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We present a theoretical study of the energetics of thin nematic shells with two charge one-half
defects and one charge-one defect. We determine the optimal arrangement: the defects are located
on a great circle at the vertices of an isosceles triangle with angles of 66◦ at the charge one-half
defects and a distinct angle of 48◦, consistent with experimental findings. We also analyse thermal
fluctuations around this ground state and estimate the energy as a function of thickness. We find
that the energy of the three-defect shell is close to the energy of other known configurations having
two charge-one and four charge one-half defects. This finding, together with the large energy barriers
separating one configuration from the others, explains their observation in experiments as well as
their long-time stability.

I. INTRODUCTION

One of todays major drives in condensed matter
physics is the assembly of mesoscale particles into com-
plex structures [1]. By creating anisotropy in the in-
terparticle interactions, one can increase the complexity
and functionality of these structures. A proposed way to
achieve anisotropic interactions is by coating a spherical
particle or droplet with an orientationally ordered phase
[2]. The topology of the sphere enforces defects in the
coating. Since these defects are very distinct regions on
the sphere, they are suitable for the attachment of link-
ers acting as bonds between the particles. For the case of
a vector order parameter, topology requires two defects,
creating a particle with two binding sites. By exploiting
this, de Vries et al. succesfully assembled chains of such
divalent nanoparticles [3]. Nematic rather than vector or-
der allows for defects of charge one-half, referring to the
π rotation experienced by the local average orientation
of the nematic molecules, n, when encircling the defect.
In fact, it is energetically favourable for defects of charge
one to split into two charge one-half defects, see Fig. 1a.
Nematic order on the sphere has four topological defects
of charge one-half in its ground state, such that the sum
of all charges is equal to 2, the Euler characteristic of
the sphere, as demanded by the Poincaré-Hopf theorem.
Their mutual repulsion drives them as far away from each
other as possible: at the vertices of a regular tetrahedron
[4]. Thus, chemical functionalisation of the defects in the
ground-state of a two-dimensional nematic liquid crystal
on the sphere might thus result in the diamond structure
[2]. In the decade that followed the conception of this
idea, a vast amount of theoretical and numerical work
was performed; it included studying the effect of elas-
tic anisotropies, external fields, sphericity or shape, and
thickness of the nematic film, considering both uniform
and non-uniform nematic films [5–30]. These works were
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mainly focussing on spherical nematic shells with four
defects with a charge of one-half. Experimental investi-
gations on nematic shells generated by trapping a water
droplet inside a nematic droplet, however, have revealed
the existence of a much wider variety of defect struc-
tures besides the regular tetrahedral defect arrangement
[6, 12, 18, 21, 31–33], even with a valence number differ-
ent from four [6, 12, 21]. There exist divalent configura-
tions in which instead of four one-half defect lines span-
ning the shell, there are two pairs of point defects, called
boojums, residing on the bounding surfaces. They arise
because the thickness of the nematic coating is nonzero:
the elastic energy of a singular line with a winding num-
ber of one at the boundary is reduced by escaping into
the third dimension, as illustrated in Fig. 1b. This route
thus forms an alternative to the splitting into s = 1/2
lines spanning the shell.

Surprisingly, also structures containing both boojums
as well as charge one-half disclination lines have been
observed in experiments [6, 12]. These defects structures
have threefold valence yet they are still consistent with
Poincaré-Hopf’s theorem, because the total topological
charge of the defects at the boundary is 1 + 1/2 + 1/2 =
2, the Euler characteristic of the sphere. Again, this
energetically stable defect configuration arises because of
the finite thickness of the nematic coating. If the shell is
strongly inhomogeneous in thickness, experiments show
that the defects cluster in the thin part of the shell [6, 12].
In simulations, the trivalent state has also been observed
for homogeneous [30] and inhomogeneous shells [25]. The
defects were found to be positioned at the vertices of
an isosceles triangle, with the boojums located in the
thickest region of the shell and the s = 1/2 disclination
lines in the thinnest hemisphere.

In this article, we will study theoretically the defect
separations, energetics and fidelity of the bonds in homo-
geneous spherical nematic shells with three-fold valence.
We will make a comparison with divalent and tetrava-
lent shells and find the optimal valency as a function of
the shell thickness as well as the energy barriers between
shells of different valency. We will compare these results
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FIG. 1: (Color online) (a) In a two-dimensional nematic
a s = 1 topological defect (black dot in left panel) can
lower its elastic energy by splitting into two s = 1/2

defects (purple dots in right panel). (b) A singular line
(left panel) spanning the shell with a winding number of
one at the boundaries is topologically and energetically
unstable. The singular core is indicated by a black dot

in the top view shown in the top panel and by the
vertical bold line in a cut shown in the bottom panel.
One way of reducing the elastic energy escaping in the
third (vertical) dimension (right panel), thereby leaving

a point defect (green dot), called boojum, on each
boundary.

to experiments in which we decrease the thickness inho-
mogeneity.

II. TRIVALENT GROUND STATE

The free energy of a thin curved nematic film is

F =
1

2

∫
dA
[
k1
(
Din

i
)2

+ k3 (Dinj −Djni)
(
Dinj −Djni

)]
(1)

with k1 and k3 the two-dimensional splay and bend elas-
tic constants and Di is the covariant derivative. Eq. (1)
can be recast in terms of defect separation rather than
the director field n. For a spherical nematic, the elastic
energy in the one-constant approximation k = k1 = k3
reads

F = −πk
Z∑
i<j

sisj log (1− cosβij) +

Z∑
i

Ei (R) (2)

where si is the topological charge of defect i, βij is the
angular distance between defects i and j, and Z is the
number of defects or valence number. The self-energy
Ei (R) is given by

Ei (R) = πKs2i log

(
R

a

)
+ Ec, (3)

where R is the radius of the sphere and a is a small scale
cut-off preventing a divergence of the energy. Ec rep-
resents a core energy, which depends on the details of
the microscopic interactions. The self-energy is respon-
sible for the splitting of the +1 defects in an ideal two-
dimensional nematic, because of its proportionality with
s2i . The other term in eq. (2) describes the repulsion be-
tween like-charged defects. We wish to find the optimal
location for the defects in a thin homogeneous shell given
that s1 = 1, s2 = 1

2 and s3 = 1
2 . This requires minimis-

ing the interaction term of the free energy. We minimise
the interaction energy with respect to three independent
variables, namely β12, β13 and the angle, C, subtended
by the two curved triangular sides (circular arcs) meeting
at the charge one defect. If we apply the law of cosines
on the sphere:

cosβ23 = cosβ12 cosβ13 + sinβ12 sinβ13 cosC, (4)

we can eliminate β23 in favour of C in the free energy,
and demand ∂F

∂β12
= ∂F

∂β13
= ∂F

∂C = 0. From the latter

equation, ∂F
∂C = 0, we obtain C = π, implying that the

defects lie on a great circle, see Figs. 2 and 3 for the bend
and splay textures, respectively. There is always a circle
that can be drawn through three points on a sphere; the
maximal radius of this circle reflects the repulsive nature
of the defects. With some straightforward algebra the
other two equations, ∂F

∂β12
and ∂F

∂β13
= 0, then lead to

β12 = β13 = π − arccos
2

3
≈ 0.73π ≈ 131.8◦ (5)

β23 = 2 arccos
2

3
≈ 0.54π ≈ 96.4◦ (6)

We thus find that the defects are located at the vertices
of an isosceles triangle rather than equilateral triangle,
shown in Figs. 2 and 3. This less symmetric configura-
tion arises because of the asymmetry in the magnitude
of the topological charge of the defects: the two +1/2
defects repel each other less strongly than a charge one
and charge one-half such that β12 and β13 are larger than
β23. This is in marked contrast with the regular tetrahe-
dral configuration in which all the defects are equidistant,
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FIG. 2: (Color online) Four views on the bend texture
of the director field on the sphere containing a +1

defect and two +1/2 defects arranged in an isosceles
triangle with β12 = β13 ≈ 132◦, β23 ≈ 96.4◦, α1 ≈ 48◦

and α2 = α3 ≈ 66◦. The defects lie on a great circle.

because all four charges are indistinguishable. The fact
that s2 and s3 are of equal magnitude is still reflected in
the equal length of two of the sides (β12 = β23) of the
triangle. Perhaps surprisingly, the distance between two
charge one-half defects is smaller in the trivalent state
than in the more ‘crowded’ tetravalent state. The sur-
face angles of the flat triangle can be found by simple
trigonometry: by realising that the triangle formed by
two defects and the centre of the sphere is also an isosce-
les triangle (of which two sides have a length equal to the
radius) we obtain

α1 = π − β12 = arccos
2

3
≈ 48.2◦ (7)

α2 = α3 =
β12
2

=
π

2
−

arccos 2
3

2
≈ 65.9◦ (8)

Given the defect locations, the energy-minimising di-
rector field can be found by means of a stereographic
projection of the planar solution. The bend texture is
displayed in Fig. 2. Rotating this director field over an
angle α yields the same free energy in the one-constant
approximation. The splay texture (Fig. 3) corresponds
to α = π/2. We note that the escape in the third di-
mension, in which the singular region is distributed over
a larger distance of the order of the thickness, occurs in
shells of finite thickness and is somewhat different than

FIG. 3: (Color online) Four views on the splay texture
of the director field on the sphere containing a +1

defect and two +1/2 defects arranged in an isosceles
triangle with β12 = β13 ≈ 132◦, β23 ≈ 96.4◦, α1 ≈ 48◦

and α2 = α3 ≈ 66◦. The defects lie on a great circle.

the problem of three point defects in a two-dimensional
nematic solved above. However, we expect that the de-
fect separations will be marginally affected as long as the
thickness is small compared to the radius. In addition,
we have assumed that there are no elastic forces or other
contributions present that compromise the homogeneity
of the nematic film.

To test the theoretical expectations, we generate ne-
matic shells using microfluidics [6]. The shells produced
with this method are double emulsions with an inner
aqueous droplet that is contained inside an outer liquid
crystal droplet which is, in turn, dispersed in an aqueous
solution. We use salt to establish the osmotic pressures
of both the inner droplet and the continuous phase and
thus the osmotic pressure difference between them. The
stability of the emulsion is guaranteed by the presence of
polyvinyl alcohol (PVA), which also enforces planar an-
choring of the liquid crystal, 4-Cyano-4’-pentylbiphenyl
(5CB), at both the inner and outer interfaces. The shells
are heterogeneous in thickness due to buoyancy effects;
they are thinner at the top and thickest at the bottom
[6]. Hence, the shell thickness gradually increases from
the top to the bottom of the shell. Typical values of
the outer radius, R, and thickness of the shell, h, are
in the ranges [20, 60]µm and [1, 10]µm, respectively. In
this shell geometry, the defects are confined to the top,
as shown in Fig. 4(a), since this reduces the Frank free
energy [12].
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As a result of the imposed osmotic pressure difference
between the inner droplet and the continuous phase, the
inner droplet swells while the shell becomes thinner and
more homogeneous. This happens quasistatically [12].
We then monitor the evolution of the defects through-
out the process. We find that the defects progressively
spread, as shown in Figs. 4(a-c). Interestingly, the shape
of the triangle defined by the positions of the three de-
fects changes as this happens; the surface angles α1, α2

and α3 progressively evolve as the shell becomes thinner
and more homogeneous, as shown in Fig. 4(d). For shells
with h/R . 0.03, the surface angles reach values that are
consistent with those predicted theoretically: α1 ≈ 46◦

and α2 = α3 ≈ 68◦. This configuration corresponds to an
isosceles triangle with the lower angle placed at the +1
defect. However, the defects are not yet in a great circle.
In fact, for h/R = 0.03, the defects all lie in the upper
hemisphere of the shell and are contained in a plane that
is perpendicular to the gravitational direction, ḡ; the an-
gle θz between the normal of this plane, N̄ , and ḡ is zero.
As h/R becomes smaller than 0.03, θz increases [see Fig.
4(e)] and the defects progressively separate from each
other while approximately maintaining the values of the
surface angles and hence the shape of the isosceles trian-
gle. As this happens, the shell progressively approaches
the expected configuration for an infinitely thin nematic
shell, where the defects lie on a great circle. Indeed, for
h/R ≈ 0.01, the +1 defect is located at the top of the
shell, see Fig.5(a), while the +1/2 defects are in the lower
hemisphere of the shell, as indicated with the arrows in
Fig.5(b) and (c). In this configuration, the distributions
for the angles β12 and β23 are both Gaussians chacterized
by a mean of β12 = 118◦ and β23 = 77◦ and correspod-
ing widths of ∆β12 = 19◦ and ∆β23 = 15◦, as shown in
Figs. 5(d) and (e). These values are slightly lower than
the theoretical ones, indicating that the defects have not
completely reached yet a great circle, possibly due to a
remaining thickness inhomogeneity in the shell. Finally,
note that throughout this process the pair of boojums is
located in the thinnest hemisphere, whereas in the sim-
ulations of ref. [25] the pair of boojums was found to be
located in the thickest hemisphere. These simulations,
however, are carried out for shells with a much larger
thickness than the shells in this experiment.

III. VALENCE TRANSITIONS

We will now proceed with an estimate of the energy
of the trivalent shell when this escape is taken into ac-
count. In doing so, we follow the arguments in ref.
[5]. We first consider the energy when three singular
lines are spanning the shell at angular distances reported
above. We estimate this energy as the product of the
two-dimensional result and the thickness, h, thus effec-
tively taking k = Kh:
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FIG. 4: (Color online) (a-c) Cross-polarized images of a
shell at different stages of a swelling process, which

makes the shell more homogeneous in thickness. Each
bounding surface of the shell has three topological

defects: one defect of charge +1, characterized by four
black brushes, and two defects of charge +1/2,

characterized each one by two black brushes. The three
defects depict a triangle whose angles, α1, α2 and α3,
change as the shell swells, see evolution from left to

right. The exact values of α1, α2 and α3 as a function
of the shell average thickness h/R are shown in (d).

The triangle depicted by the defects is initially oriented
perpendicularly to the gravitational direction, but it
tilts off as the shell swells, as shown in (e), where θz
stands for the angle between gravity ḡ and the flat

triangle normal N̄ .

E′Z=3 = πKh

[(
1 + 2× 1

4

)
log

(
R

a

)
− 0.54 +

3Ec
πKh

]
(9)

A heuristic yet adequate method to include the escape
is by replacing the microscopic cut-off by the thickness of
the shell, since the singular core is spread out over spatial
dimensions of the order of h. To account for the pair of
boojums an energy 4.2Kπh is added [5, 21, 34]. We then
obtain

EZ=3 = πKh

[
log

(
R

h

)
+

1

2
log

(
R

a

)
+ 3.65 +

2Ec
πKh

]
(10)

By comparing this to the energy of a shell with four
disclination lines

EZ=4 = πKh

[
log

(
R

a

)
− 0.43 +

4Ec
πKh

]
(11)

we can find the critical value for h above which the triva-
lent defect configuration is energetically preferable over
the tetravalent one:
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FIG. 5: (Color online) Defect configuration of a very
thin and almost homogeneous trivalent nematic shell.
(a-c) Cross polarised images of the shell at different

focal planes: the +1 defect is in an upper plane shown
in (a), while the +1/2 defects are at lower planes, see
arrows in (b) and (c). (d-e) Histograms of the angular
distances between defects. The three defects depict an
isosceles triangle where the two equal sides correspond
to the distance between the +1 defect and each of the
+1/2 defects, β12 = (118± 19)◦, and the unequal side

corresponds to the distance between the two +1/2
defects, β23 = (77± 15)◦.

h∗34/R = e4.08−2Ec/πKh

√
a

R
(12)

Similarly, one can find the critical value for h below
which the trivalent defect configuration is energetically
preferable over the divalent one by setting EZ=3 equal to
the approximation of the energy of a shell with two dia-
metrically opposite pairs of surface defects, EZ=2. Again,
we will first find the energy of a shell with two singular
lines

E′Z=2 = πKh

[
2 log

(
R

a

)
− 0.69 +

2Ec
πKh

]
(13)

after which we apply the same reasoning we used to find
EZ=3 to obtain

EZ=2 = πKh

[
2 log

(
R

h

)
+ 7.69

]
. (14)

We find a very similar value

h∗23/R = e4.04−2Ec/πKh

√
a

R
(15)
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FIG. 6: (Color online) Elastic energy as a function of
shell thickness for divalent (red), trivalent (green) and
tetravalent (blue) defect configuration for R/a = 105

and Ec = 0. Either the divalent or tetravalent
configuration, but not the trivalent configuration, is

lowest in energy.
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FIG. 7: (Color online) Coexistence of divalent, trivalent
and tetravalent configurations in shells with (a) h/R in
the range [0.20, 0.35] and (b) h/R ' 0.1. The histogram
shows the different populations in a sample of 60 shells.

The energy as a function of thickness is plotted in Fig.
6 for all three different valencies.

Since h∗23 < h∗34 there is no h for which the trivalent
shell has lower energy than both the divalent and tetrava-
lent shell. Our calculation in the uniform shell limit
suggests that the trivalent shell is metastable. Experi-
mentally, however, we do observe divalent, trivalent and
tetravalent shells. Furthermore, they appear with simi-
lar likelihood, with a slight tendency towards formation
of the trivalent shell, as shown in the histogram of Fig.
7(a) for shells with h/R in the range [0.20, 0.35] made us-
ing microfluidics. Similar results are obtained for shells
with h/R ' 0.1 , as shown in the histogram of Fig. 7(b).
The presence of all shell types likely results from their
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similar energies; this makes all three of them accessible
while they are being generated. We attribute the lack va-
lence transitions and hence the observed lifelong stability
of a certain shell type, irrespective of whether it corre-
sponds or not to the ground state, to the energy barrier
between shells with different defect number. To ascer-
tain this, we calculate the corresponding energy barriers.
For going from the trivalent to the tetravalent shell, we
simply have to undo the escape in the third dimension.
The associated barrier thus corresponds to the difference
between E′Z=3 and EZ=3:

∆E3→4 = πKh

(
log

(
h

a

)
− 4.19 +

Ec
πKh

)
(16)

The energy barrier for going from the divalent to the
tetravalent shell lies in overcoming the repulsion between
the two +1/2 defects and can thus be estimated by the
difference between E′Z=2 and E′Z=3:

∆E3→2 = πKh

(
1

2
log

(
R

a

)
− 0.15− Ec

πKh

)
(17)

Since K ≈ 10−11N , for a thin shell with h = 1µm,
these barriers are four orders of magnitude larger than
the thermal energy scale (at room temperature), kBT ,
where T denotes temperature and kB is Boltzmann’s con-
stant, thus providing stability of any of the shell types
after made, explaining why valence transitions are not
observed experimentally. We further confirm this by
bringing the shells close to the nematic-isotropic phase
transition temperature of 5CB, and realizing that there
is no significant defect motion that could anticipate a
shell valency change.

To understand the tendency towards the trivalent shell,
we recall that while the shells are generated, the inner
droplet is usually never at the center of the outer liquid
crystal droplet. This implies that the shells are hetero-
geneous in thickness, with a thinner and a thicker part.
Since defect nucleation happens at random locations in-
side the shell, we might be providing conditions for for-
mation of two +1/2 lines in the thin part of the shell,
where h < h∗23 and E4 < E3 < E2. Similarly, since in the
thick part of the shell, h > h∗34, where E2 < E3 < E4, we
might be providing conditions for formation of a pair of
+1 boojums in this part of the shell. The tendency ob-
served experimentally towards the trivalent state could
then rely on the thickness heterogeneity of the shells, as
they are made by using the microfluidic techniques men-
tioned before. Once the shells are made, their thickness
and thickness inhomogeneity reach their equilibrium con-
figuration and the defects locate at the top, where the
elastic free energy of the nematic liquid crystal is mini-
mum.

We finally note that thickness inhomogeneities could
potentially change the defect energetics and hence gener-
ate a window of stability for the trivalent structure since

the energies of the different textures are very close. Such
subtle effects are likely to depend on the detailed thick-
ness profile and elastic anisotropies, which are not eas-
ily captured by our simplified models and ansatz. We
note however that in the experiments the presence of the
trivalent configuration persists over a wide range of thick-
ness inhomogeneities and temperature which is consistent
with our assumption that it is generically a metastable
state. On the contrary, if it were an absolute energy min-
imum, we would expect it to occur over a special range
of shell parameters. Nevertheless, more refined compu-
tational studies are needed to fully elucidate this aspect
of our results.

IV. BOND FIDELITY

In this section, we will consider the fidelity of the three
bonds by considering its robustness against thermal fluc-
tuations. We will expand the energy around the equilib-
rium values for the zenith and azimuthal angles, {θ0i , φ0i }.
We parametrise the departures from the equilibrium an-
gles with a 2Z-component vector q, whose first three
components are the deviations along the lines of longi-
tude of the sphere and whose final three components are
the deviations along the lines of latitude of the sphere.
We thus have

qi = δθi, (18)

q3+i = δφi sin θi. (19)

Again we employ the law of cosine on the sphere

cosβij = cos
(
θ0i + qi

)
cos
(
θ0j + qj

)
+ sin

(
θ0i + qi

)
sin
(
θ0j + qj

)
× cos

(
φ0i − φ0j +

q3+i
sin θ0i

− q3+j
sin θ0j

)
(20)

to rewrite F in eq. (2) as an expansion to quadratic order
in q:

F = F
(
θ0i , φ

0
i

)
+

1

2

∑
ij

Mijqiqj +O
(
q4
)
. (21)

The 6× 6 matrix M can thus be found by

Mij =

(
∂2F

∂qi∂qj

)
qi=qj=0

(22)

This calculation is performed without loss of generality
upon choosing the ground state defect locations to be on
the equator, i.e. θ0i = π/2. We diagonalise this matrix:

M = UDUT . (23)

The matrix D has the following eigenvalues on the diag-
onal:

{λi} =
πk

20
{0, 0, 0, 15, 17, 18} (24)
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The columns of the matrix U are the corresponding or-
thonormal eigenvectors, {ui}, and UT is the transpose of
U . The eigenvectors belonging to the three zero eigen-
values represent rigid body rotations. The other eigen-
vectors are

u4 =



0
0
0
0
− 1√

2
1√
2

, u5 =



4√
34
3√
34
3√
34

0
0
0


, u6 =



0
0
0√
2
3

1√
6
1√
6


. (25)

The fourth and sixth eigenvalues also correspond to de-
formations that keep the defects located at a great cir-
cle. The fourth one corresponds to a displacement of the
charge one-half defects such that their distance to the
charge one defect grows or shrinks in equal manner and
hence preserves the isosceles shape of the triangle (Fig.
8a).

FIG. 8: (Color online) Schematics of the three
non-trivial eigenmodes corresponding to (a) u4, (b) u5

and (c) u6. The defects (represented by dots) continue
to lie on a great circle in (a) and (c), but not in (b).

The defects continue to form an isosceles triangle in (a)
and (b), but not in (c).

The sixth eigenvalue corresponds to a mode deforma-
tion that does not posses this property, thus breaking
the symmetry of reflection of the bisector of the distinct
angle (Fig. 8c). The mode of deformation correspond-
ing to the fifth eigenvalue, however, retains the isosceles

shape of the triangle, but shrinks the size of the trian-
gle as the defects do not lie on a great circle anymore
(Fig. 8b). We change the basis from qi to wi, which is
the departure from the trivalent ground state in the i-th
eigendirection:

qi = Uijwj . (26)

This basis transformation yields to quadratic order in wi:

F = F
(
θ0i , φ

0
i

)
+

1

2
λ4w

2
4 + λ5w

2
5 + λ6w

2
6. (27)

By equipartition, each term contributes 1
2kBT . The

eigenvalues corresponding to the trivalent modes of defor-
mation are equal or larger than the the tetravalent ones
(which are 3

8πk and 3
4πk [2, 5]): the trivalent ground

state is thus somewhat better protected against thermal
fluctuations.

V. CONCLUSION

In a spherical nematic shell of finite thickness a stable
defect structure with two s = 1/2 lines and one pair of
boojums is observed experimentally besides the bipolar
and regular tetrahedral configuration. The repulsive in-
terdefect interaction pushes the defects to lie on a great
circle. The strength of the interaction depends on the
charges of the defects. Consequently, the defects are
located at the vertices of an isosceles triangle, in con-
trast to the tetravalent ground state in which the de-
fects are equidistant. In the energetically most favorable
trivalent configuration, we obtain for the central angles
β12 = β13 = 0.73π, β23 = 0.54π and for the angles in the
(flat) isosceles triangle α1 = 48◦ and α2 = α3 = 66◦.
These values are in agreement with experimental val-
ues. Estimations of the elastic energy show that there
is no shell thickness for which the trivalent ground state
is lower than both the tetravalent and divalent ground
state. However, there are energy barriers to provide sta-
bility for the trivalent state once it is created. We note
that our calculations do not include thickness heterogene-
ity. Including this effect is the next step towards our
continued understanding of trivalent nematic shells.
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