I [38].
We recall below our previous argument, which we expect
to hold more generally for frictional particles.

Finally, the fraction of sliding contacts χ is shown in
Fig. 5b. For each µp, χ decays as I → 0. In the friction-
less regime, χ ≈ 1, as expected, while in the frictional
sliding and rolling regimes, χ decays as a power-law as I
is decreased. For the frictional regime, such as µp = 0.3,
data are well-fitted by χ ∼ I0.27, while in the rolling
regime we find a sharper decay, χ ∼ I0.43 for µp = 10.

Our results on microscopic quantities are summarized
in Table I. We see that the scaling relations Eqs. (7,8)
are consistent with the data.

Regime boundaries – We can now estimate when the
frictionless regime breaks down. Since in that regime
L ∼ I−0.5, εv ∼ I, and χ ∼ 1, we have according to
Eqs. (5,6) Dslid/Dcoll ∼ µpI−0.5, consistent with Fig.2.
The frictionless regime must break down at an inertial
number Ic where this ratio is of order one, yielding Ic ∼
µ2
p in agreement with Fig.1.
Inside the sliding regime, we have εv ≈ I. To de-

termine the transition to a rolling regime, we note from
Eq. (8) that Dslid/Dcoll ∼ 1/(IL2) ∼ µ2

pχ
2/I. We ob-

serve that the product χµp decays with large µp at fixed
I (data not shown). Thus, although the dissipation of
each sliding contact grows with µp, fewer and fewer con-
tacts slide as µp becomes very large, and the latter effect

Regime Relation Prediction Measured

Frictionless L ∼ I−b b = 1/2 b = 0.50

εv ∼ Ic c = 1 c = 1.10

L ∼ I−b b = 0.22

Frictional εv ∼ Ic c = 1 c = 0.95

Sliding χ ∼ Id d = b d = 0.27

δµ ∼ Iαµ αµ = 1− 2b αµ = 0.6

L ∼ I−b b = 0.50

Rolling εv ∼ Ic c = 1 c = 1.28

χ ∼ Id d = 0.43

TABLE I. Summary of scaling behavior. Predictions for the
frictionless regime are quoted from the theory of [31], while
the other predictions are Eqs. (7,8). In the frictional sliding
regime, scalings are taken for the extremal value µp = 0.3,
while for the rolling regime, scalings are taken from µp = 10.

dominates when µp is large enough. This qualitatively
explains the observed non-monotonic behavior with µp.

Constitutive Relations– Experimentally, the most ac-
cessible quantities are the constitutive relations µ(I) and
φ(I), which we show in Fig. 6. To discuss universality
classes, it would seem appropriate to measure the ex-
ponents αµ and αφ entering Eq. (1). However, these
exponents are much harder to measure than those sum-
marized in Table I, because of finite-size effects in the
fitting parameters µc and φc [32]. Instead, we simply
consider the cases µp = 0, µp = 0.3, and µp = 10 for
which our data are respectively in the frictionless, fric-
tional sliding, and rolling regimes. In the inset to Fig.6
we show that δµ(I) ≡ µ(I)−µc is nearly identical in the
frictionless and rolling regimes (the points overlap), and
definitely distinct from its behavior in the frictional slid-
ing regime. This observation supports further our claim
for three distinct universality classes.

We now argue that in Frictional Sliding regime, the
exponent αµ describing the evolution of the macroscopic
friction with inertial number as defined in Eq.(1) can be
deduced from the exponent b characterizing the velocity
fluctuations. From Eq. (4), the partition of dissipation
is also a partition of µ. As shown in Fig.6c, we observe
that the contribution from sliding is nearly independent
of I, while the contribution from collisions is vanishing as
I → 0. So long as the variation in sliding dissipation with
I is negligible, this implies that µ(I) − µc is dominated
by collisional dissipation, even in the frictional sliding
regime. We find that this is the case for I ≥ 10−2.5

(data not shown). This facilitates precise measurement
of µ(I) − µc in this range, with which we obtain the
measurement αµ = 0.6 for µp = 0.3. Moreover, using
Eqs. (4,5) we obtain

δµ(I) ∝ I
2L2

εv
∼ IL2 ∼ I1−2b, Frictional Sliding,

(9)

implying αµ = 1 − 2b. Our prediction αµ ≈ 0.6 is in
reasonable agreement with the previous measurement of
[15] where αµ ≈ 0.8, considering the restricted range of
inertial number where we expect this power-law behavior
to hold.

Scaling argument for the characteristic strain scale–
The relation εv ≈ I can be rationalized by a generaliza-
tion of the argument in [31]. We use the geometrical fact
that in dense flows, when a grain has an unbalanced net

force, ~F , the ensuing motion will tend to make the re-

maining contacts of the grain align along ~F (see Fig.7).
Since forces are repulsive, this further increases the un-
balanced force and further accelerates the grain. The in-
crease in net force is proportional to the typical contact
force, pDd−1, as well as to the rotation of the contacts,
of magnitude ∼ Ldε, thus

dF

dε
∼ pDd−1L, (10)
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FIG. 6. (Color online) (a) Volume fraction φ vs I for various µp (symbols as in Fig. 3). (b) Effective friction µ vs I (symbols
as in Fig. 3). Inset shows non-monotonic behavior of µ(I)− µc, for µp = 0, 0.3, 10. (c) Decomposition of µ into collisional and
frictional components. Both lines have slope 0.6.

where L is the dimensionless magnitude of the velocity
fluctuation. This equation can also be derived formally,
as shown in Appendix 5. In inertial flow, unbalanced
forces are proportional to accelerations, F = pI2dL/dε,
which leads to

d2L
dε2
∝ LI2

. (11)

Eq.11 indicates that there is a characteristic strain scale
εv ≈ I in which a velocity fluctuation grows by an
amount proportional to its initial magnitude. In steady
flow, such growth must be destroyed by collisions on the
same strain scale, since the latter reorganize the direc-
tion of particle motion. Hence this is indeed the scale
of decorrelation of particle velocities. (At very large µp,
the direction of a contact force can be unrelated to the
contact direction, and corrections to our argument are
plausible.)

Discussion– In this work we have shown that dense in-
ertial granular flows can be classified into three regimes,
in a phase diagram spanned by the friction coefficient µp
and the distance to jamming, characterized by the iner-
tial number I. By considering the microscopic cause of

φ

FIG. 7. (Color online) Illustration of geometrical nonlinearity.
If the central grain has an unbalanced force as indicated by
the arrow, then the ensuing flow will tend to align the contact
normals of the dominant contact forces (thick lines), i.e. the
angle φ will increase. Geometrically, dφ/dt ∝ V , the velocity
of the particle.

dissipation, we have shown that its nature must change
as the friction coefficient µp increases from zero. One
eventually leaves the frictionless regime to enter in the
frictional sliding regime, where both the kinetics and con-
stitutive relations differ. As µp increases further, fewer
contacts slip, and one enters the rolling regime where col-
lisions once again dominate dissipation, and where expo-
nents are consistent with that of the frictionless regime.

Experimentally, these results could be tested by mea-
suring the correlation function C(ε) = 〈V yi (0)V yi (ε)〉,
which captures both the lever amplitude L (at ε = 0)
and the strain scale εv. This will require a sufficient res-
olution in the strain ε that can be probed. Varying the
friction coefficient in these studies would also be valuable.

On the theoretical level, a complete theory of the fric-
tional sliding regime, the most important in practice, is
still lacking. Here we have proposed a scaling description
relating the singularities in the constitutive law µ(I) to
those in the kinetic observables εv(I), L(I) and χ(I),
which can all be expressed in terms of a single unknown
exponent b. A key challenge for the future is to predict
the value of b. Moreover, our arguments are mean-field in
nature, as they assume that dissipation occurs rather ho-
mogeneously in space, and that velocity fluctuations are
described by a single scale L. Although there is evidence
that such mean-field arguments are exact for frictionless
particles [31], they may be only approximate in the fric-
tional case where intermittent strain localization is some-
times reported [5, 14]. Concerning the rolling regime,
why it has the same scaling exponents as the frictionless
regime also needs to be clarified further, beyond their
similarity in dissipation mechanism established here.

Finally, this work could be extended in several direc-
tions. It would be very interesting to measure the kinetic
quantities presented here in the intermittent quasi-static
regime of very slow flows I . 10−4 [5, 12–14]. Similar
extensions could be done with respect to particle shape,
where local ordering is important [40, 41], and parti-
cle softness, where the flow curve can become sigmoidal,
leading to hysteresis [20–22]. Last, over-damped suspen-
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sions present the same problem as inertial flows: various
numerical studies have focused on frictionless particles
[15, 27, 42–45], which appear consistent with the theory
developed in [31]. Together with Eq. 6, the theory pre-
dicts that frictional sliding should dominate over viscous
dissipation when η0ε̇/P � µ2

p, where η0 is the viscosity
of the solvent. It is currently unclear whether this tran-
sition qualitatively affects physical properties, as experi-
ments [46, 47] and numerics [48] with friction are reason-
ably compatible with the frictionless theory. Numerically
building a phase diagram analogous to Fig. 1, compar-
ing the amplitude of sliding dissipation to other sources,

would resolve this issue.
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I. APPENDIX

In these Appendices, we provide additional details of
our results. Appendix 1 describes details of the numer-
ical simulations, while Appendix 2 shows that our main
results are independent of the grain stiffness, restitution
coefficient, system size, and numerical integration time-
step. Appendix 3 shows atypical behavior of sliding ve-
locity and sliding force in the rolling regime. Appendix
4 shows the velocity autocorrelation function for several
values of µp and εv for all values of µp considered. Ap-
pendix 5 computes the effect of geometrical nonlinearity
during flow.

A. Appendix 1. Numerical Simulations

Simulations are performed with a standard Discrete El-
ement Method code [33], which integrates Newton’s equa-
tions of motion for each grain with Verlet time-stepping.
We focus on two dimensions, as empirically exponents do
not appear to depend on dimension; see [31] for a review
of the literature on this point. Collisions are computed by
modeling grains as viscoelastic disks: when grains overlap
at a contact α, they experience elastic and viscous forces
~feα, and ~fvα. The coefficient of the viscous force is chosen
to obtain a restitution coefficient e = 0.1 in binary colli-
sions; away from the singular limit e→ 1 that we do not
consider, varying this coefficient does not strongly affect
our results, as shown in Section 2. These forces can be
decomposed into their contributions normal to the con-

tact, fN,eα and fN,vα , and tangential to the contact, ~fα
T,e

and ~fα
T,v. The tangential force is imposed to stay inside

the Coulomb cone, |~fαT | ≤ µpfNα . Contacts that saturate
the Coulomb constraint are said to be sliding.

The grains are polydisperse with equal numbers of di-
ameter (0.82, 0.94, 1.06, 1.18), the same mixture used in

[22]. Previous work established that the polydispersity
does not affect µc in simple shear flow, even over a huge
range of polydispersity [50]. Results in the main text
are reported for a value of grain stiffness such that the
grain relative deformation is set to ∆ = 10−3.8, ap-
propriate for some materials [2]. This is well within
the range ∆ < 10−3 in which rheological results are
independent of ∆, as previously established in simula-
tions of inertial flow of frictionless and frictional particles
[5, 15, 17, 32, 48]. This result is verified by the explicit de-
pendence of our phase diagram on ∆, reported in Section
2 for ∆ ∈ {10−3.8, 10−2.8, 10−1.8}. We studied three sys-
tem sizes N ∈ {1000, 1800, 3700}. Results are reported
for the largest N ; the absence of finite-size effects is es-
tablished in Section 2. The shortest time-scale of the
dynamics is the microscopic elastic time-scale

√
m/k; we

chose our numerical time-step ∆t such that it never ex-
ceeds 0.06

√
m/k. This ensures that binary collisions are

resolved with > 15 steps, and the much slower multi-
body collisions typical of dense flow will be resolved in
even greater detail. Independence of our results with re-
spect to ∆t is shown in Appendix 2.

The square domain of size Lx × Ly is periodic in the
x-direction and has upper and lower walls. The walls
are created from the same polydisperse mixture as the
bulk, staggered to create roughness. The walls obey an
equation of motion

M
d2~r

dt2
+ η

d~r

dt
= ~Fbulk + ~Fext, (12)

where M is mass, η is a damping coefficient, ~Fbulk is the

force from the bulk of the packing, and ~Fext is an external
applied force. The bulk-wall interactions are via contact
forces, exactly as in the bulk. The external force in the y-
direction is constant, such that F±yext = ∓PLx on the top
(+) and bottom (-) walls. In the x-direction, the external
force is chosen to impose a constant velocity ±Vw, and
hence a constant global shear rate ε̇ = 2Vw/Ly, up to
fluctuations in Ly.

We seek to make the flow as homogeneous as possible.
Following [5], we set η =

√
mk, where k is the spring

constant for particle-particle elastic interactions, and m
the mean particle mass. We tested the dependence of the
results on M . When M/m ∼ 1, the wall equation Eq.(12)
is dominated by the viscous term, and can exhibit long
transients. We therefore set M/m = 50, so that the
wall density and particle density are the same order; this
minimized transients.

With this choice of wall parameters, we find that
steady states are achieved where the relative pressure
fluctuations range from 1% at I ∼ 10−5 to 20% at
I ∼ 0.1; thus the mean particle overlap ∆ ∝ P/k is
fixed to within this precision.

To prepare homogeneous steady states, initially
isotropic packings are created from a gas at volume frac-
tion φ0 = 0.5, and then sheared for a pre-strain ε0. As
discussed below, an analysis of Eq.12, leads to our choos-
ing ε0 = max(0.2,∆−1/2I), which we checked ensures
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that a steady state is reached. After this initial strain,
without collecting data, we strain the systems for ε = 0.3,
collecting data every δε = 5× 10−4.

In all cases, we discard runs that are not sufficiently
homogeneous. As a first criterion, we exclude simulation
runs where the mean velocity profile has a shear band.
As a second criterion, we find for certain parameter val-
ues that resonant elastic waves bounce back and forth
between the walls at very high frequency, as discussed in
[51]. Resolution of these waves requires a much smaller
time step than is needed otherwise, so we do not include

these runs. Details of these criteria follow.

To determine an appropriate pre-strain scale ε0, con-
sider the y-direction bulk-wall force on on the top wall,
F+y
bulk. This is a spring-like force, since it results from

the elastic interactions between the particles adjacent
to the wall, and the wall itself, but with a nontriv-
ial spring constant. It can be estimated from the law
φc − φ ∝ Iαφ . Indeed, linearizing this law around a
mean volume fraction φ̄ and mean pressure P̄ , we find
P − P̄ ∝ −ε̇2(φc − φ̄)−1/αφ−1(yw − Ly/2)/Ly, where
Ly is the mean thickness of the domain and we used
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(φ− φ)/φ̄ = −(yw − Ly/2)/(Ly/2). Hence the bulk-wall

force is approximately F+y
bulk ∼ PLx ∼ −kw(yw − Ly/2)

with kw ∼ ε̇2(φc− φ̄)−1/αφ−1 ∼ P̄ (φc− φ̄)−1. The strain
scale associated with the damping term in Eq.(12) is then
ε0 ∼ ε̇η/kw ∼ ∆−1/2I(φc − φ̄), where ∆ = p/k. We con-
servatively take ε0 = max(0.2,∆−1/2I).

Our two criteria for ensuring homogeneity of the flows
are that there is no static shear band, and that the walls
are not in resonant motion. To test for a shear band,
we compute the deviation of the mean velocity profile
from a linear one, δv(y) = v(y) − ε̇y, and compute its
normalized standard deviation, 〈(δv(y)−〈δv〉)2〉y/(Ly ε̇)2.

For a perfect shear band, this is 1/
√

12 = 0.29; we discard
runs where it exceeds 0.2.

For certain parameter values, resonant elastic waves
bounce back and forth between the walls at very high fre-
quency, as discussed in [51]. Resolution of these waves re-
quires a much smaller time step than is needed otherwise,
and in our code they display an unphysical alternation of
the velocity of the wall from positive to negative values
at each strain increment where we save data. Therefore
we compute a normalized numerical derivative of the ver-
tical wall velocity, O = (Vw(ε+ ∆ε)− Vw(ε))/(∆ε〈δV 〉),
where Vw is the wall velocity (for brevity, here we include
only one wall), and 〈δV 〉 is the velocity scale of grains in
the bulk, computed from their fluctuations. We find that
for well-behaved runs, OI ∼ 1, while for numerically un-
stable ones, OI > 10000. Therefore we exclude runs with
OI > 2000. We checked that the few runs so excluded
agree in their location in parameter space with the theory
of [51].

B. Appendix 2. Dependence of results on ∆, e,N,
and ∆t

In the main text, we reported results for grain rel-
ative deformation ∆ ≈ 10−3.8, number of particles
N ≈ 3700, restitution coefficient e = 0.1, and time step
∆t ≈ 0.06

√
m/k. Here we discuss how our results de-

pend on these choices. We show representative plots for
N ≈ 1000, 1800, 3700 at several values of µp and sev-
eral quantities in Fig.8. We see that χ and Dslid/Dcoll
are independent of N at the two largest values stud-
ied. Since velocity fluctuations are suppressed at the
wall, L displays an expected mild, systematic depen-
dence. This behavior is representative for all values of
µp. In all cases the minor dependence in L does not affect
the scaling behavior of observables, and in particular the
phase diagram is not affected. Similarly, representative
plots for e = 0.5 in small systems N ≈ 1000 show that
Dslid/Dcoll, χ, and L display only a weak dependence on
the restitution coefficient.

Although the grain relative deformation ∆ ≈ 10−3.8

is well within the rigid limit established in previous
work [5, 15, 17, 32, 48], we checked how our phase
diagram depends on ∆ ∈ {10−3.8, 10−2.8, 10−1.8}, as
shown in Fig.10a. For the two smallest values of ∆,

the frictionless–frictional-sliding transition is indepen-
dent of this value above the quasistatic regime, and the
frictional-sliding–rolling transition displays only a very
small dependence.

Finally, in Fig.10b we show independence of our results
on the time-step ∆t, which was halved for a set of sim-
ulations with µp = 0.02, which includes both frictionless
and frictional sliding regimes.

C. Appendix 3. Sliding dissipation in rolling
regime

In the rolling regime, only a small subset of con-
tacts are sliding, as shown in Fig.5b of the main text.
This raises the possibility that the forces and veloci-
ties at these contacts may be atypical of the system
as a whole. We investigate this with the quantities

ζ ≡ 〈fN 〉S/(pDd−1), and LT = 〈|~UT |〉S/(Dε̇), where
〈·〉S denotes an average over sliding contacts. As shown
in Fig.11, atypical behavior of sliding contacts is indeed
shown for large µp, and in fact we find in this regime that
both ζ and LT /L show power-law behavior. In partic-
ular, for µp = 2 we find ζ ∼ I0.31 and LT /L ∼ I−0.28,
while for µp = 10 we find ζ ∼ I0.43 and LT /L ∼ I−0.34.
The quantities ζ and LT /L would be needed for an accu-
rate scaling estimate of sliding dissipation in the rolling
regime.

D. Appendix 4. Velocity autocorrelation function

In the main text we introduced the autocorrelation
function

C(ε) = 〈V yi (0)V yi (ε)〉, (13)

in terms of the vertical component of velocity at parti-
cle i, V yi , averaged over all particles and all initial time
steps for a given strain increment ε. In Fig.12, we show
C(ε)/C(0) for several values of µp. The values of η are
listed in Table II, and the resulting values of εv(I) are
shown in Fig.13.

µp 0 0.002 0.02 0.1 0.3 0.5 0.8 2 10

η 1.2 1.2 0.75 0.5 0.5 0.55 0.65 0.75 0.75

TABLE II. Exponent η in fit of C(ε)/C(0).

E. Appendix 5. Geometrical nonlinearity in flow

We aim to compute how forces evolve along flow of
hard particles. In particular, we consider flow along a
floppy mode, where the relative velocity at a contact,
~uij , is zero at rolling contacts, and only transverse at the
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sliding contacts. The definition of ~uij , in particular the
motion of j relative to i at their mutual contact, is

~uij = ~Vj − ~Vi + (−1)d∆~ωij × ~nij , (14)

where ∆~ωij = Rj~ωj + Ri~ωi. This holds both in d = 2
and d = 3, where the cross product in 2D is defined
as ~v × ~u = viεijuj in terms of the Levi-civita symbol
ε12 = −ε21 = 1, ε11 = ε22 = 0. In 2D ~ω becomes a scalar,
and ~ω × ~n = ω × ~n is the vector ωεkl~nl. In this way we
can handle both cases simultaneously.

By multiplying ~uij along an arbitrary set of virtual
forces and torques, we obtain the theorem of comple-
mentary virtual work [52]:

−
∑
ij∈CS

~uTij · ~fTij = −
∑
i

[
~Vi · ~Fi + ~ωi · ~τi

]
+
∑
ij∈∂Ω

~Uextij · ~fij ,

(15)

where ~Fi = −∑〈ij〉 ~fij and ~τi = −∑〈ij〉Ri~nij × ~fij are

the net virtual contact force and contact torque on parti-

cle i, and ~Uextij = −~Vi+(−1)dRi~ωi×~nij on the boundary.
Eq. (15) applies only in between collisions. It is impor-
tant to stress that Eq. (15) holds for any virtual force

field {~fα}. To compute the nonlinearity in flow, we will

use the virtual work theorem with {d~fα/dε} as the vir-
tual ‘forces’. This allows us to identically remove the
leading order terms in flow and consider only those that
evolve with strain. The basic equation is then
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FIG. 13. (Color online) Strain scale εv from collapse of C(ε).
Lines as in Fig.5a of the main text.

∑
α∈∂Ω

~Uextα · d
~fα
dε

= −
∑
ij∈CS

~uα ·
d~fα
dε

+
∑
i

[
d~Fi
dε
· ~Vi +

d~τi
dε
· ~ωi
]

+
∑
i

~ωiRi ·
∑
α∼i

d~nα
dε
× ~fα, (16)

where contacts are denoted as α. Here the last term is needed to precisely cancel the d~nα/dε terms that appear in
dτi/dε when expanded. Under constant stress boundary conditions, we can fix all the boundary forces, so that the
LHS vanishes. The terms on the RHS can be simplified using the definition of floppy modes, and the fact that at

sliding contacts we have |~fTα | = µpf
N
α . After a long computation, in d = 2 we can rewrite Eq. (16) exactly as

0 =
∑
α∈CS

[
µpuα

dfNα
dε
− fNα
ε̇δr

(1− µp)u2
α

]
−
∑
α

fNα
ε̇δr

∣∣∆~ωα∣∣2 +
∑
i

[
d~Fi
dε
· ~Vi +

d~τi
dε
· ~ωi
]
, (17)

where uα is the magnitude of sliding velocity at contact α. In d = 3 there are several additional terms that are not
expected to be important, for example involving the slight difference between sliding directions and the directions of
tangential forces.

When flow is along floppy modes, velocities have a char-
acteristic scale δV ; we will assume that the angular and
linear velocities have the same scale, δω ∼ δV/D. Then
since χ . 1, in terms of scaling we have

0 ≈ χNCµpδV
dp

dε
−NC

p

ε̇
δV 2 +N

dF

dε
δV, (18)

where we used that d~Fi/dε · ~Vi > 0. Under constant
stress BCs, the dp/dε term is negligible (more precisely,
it vanishes up to correlations between uα and dfNα /dε).
Then we find

dF

dε
≈ z

2

p

ε̇
δV, (19)

as stated in the main text. Eq.(19) indicates how
quickly configurations flow out of equilibrium along
floppy modes, and applies for both viscous and inertial
dynamics. The magnitude of unbalanced forces, F , can

itself be written in terms of geometrical quantities, but
this depends on the dynamics.


