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Abstract

We derive a mathematical model of a nematic electrolyte based on variational formulation of nema-

todynamics. We verify the model by comparing its predictions to the results of the experiments on the

substrate-controlled liquid-crystal-enabled electrokinetics. In the experiments a nematic liquid crystal

confined to a thin planar cell with surface-patterned anchoring conditions exhibit electro-osmotic flows

along the “guiding rails” imposed by the spatially varying director. Extending our previous work, we

consider a general setup which incorporates dielectric anisotropy of the liquid-crystalline matrix and the

full set of nematic viscosities.
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I. INTRODUCTION

With a rapid development of micro- and nanofluidics, a significant effort to understanding

electrokinetics has been made in both fundamental and applied science [1, 2]. One usually distin-

guishes between two types of electrokinetic phenomena: an electrically driven transport of particles

in a fluid (electrophoresis) and electrically driven flows of fluids with respect to their containers

(electro-osmosis). A necessary prerequisite for either of these phenomena to occur is a spatial

separation of electric charges. In classical electrokinetics, the separation is achieved through the

formation of electric double layers at the solid-fluid interface [3]. In the case of electrically neutral

but highly polarizable surfaces, the charges can be separated by the applied field. This is the

so-called induced-charge electro-osmosis [4]. Once separated, under the action of the field, the

charges are forced to move, thus creating a flow of the fluid.

An alternative approach that does not require a solid component is to employ an anisotropic

fluid as an electrolyte. The anisotropy makes it possible to separate oppositely charged ions via

inhomogeneities of the medium, giving rise to nonlinear electrokinetics. In particular, recent exper-

iments [5–10] demonstrate that in nematic liquid crystals, the velocities of the flows are quadratic

in the field strength, i.e. do not depend on the field’s polarity. This feature enables electrokinetic

transport driven by an alternating current and allows one to overcome many technological barriers.

Of particular interest from a theoretical point of view are the experiments on the so-called

substrate-controlled liquid-crystal-enabled electrokinetics reported in [11]. The authors used as an

electrolyte a nematic liquid crystal confined to a thin planar cell with surface-patterned anchoring

conditions and observed electro-osmotic flows along the “guiding rails” imposed by the spatially

varying director. This setup is probably the simplest to analyze as the director patterns in the

experiments were periodic, well defined (no topological defects), and homogeneous in the direction

of the applied electric field. A mathematical model of this experiment was considered in [12] for

the specific case of isotropic viscosity and dielectric permittivity of the nematic. In this paper,

we propose a more general theory which incorporates the full set of nematic viscosities as well as

dielectric anisotropy of the liquid-crystalline matrix that is also expected to trigger electrokinetic

flows [9, 11].

But before proceeding to this illustrative example in the second part of the paper, we rederive a

general system of equations governing electro-osmotic flows in nematic electrolytes. An alternative

derivation can be found in [12]. Inspired by ideas [13–15], the authors established a system of

governing equations from the local form of balance of linear and angular momentum. Here we arrive
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at the same results in a more formal, but probably more efficient manner following a variational

formulation of nematodynamics suggested in [16, 17].

II. PRINCIPLE OF MINIMUM ENERGY DISSIPATION

In classical mechanics, irreversible dynamics of a system can be described by means of a Rayleigh

dissipation function R = 1
2
ξij q̇iq̇j quadratic in generalized velocities q̇ = (q̇1, ..., q̇M) (summation

over repeated subscripts is implied hereafter). The basic idea is to balance frictional and conser-

vative forces in Lagrange’s dynamical equations

d

dt

∂L
∂q̇m
− ∂L
∂qm

+
∂R
∂q̇m

= 0, (1)

where q = (q1, ..., qM) are generalized coordinates conjugated with the velocities q̇ and L =

1
2
aij(q)q̇iq̇j − U(q) is the Lagrangian of the system, defined as the difference between the kinetic

energy 1
2
aij(q)q̇iq̇j and the potential energy U(q). In what follows, we assume that the matrices

(ξij) and (aij) are symmetric.

Similarly to their non-dissipative counterparts, Eqs. (1) can be recast into a variational problem

as their solutions provide a critical point of the functional∫
Ω

d3r
{
Ė +R

}
with respect to a special class of variations δq̇ of the generalized velocities q̇. Here Ω ⊂ R3

is the region occupied by the system, E = L + 2U is the total energy and the superimposed

dot (as well as d
dt

) denotes the total or material time derivative. Unlike Hamilton’s principle of

stationary action, the current approach “freezes” both the configuration q and the generalized

forces Xm := d
dt

∂L
∂q̇m
− ∂L

∂qm
, m = 1, . . . ,M acting on the system at a given moment of time. The

state of the system is then varied by imposing arbitrary instantaneous variations δq̇ of the velocities

q̇. Note that here δq̇ are not time derivatives of δq. Similarly, variations δq̈ should not be confused

with time derivatives of the δq̇, but have to be chosen instead so as to keep the generalized forces

Xm, m = 1, . . . ,M unaltered [18]. Then, by using the product rule and relabeling, we indeed have

δ

δq̇m

∫
Ω

d3r
{
Ė +R

} δ

δq̇m

∫
Ω

d3r

{
aij q̈j q̇i +

1

2

∂aij
∂qk

q̇kq̇j q̇i +
∂U
∂qi

q̇i +R
}

=
δ

δq̇m

∫
Ω

d3r

{[
d

dt
(aij q̇j)−

1

2

∂akj
∂qi

q̇kq̇j +
∂U
∂qi

]
q̇i +R

}
=

δ

δq̇m

∫
Ω

d3r {Xiq̇i +R}

= Xm +
∂R
∂q̇m

=
d

dt

∂L
∂q̇m
− ∂L
∂qm

+
∂R
∂q̇m

, (2)
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for every m = 1, . . . ,M . Hence, the Euler-Lagrange equations

δ

δq̇

∫
Ω

d3r
{
Ė +R

}
= 0 (3)

are identical to the generalized equations of motion (1) and thus govern dynamics of a dissipative

mechanical system. Since the conservative forces are assumed to be fixed here and R is a positive-

definite function, the equations (3) yield a minimum of energy dissipation [16, 17]. It is worth

noting that for overdamped systems—where q̈ = 0—this principle of minimum energy dissipation

is equivalent to the Onsager’s variational approach [19].

III. NEMATIC ELECTROLYTE

In this section, we apply the principle (3) to a nematic electrolyte subject to an external

electric field. It was shown earlier that under an appropriate choice of the generalized velocities

this framework is capable of reproducing the classical Ericksen-Leslie equations of nematodynamics

[16, 17]. Below we demonstrate that it can be extended so as to take into account the presence of

an ionic subsystem.

A. Energy of the system

Consider a nematic liquid crystal that contains an ideal gas of N species of ions with valences

zα at concentrations cα, where 1 ≤ α ≤ N . Assuming that the ions do not interact with the

liquid crystal one can write the density of the ionic subsystem energy in the form of entropic and

Coulombic contributions

Eion = kBΘ
N∑
α=1

cα ln cα +
N∑
α=1

ecαzαΦ, (4)

where kB and Θ stand for the Boltzmann constant and the absolute temperature, respectively, Φ

denotes the electric potential. Under the action of the field, the ions move with velocities uα which

satisfy the continuity equations

∂cα

∂t
+∇ · (cαuα) = 0. (5)

Nematics themselves are anisotropic ordered fluids. A typical member of their family consists

of elongated molecules whose local orientation can be described by a coarse-grained vector field

n ≡ −n with non-polar symmetry, the director. This unit-length field allows us the represent the
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elastic energy of the liquid crystal in the Oseen-Frank form

EOF =
K1

2
(∇ · n)2 +

K2

2
(n · [∇× n])2 +

K3

2
(n× [∇× n])2 , (6)

where K1, K2 and K3 are positive, non-zero constants and pure divergence terms are omitted.

In order to take into account the coupling between the electric field E = −∇Φ and the director,

we have to supplement the potential energy of the nematic by

EE = −1

2
D · E, (7)

where D denotes the electric displacement. It should be noted that care must be taken in dealing

with the electric field in this problem. The field is substantially nonlocal, that is, its changes can

affect the system even if they occur outside the region Ω occupied by the system. In order to avoid

dealing with the field outside of Ω, we assume that the system under investigation is surrounded

by conductors that are held at a prescribed potential Φ∂Ω. Then the electric field exists in Ω only

so that

Di = ε0εijEj = ε0(ε⊥δij + ∆εninj)Ej, (8)

where ∆ε = ε‖ − ε⊥, ε⊥ and ε‖ are dielectric permittivities perpendicular and along the director,

respectively, measured in units of the vacuum permittivity ε0. Following Maxwell, the electric

displacement D obeys

∇ ·D =
N∑
α=1

ecαzα. (9)

Thus, neglecting inertia of the director rotation (n̈ = 0), one can write the total energy per unit

volume of the system in the form

E =
1

2
ρvivi + EOF + EE + Eion (10)

with ρ = const being the nematic mass density and v the velocity of its flow which we assume to

be incompressible, ∇ · v = 0.

B. Dissipation function

Within the current framework, the dissipation function has to be frame-indifferent, positive-

definite and quadratic in the generalized velocities. As we mentioned above, the principle of

minimum energy dissipation results in the correct nematodynamics when those velocities are v
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and ṅ. Then the dissipation function of a nematic liquid crystal can be written in the following

form [17]

2Rnem = γ1n̊i
2 + 2γ2n̊iAijnj + γ3(Aijnj)

2 + γ4(Aij)
2 + γ5(niAijnj)

2, (11)

where Aij = 1
2
(∂jvi + ∂ivj) represent the symmetric part of the velocity gradient and n̊i = ṅi −

1
2
(∂jvi − ∂ivj)nj. The Lie derivative of the director, n̊, gives its rate of change relative to a

flow vorticity. Below we will see that Rnem indeed yields the well-known nematic viscous stress,

provided that the γs in (11) are related to Leslie’s viscosities αs via the following

α1 = γ5 α2 =
1

2
(γ2 − γ1) α3 =

1

2
(γ2 + γ1)

α4 = γ4 α5 =
1

2
(γ3 − γ2) α6 =

1

2
(γ3 + γ2).

(12)

Note that under these circumstances, the Parodi’s relation, α6 − α5 = α2 + α3, is automatically

satisfied. Besides, positive definiteness of Rnem requires that [20]

α4 > 0, α3 > α2, 2α4 + α5 + α6 > 0,

α1 + α4 + α5 + α6 > 0, (α3 − α2)(2α4 + α5 + α6) > (α6 − α5)2.
(13)

For the system under consideration, additional degrees of freedom are brought in by the ions.

Although they do not interact with the nematic via potential forces, their motion with respect to

the liquid crystal contributes to the dissipation [12]

2Rion = kBΘ
N∑
α1

cα(Dα
ij)
−1(uαi − vi)(uαj − vj). (14)

Here the diffusion matrix Dα
ij reflects the anisotropy of the liquid crystal conductivity. Generally,

mobilities of ions along and perpendicular to the director n are different. Apparently, (14) is indeed

the dissipation function if uα with 1 ≤ α ≤ N are also treated as the generalized velocities.

Thus, the total energy dissipation in the system is the sum R = Rnem +Rion.

C. Governing equations

Once the energy E , the dissipation R, and the generalized velocities of the system are specified,

we are in a position to derive equations describing electro-osmotic flows in nematics. The equations
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are implicitly given by

δ

δv

∫
Ω

d3r
{
Ė +R− p(∂ivi)− Λniṅi

}
= 0,

δ

δṅ

∫
Ω

d3r
{
Ė +R− p(∂ivi)− Λniṅi

}
= 0,

δ

δuα

∫
Ω

d3r
{
Ė +R− p(∂ivi)− Λniṅi

}
= 0,

(15)

where two Lagrange multipliers, p and Λ, associated, respectively, with the flow incompressibility

and the director’s unit length appear.

But before proceeding to an explicit form of (15), let us address the boundary conditions for

our problem. Rigorously speaking, the principle of minimum energy dissipation makes it possible

to derive appropriate boundary conditions directly from (3) (natural boundary conditions). Here

we, however, impose Dirichlet conditions on the system’s boundary ∂Ω. In particular,

v = 0, ṅ = 0, uα = 0 on ∂Ω. (16)

Such a choice slightly simplifies further consideration and should correspond to a majority of

experimental setups.

Given these preliminary arguments, consider again Eq. (15). First, calculate the rate of energy

change. For the sake of clarity, we divide this process into the following steps

d

dt

∫
Ω

d3r

{
1

2
ρv2 + EOF (n,∇n)

}
=

=

∫
Ω

d3r

{[
ρv̇k + ∂j

(
∂EOF
∂(∂jni)

(∂kni)

)]
vk +

[
∂EOF
∂ni

− ∂j
(
∂EOF
∂(∂jni)

)]
ṅi

}
(17)

Similarly, by means of the identity ˙(∂iΦ) = ∂iΦ̇− (∂ivk) (∂kΦ) we have

d

dt

∫
Ω

d3rEE(n,∇Φ) =

∫
Ω

d3r

{
∂EE
∂ni

ṅi +
∂EE
∂(∂iΦ)

(∂iΦ̇)− ∂EE
∂(∂iΦ)

(∂kΦ)(∂ivk)

}
. (18)

Recall that EE = −ε0(ε⊥δij + ∆εninj)(∂iΦ)(∂jΦ)/2 so that

∂EE
∂ni

= −ε0∆εnj(∂iΦ)(∂jΦ),

∂EE
∂(∂iΦ)

= −ε0εij(∂jΦ).
(19)

Then

d

dt

∫
Ω

d3rEE(n,∇Φ) =

=

∫
Ω

d3r
{

(−ε0∆εnjEiEj)ṅi − (∂iDi)Φ̇− ∂i(ε0εijEjEk)vk

}
+

∫
∂Ω

d2r
{

(νiε0εijEj)Φ̇
}

(20)
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Implying that on a conductor-dielectric interface the normal component of the displacement, Diνi,

is given by the surface charge density σ, one sees that the surface integral in (20)∫
∂Ω

d2r
{

(νiε0εijEj)Φ̇
}

=

∫
∂Ω

d2rνiDi
∂Φ∂Ω

∂t
=

∫
∂Ω

d2rσ
∂Φ∂Ω

∂t
, (21)

gives the power of charges located at ∂Ω. This term can be omitted when Φ∂Ω varies slowly

compared to the dynamics given by v, uα and ṅ.

For the ionic subsystem we have

d

dt

∫
Ω

d3rEion(cα,Φ) =

∫
Ω

d3r

N∑
α=1

{
(∂iµ

α)cα(uαi − vi) + ecαzαΦ̇− µαcα(∂ivi)
}
, (22)

where µα = ∂Eion
∂cα

= kBΘ(ln cα + 1) + ezαΦ is identified as the chemical potential of the α-th ion

species [21] and the continuity equation (5) is used.

Note that Ėion includes the term
∑

α ec
αzαΦ̇ whereas ĖE contains −(∂iDi)Φ̇. Obviously, both

these terms annihilate and are not present in the total power Ė . This point deserves a special

comment. Developing the current approach, we initially postulated that the electric field obeys

Maxwell’s equations. But now we see that this assumption is not indispensable. The same equation

for D follows from (3), provided that Φ̇ is treated as a generalized velocity. Then

δ

δΦ̇

∫
Ω

d3r
{
Ė +R− p(∂ivi)− Λniṅi

}
= −∂iDi +

N∑
α=1

ecαzα = 0. (23)

Since the present framework deals with the energy of the entire system this derivation properly

addresses nonlocality of the field.

Now we can write down the variational derivatives of the dissipation function. Particularly,

δ

δṅi

∫
Ω

d3rR =
∂Rnem

∂n̊i
= γ1n̊i + γ2Aijnj, (24)

δ

δuαi

∫
Ω

d3rR = kBΘcα(Dα
ij)
−1(uαj − vj), (25)

δ

δvi

∫
Ω

d3rR =
δ

δvi

∫
Ω

d3rRnem − kBΘ
N∑
α=1

cα(Dα
ij)
−1(uαj − vj). (26)

Keeping in mind the explicit form (11) ofRnem and relations (12) for γs, one sees that δ
δvi

∫
Ω
d3rRnem

indeed yields divergence of the well-known viscous stress tensor TVij [13]

δ

δvi

∫
Ω

d3rRnem = −∂j
∂Rnem

∂(∂jvi)
= −∂jTVij =

= −∂j (α1ninjnknlAkl + α2n̊inj + α3nin̊j + α4Aij + α5Aiknknj + α6Akjnkni) . (27)
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Thus, it follows from (22) and (25) that

δ

δuαi

∫
Ω

d3r
{
Ė +R− p(∂ivi)− Λniṅi

}
= cα

(
∂iµ

α + kBΘ(Dα
ij)
−1(uαj − vj)

)
= 0. (28)

Combining this with the continuity equation (5), we arrive at

∂cα

∂t
+ ∂j

[
cαvj −

cα

kBΘ
Dα
ij(∂iµ

α)

]
= 0. (29)

In the same way, equations (17), (20) and (24) yield

δ

δṅi

∫
Ω

d3r
{
Ė +R− p(∂ivi)− Λniṅi

}
=

=
∂EOF
∂ni

− ∂j
[
∂EOF
∂(∂jni)

]
− Λni + γ1n̊i + γ2Aijnj − ε0∆εnjEjEi = 0. (30)

Finally, combining (17), (20), (22), (27) and (28) we arrive at

δ

δvi

∫
Ω

d3r
{
Ė +R− p(∂ivi)− Λniṅi

}
=

= ρv̇i + ∂j

[
∂EOF
∂(∂jnk)

(∂ink) + pδij − TVij − ε0εjkEkEi

]
= 0. (31)

Recalling that ∇× E = 0 and ∂iµ
α = ∂i [kBΘ(ln cα + 1)] + ezα(∂iΦ), one can show that

− ∂j [ε0εjkEkEi] =

=
N∑
α=1

cα(∂iµ
α) + ε0∆εnkEk(∂inj)Ej − ∂i

[
ε0ε⊥E

2
k + ε0∆εnjEjnkEk + kBΘ

N∑
α=1

cα

]
. (32)

The sum of the gradient term from (32), the Lagrange multiplier p and ∂i (µ
αcα) from (31) can be

defined as the total pressure, yielding thus an alternative form

ρv̇i + ∂j

[
∂EOF
∂(∂jnk)

(∂ink) + pδij − TVij

]
+ ε0∆εnkEk(∂inj)Ej +

N∑
α=1

cα(∂iµ
α) = 0. (33)

of (31). Equations (9), (29), (30) and (33) along with the definition of the chemical potential

µα =
∂Eion
∂cα

= kBΘ(ln cα + 1) + ezαΦ (34)

and constraints ∇ · v = 0, n2 = 1 constitute the full set of equations governing electro-osmosis in

nematic liquid crystals,
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

∂cα

∂t
+ ∂j

[
cαvj − cα

kBΘ
Dα
ij(∂iµ

α)
]

= 0,

∂EOF
∂ni
− ∂j

[
∂EOF
∂(∂jni)

]
− Λni + γ1n̊i + γ2Aijnj − ε0∆εnjEjEi = 0,

ρv̇i + ∂j

[
∂EOF
∂(∂jnk)

(∂ink) + pδij − TVij

]
+ ε0∆εnkEk(∂inj)Ej +

∑N
α=1 c

α(∂iµ
α) = 0,

∂i [ε⊥Ejδij + ∆εninjEj] = e
ε0

∑N
α=1 c

αzα,

µα = ∂Eion
∂cα

= kBΘ(ln cα + 1) + ezαΦ,

∂ivi = 0,

nini = 1.

(35)

IV. ELECTRO-OSMOTIC FLOW IN A PATTERNED CELL

Next we employ the approach developed above to model electro-osmosis in a nematic electrolyte

with a prescribed and fixed director distribution. Such a problem corresponds to recent experi-

ments [11] where a nematic was confined between two parallel substrates with patterned planar

anchoring conditions (see Fig. 1). In the presence of anisotropy of dielectric permittivity and/or

conductivity, an in-plane electric field would cause director realignment. The corresponding dis-

tortions of the director, however, may be essentially suppressed if the anchoring on the boundary

with the substrates is strong enough. The experiments in Ref. [11] show that the realignment is

indeed small, but this does not indicate that the anchoring is strong since the material studied in

Ref. [11] had zero dielectric anisotropy, ∆ε = 0.

In order to conclude that the director is essentially unaffected by the field, we need to estimate

the minimum value, Wmin, of the in-plane anchoring strength W that is sufficient to resist the

dielectric realignment torque
√
ε0∆εK|E|δϕ. Balancing the dielectric realignment torque with the

stabilizing surface torque, Wδϕ, yields the expression Wmin =
√
ε0∆εK|E|. Here δϕ is the small

angle of deviation from the anchoring-imposed local director orientation.

For the typical parameter values, ε0∆ε = 10−11 F/m, K = 10−11 N and E = 4 × 104 V/m,

one finds that Wmin = 4 × 10−7 N/m. The actual anchoring strength in the experiments [11] is

higher, on the order of W ≈ K/l ≈ 2× 10−6 N/m, where 1/l ≈ 0.2× 106 m−1 is the highest value

of the director gradient that the surface anchoring can support in the experiments [11]. We thus

conclude that the director distortions caused by the dielectric torque of the applied electric field

can be neglected. Moreover, since the Ericksen number Er = α4vL/K, the ratio of viscous and

elastic forces in the experiments [11] is of the order O(1) because α4 = 0.08 Pa·s, v = 4 µm/s and
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Figure 1. Sketch of charge separation: (a) and (d) in the cell A; (b) and (e) in the cell B; (c) and (f)

in the cell C. White arrows show the direction of the triggered electro-osmotic flow of the liquid crystal.

The key parameters λσ = σ‖/σ⊥ and λε = ε‖/ε⊥ are defined as the ratios of the nematic conductivity

and permittivity along and perpendicular to the director, respectively. Here (a)-(c): λε− λσ < 0; (d)-(f):

λε − λσ > 0.

L = 50 µm (stripes width in Fig. 1). Thus we may consider the director field to be “frozen” in

the first approximation, i.e., it is entirely specified by the surface pattern of molecular orientation

n = (nx, ny). Note that the length-scale l above is the minimum distance over which the director

gradients are sustained by the surface alignment; it is always much smaller than the typical period

of director distortions L in the plane of the liquid crystal cell.

In the presence of an electric field, spatial variations of n(r) along with the anisotropy of

dielectric permittivity and mobilities of the ions give rise to the separation of electric charges,

that are always present in practice. This field-induced charge density, which is proportional to the

field strength E, consequently causes a flow of the liquid crystal with the velocity ∝ E2. As we

already mentioned above, this remarkable feature allows the flow to be triggered by an alternating

current field. However, in order to simplify our analysis, we assume that the frequency of the field
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is much lower than the inverse relaxation time of the ionic gas. Then we can treat the field as

time-independent and content ourselves with steady flows of the liquid crystal.

Following the experimental setup, specify the director components nx = cos θ(y) and ny =

sin θ(y) as periodic functions of y, and subject the system to a uniform electric field E = (E, 0)

(see Fig. 1). For simplicity, we assume that there are only two ionic species with z+ = 1 and

z− = −1 and concentrations c+ and c−, respectively.

Since the physical system is invariant under arbitrarily translations along the x axis, we seek

solutions to the equations (35) in the form

v = (vx(y), 0), c± = c±(y), Φ(x, y) = −Ex+ φ(y). (36)

Due to incompressibility of the liquid crystal, ∇ · v = ∂xvx + ∂yvy = 0, the velocity component vy

has to be constant and thus can be set to zero. Such a velocity field results in vanishing convective

derivatives v · ∇ of c±, n and v. The latter is negligible also in the case of more complex patterns

with similar characteristics because of the low Reynolds number Re = ρvL/α4 ≈ 2.5×10−6, where

ρ = 1 g/cm3 is the typical liquid crystal density.

Usually, the mobilities of positive and negative ions in nematic liquid crystals are quite close.

Therefore, we can set D+
ij = D−ij = Dij = D̄ (δij + (λσ − 1)ninj), where D̄ > 0 and λσ ≥ 0. The

dimensionless parameter λσ = σ‖/σ⊥ defined as the ratio of the conductivity (ionic mobility)

respectively along and perpendicular to the director, characterizes the anisotropy of the liquid

crystal electrolyte. Under these conditions, the system of governing equations (35) reads as



−∂y
[
c±

kBΘ
(Dxy(∂xµ

±) + Dyy(∂yµ
±))
]

= 0,

∂xp+ ∂y

[
∂EOF
∂(∂ynx)

(∂xnx) + ∂EOF
∂(∂yny)

(∂xny)− TVxy

]
+ c+(∂xµ

+) + c−(∂xµ
−) = 0,

∂y [ε⊥Ey + ∆εny (nxEx + nyEy)] = e
ε0

(c+ − c−) ,

∂y

[
∂EOF
∂(∂ynx)

(∂ynx) + ∂EOF
∂(∂yny)

(∂yny) + p− TVyy

]
+ c+(∂yµ

+) + c−(∂yµ
−)+

+ε0∆ε (nxEx + nyEy) (Ex(∂ynx) + Ey(∂yny)) = 0.

(37)

Note that although in the original experiments [11] the liquid crystal was dielectrically isotropic,

∆ε = 0, here we keep the terms with ∆ε in order to explore a role of this sort of anisotropy as

well.

Within the commonly adopted one-constant approximation K1 = K2 = K3 = K and EOF =
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1
2
K(∂inj)(∂inj). Thus,

∂EOF
∂(∂ynx)

(∂xnx) +
∂EOF
∂(∂yny)

(∂xny) = 0, (38)

∂EOF
∂(∂ynx)

(∂ynx) +
∂EOF
∂(∂yny)

(∂yny) = K

(
dθ

dy

)2

. (39)

The viscous stress tensor (27) for the system under investigation reduces to TVxy = α4η(y)∂yvx and

TVyy = α4χ(y)∂yvx, where the functions η(y) and χ(y) are defined by the nematic’s viscosities and

its director field,

η(y) =
1

2
+
α3 + α6

2α4

n2
x +

α5 − α2

2α4

n2
y +

α1

α4

n2
xn

2
y, (40)

χ(y) =
α1

α4

nxn
3
y +

α6

α4

nxny. (41)

Interestingly, η(y) can be easily expressed in terms of the Miesowicz viscosities [22] defined as

η1 = 1
2
(α3 + α6 + α4) measured when n is parallel to v, η2 = 1

2
(α5 − α2 + α4) measured when n is

parallel to ∇v, η3 = 1
2
α4 measured with n orthogonal to both v and ∇v, and η12 = α1 so that

η(y) =
1

2

(
η1

η3

n2
x +

η2

η3

n2
y +

η12

η3

n2
xn

2
y

)
. (42)

Taking a closer look at the last equation in (37), we observe that it gives the pressure p as a

function of the y-coordinate, whereas the remaining part of the system includes only ∂xp. Hence,

the latter is zero unless the external pressure gradient is applied to the system. As a result, p(y)

can be found when the reduced system
−∂y

[
c±

kBΘ
(Dxy(∂xµ

±) + Dyy(∂yµ
±))
]

= 0,

−∂yTVxy + c+(∂xµ
+) + c−(∂xµ

−) = 0,

∂y [ε⊥Ey + ∆εny (nxEx + nyEy)] = e
ε0

(c+ − c−) .

(43)

is solved.

It is convenient to nondimensionalize the problem (43) by introducing new variables

ỹ =
y

L
, c̃± =

c±

c̄
, φ̃ =

φ

EL
, D̃ij =

Dij

D̄
, (44)

where L denotes the stripe’s width for a given pattern (see Fig. 1) and c̄ is the average bulk

concentration of the ions. Then, after the tildes are omitted for notational simplicity, the system
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(43) reads as 

∂y [FDxy(−c+) + Dyy (∂yc
+ + Fc+(∂yφ))] = 0,

∂y [FDxy(c
−) + Dyy (∂yc

− − Fc−(∂yφ))] = 0,

∂y
[
−∂yφ+ ∆εnxny −∆εn

2
y(∂yφ)

]
= G (c+ − c−) ,

∂y [η(y)∂yvx] = −G(c+ − c−),

(45)

where nondimensional parameters

∆ε =
ε‖ − ε⊥
ε⊥

= λε − 1, G =
c̄eL

ε0ε⊥E
, F =

eEL

kBΘ
(46)

and a characteristic value for the velocity quadratic in the field strength, v̄ = ε⊥ε0LE
2/α4, emerges

naturally.

Consider the first two equations in (45). It follows that

FDxy(−c+) + Dyy

(
∂yc

+ + Fc+(∂yφ)
)

= const1,

FDxy(c
−) + Dyy

(
∂yc
− − Fc−(∂yφ)

)
= const2.

(47)

In order to find the unknown constants we have to recall that the left-hand sides of (47) define the

flux of corresponding ions along the y axis, J±y ∝ c±Dyi(∂iµ
±). Since there is no reason for such

a uniform constant flux to exist, both const1 and const2 have to vanish. Dividing the first and

the second equations (47) by c+ and c−, respectively, and adding the results, one easily arrives at

c+c− = c2
0, where c0 is a non-zero constant. Given this fact, the subtraction of the equations (47)

leads to

∂yφ =
Dxy

Dyy

− 1

F
∂y
(
ln c+

)
. (48)

Let ln c+ = r and substitute (48) into the third equation of the system (45),

1

F

(
r′
(
1 + ∆εn

2
y

))′ −G (er − c2
0e
−r) =

(
Dxy

Dyy

(
1 + ∆εn

2
y

)
−∆εnxny

)′
. (49)

Hereafter the prime denotes total derivative d
dy

. The number of ions present in the system is fixed,

therefore ∫ N

−N
erdy = c2

0

∫ N

−N
e−rdy = 2N. (50)

Equation (49) and the condition (50) make it possible to find the concentrations of both ionic

species, which, in turn, allow us to calculate all the remaining unknown quantities. The problem

(49)-(50) is essentially nonlinear and its analytical solutions are difficult to find in the general case

(see Figs. 4 – 6 for numerical solutions).

14



However, for the parameters characterizing the experimental setup in [11], we have E =

40 mV/µm, c̄ = 1019 m−3, L = 50 µm and ε⊥ = 6 (the values that are quite typical for ne-

matic systems), and the Eq. (49) can be linearized provided that the liquid crystal is not strongly

dielectrically anisotropic, ∆ε ∼ 1.

But first note that the electric field applied parallel to the sandwich-like cells with a thin

nematic layer confined between two glass plates is, generally speaking, spatially nonuniform [9].

In particular, its value is diminished in the center of the cell; the reduction factor for experimental

conditions close to the ones discussed in this paper is about 0.6 [9], thus the applied electric field

40 mV/µm is reduced to about 24 mV/µm.

For the listed values, F ≈ 47 and G ≈ 63 are sufficiently large so that δ = 1
F

can be treated as

a small parameter, δ � 1. Then (49) takes the form

δ
(
r′
(
1 + ∆εn

2
y

))′ − b

δ

(
er − c2

0e
−r) = −M ′(y), (51)

where the right-hand side is denoted as M ′(y) with

M(y) = − (λσ − 1)nxny
1 + (λσ − 1)n2

y

(
1 + ∆εn

2
y

)
+ ∆εnxny = (λε − λσ)

nxny
1 + (λσ − 1)n2

y

(52)

and b = Gδ = O(1). Taking into account smallness of δ, we can approximate r and c0 by

r = δr1 +O(δ2) and c0 = 1 + c1δ +O(δ2), (53)

which implies that deviations of the concentrations c± from the average value c̄ are small. Thus,

to leading order in δ equations (51) and (50) result in

r1 − c1 =
1

2b
M ′(y) (54)

and ∫ N

−N
(1 + δr1) dy =

∫ N

−N
(1− δr1) dy + 2c1δ

∫ N

−N
dy = 2N, (55)

respectively. Hence, c1 = 0 and

c± = 1± δr1 = 1± 1

2G
M ′(y), (56)

which clearly shows that the (nondimensional) electric charge density Q(y) = c+ − c− is indeed

proportional to the field strength as 1/G ∝ E.

Finally, consider the last equation of the system (45)

(ηv′x)
′
= −G

(
c+ − c−

)
= −M ′ (57)
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(a) (b) (c)

(d) (e) (f)

Figure 2. Nondimensional charge concentration: (a) and (d) in the cell A; (b) and (e) in the cell B; (c)

and (f) in the cell C. Here (a)-(c): λσ = 1.4, λε = 1 (dashed line) and λσ = 3, λε = 1 (solid line); (d)-(f):

λσ = 1.4, λε = 4 (dashed line) and λσ = 3, λε = 4 (solid line).

which defines the velocity of the flow. It is a second-order differential equation so that its general

solution

vx = −
∫
dy
M(y) + C1

η(y)
+ C2, (58)

contains two unknown constants C1 and C2. In order to find these constants, we have to specify

the director field as a function of y, i.e., the explicit form of θ = θ(y).

A. Pattern A

Let us start with the pattern given by θA = π(1 − y), i.e. n = (− cosπy, sin πy). Suppose,

for instance, λσ > 1 so that the mobility of ions along the director is higher than that in the

perpendicular direction. One can roughly think of this as the ions moving mainly along the

direction of n ≡ −n. Then under the action of the field parallel to the x-axis, the positive ions

that are otherwise distributed homogeneously, accumulate in the regions where n = (1, 0) whereas

the negative ions migrate to the regions where n = (0, 1). At the same time, positive dielectric

anisotropy, λε > 1 or ∆ε > 0, gives rise to the opposite pattern of charge separation. Response

of the liquid crystal to the electric field requires an excess of positive and negative charges in the

regions with n = (0, 1) and n = (1, 0), respectively. Equations (56) and (52) transparently reflect

this interplay between the two mechanisms through the multiplier λε − λσ. In particular, the
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electric charge distribution QA = c+ − c− in the A-type cell is given by

QA =
π(λε − λσ)

2G

λσ − 1− (1 + λσ) cos 2πy(
1 + (λσ − 1) sin2 πy

)2 . (59)

It follows from (59) that the dielectric anisotropy by itself is capable of separating the ions. It

should be noted, however, that λε and λσ are not interchangeable. The charge distribution QA

is linear in λε, while it depends on λσ in a more complex way. If there is no difference between

the mobilities, λσ = 1, the charges are symmetrically separated, QA = −π(λε − 1)G−1 cos 2πy.

Equal amounts of positively or negatively charged ions are distributed over equal amounts of the

liquid crystal; otherwise the symmetry between cations and anions is broken (see Fig. 2). When

the mobilities in the directions along and perpendicular to n differ considerably, a certain number

of ions is practically trapped within the regions of low mobility. Only the “fast” charges separate

under this condition. As a result, we see narrow peaks of either positive or negative charge,

depending on the sign of λε − λσ, separated by wide plateaus of the opposite charge in Fig. 2.

Once the charges have separated, their movement causes electrokinetic flow of the liquid crystal

with the velocity given by the general expression (58). The director field n = (− cos πy, sin πy) is

periodic with the period 1. Naturally, the same should hold for the velocity. The integral
∫
dyM/η

results in the function∫
dyM/η =

(λε − λσ)

2π

1

(λσ − 1) (η̃1λσ − η̃2)− η̃12λσ
×

×


(η̃1 − η̃2) (λσ − 1)− η̃12(λσ + 1)√

(η̃1 + η̃2 + η̃12) 2 − 4η̃1η̃2

ln

∣∣∣∣√(η̃1 − η̃2 + η̃12)2 + 4η̃2η̃12 + η̃1 − η̃2 − η̃12 cos 2πy

∣∣∣∣∣∣∣∣√(η̃1 − η̃2 + η̃12)2 + 4η̃2η̃12 − η̃1 + η̃2 + η̃12 cos 2πy

∣∣∣∣−
−(λσ − 1) ln

∣∣(η̃1 − η̃2 + η̃12)2 + 4η̃2η̃12 − (η̃1 − η̃2 − η̃12 cos 2πy)2
∣∣

(1 + λσ − (λσ − 1) cos 2πy)2

}
(60)

that is indeed periodic with the period 1. Here η̃1 = η1/η3, η̃2 = η2/η3, and η̃12 = η12/η3. At the

same time
∫
dyC1/η is not periodic. By definition the viscous function η(y) is positive-definite.

Therefore, C1/η does not change its sign. Due to this fact, the integral
∫
dyC1/η is a monotonic

function of y. If we expect the velocity to be periodic and continuous, C1 has to be zero. Hence,

vAx = −
∫
dy
M(y)

η(y)
+

∫ 1

0

dy

∫
dy
M(y)

η(y)
, (61)

where the remaining constant C2 was chosen so as to avoid the net transport of the liquid crystal

through the system.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Nondimensional flow velocity: (a) and (d) in the cell A; (b) and (e) in the cell B; (c) and (f)

in the cell C. Here the plots (a)-(c) correspond to the fixed anisotropy λε = 1, λσ = 1.4 and varying

viscosity: η̃1 = 0.6, η̃2 = 2.5 and η̃12 = 0.08 (solid line); η̃1 = 1, η̃2 = 1 and η̃12 = 0 (dashed line); η̃1 = 5.1,

η̃2 = 1.3 and η̃12 = 0.7 (dotted line). The plots (d)-(f) correspond to the fixed viscosity η̃1 = 0.6, η̃2 = 2.5

and η̃12 = 0.08 and varying anisotropy: λε = (1.4)−1, λσ = 1 (solid line); λε = 1, λσ = 1.4 (dashed line).

Equations (60) and (61) prove that the anisotropy of ionic mobility is not a prerequisite for

liquid-crystal-enabled electrokinetics. Even when λσ = 1 the flow can exist as long as λε 6= 1.

Its profile, however, will slightly differ from those of the flow caused by the corresponding pair

λ′σ = 1/λε, λ
′
ε = 1 (see Fig. 3, bottom row).

The profile of the flow depends also on the viscosities η̃1, η̃2, and η̃12. This dependence, however,

does not lead to any important consequences because the viscosities cannot alter key features of

the flow. For given anisotropies λε and λσ, magnitudes of η̃1, η̃2, and η̃12 define amplitudes and

zeros of vx(y). But they can neither reverse nor distort the flow direction (at least within the

present approach which assumes that n(r) is fixed).

Note that in the case λε = 1, the solution (61) was already obtained in [12] under the initial

assumption of isotropic viscosity η(y) ≡ 1/2. Our results show that although the assumption may

seem oversimplified, it leads to qualitatively correct behavior of the flow (compare dashed and

solid lines in the top row of Fig. 3).

18



B. Patterns B and C

In this subsection we consider two similar types of the director arrangement n = (cos θ(y), sin θ(y))

with

θB =
π

2
− arcsin(sinπy), (62)

θC = arcsin(sinπy), (63)

which we will refer to as the pattern (or cell) B and C, respectively. Similar to the pattern

considered above, these patterns are also periodic, but with the period that is two times larger and

consists of two different stripes. Note that Eq. (62) implies that the function arcsin(x) is restricted

to its principal branch
[
−π

2
, π

2

]
. Because of this constraint, the direct calculation of (56) results

in a function r1 that appears to have jump discontinuities at y = 1
2

+ k, k ∈ Z, contradicting the

requirement that concentrations of ions have to be continuous.

This discrepancy is easily resolved once we observe that large gradients of ions concentrations

are possible in our system due to the fact that the parameter F � 1. Indeed, F is equal to the

ratio of electrostatic energy of an ion to its thermal energy so that the electrostatic forces dominate

over diffusion when this parameter is large. It follows then that ions can pile-up in certain regions

of the nematic electrolyte under the action of the field. Mathematically, this fact manifests itself in

the presence of the boundary layers where this pile-up takes place and the discontinuous branches

of r1 that are obtained from the outer asymptotic solution (56) need to be connected via an inner

solution of (51) inside each boundary layer.

Briefly, if y0 ∈ 1
2

+ Z is one of the points of discontinuity, let y = y0 +
√
δζ to be the inner

boundary layer variable and setR(ζ) = r(
√
δζ). Using the same expansions as in (53) and collecting

the leading order terms, we find that R1 in the expansion of R satisfies the following problem
(1 + ∆εny(y0)2)R′′1 − 2bR1 = 2b c1 −M ′ (y+

0

)
, ζ > 0,

(1 + ∆εny(y0)2)R′′1 − 2bR1 = 2b c1 −M ′ (y−0 ) , ζ < 0,

R1 (0−) = R1 (0+) and R′1 (0−) = R′1 (0+) ,

(64)

where f (x±) denote the right- and left-hand limits of f at x, respectively. Further, the second

equation in (53) remains unchanged because the contribution of the boundary layer to the integral

in (55) appears at order O(δ2). Hence c1 = 0 and the solution to (64) is

R1(ζ) =


1
2b
M ′ (y+

0

)
+ 1

4b

(
M ′ (y−0 )−M ′ (y+

0

))
e
−

√
2bζ

(1+∆εny(y0)2)1/2
, ζ > 0,

1
2b
M ′ (y−0 )+ 1

4b

(
M ′ (y+

0

)
−M ′ (y−0 )) e √

2bζ

(1+∆εny(y0)2)1/2
, ζ < 0.

(65)
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Note that this solution matches the branches of the outer solution to the right and to the left of

y0 in (56) as ζ → ±∞ and it reduces to a constant value corresponding to (56) evaluated at y0

if M ′ is continuous at y0. For simplicity, in what follows we will not present the expressions for

the boundary layers solutions corresponding to particular patterns, although these solutions will

be used in plotting of various fields.

Omitting the details, we use (56) to write down the electric charge distribution outside of the

boundary layers

QB =


−π(λε−λσ)

2G
1−λσ−(1+λσ) cos 2πy

(λσ−(λσ−1) sin2 πy)
2 , |y|mod 2 ∈

[
0, 1

2

]
∪ [3

2
, 2),

π(λε−λσ)
2G

1−λσ−(1+λσ) cos 2πy

(λσ−(λσ−1) sin2 πy)
2 , |y|mod 2 ∈

[
1
2
, 3

2

] (66)

QC =


−π(λε−λσ)

2G
λσ−1−(1+λσ) cos 2πy

(1+(λσ−1) sin2 πy)
2 , |y|mod 2 ∈

[
0, 1

2

]
∪ [3

2
, 2),

π(λε−λσ)
2G

λσ−1−(1+λσ) cos 2πy

(1+(λσ−1) sin2 πy)
2 , |y|mod 2 ∈

[
1
2
, 3

2

] (67)

for the pattern B and C, respectively.

Similarly to QA, the charge concentrations QB and QC are proportional to the difference be-

tween λε and λσ so that larger magnitudes of QB and QC should be observed in more anisotropic

electrolytes. But unlike the pattern considered in the previous subsection, for the patterns B

and C, each period consists of two halves in which both positive and negative charges experience

equivalent but alternating electrostatic forces. The resulting electro-osmotic flows then also ex-

hibit an alternating pattern. This behavior occurs for any combination of the nematic viscosities,

regardless of the degree of anisotropy (see Fig. 3).

C. Applicability of asymptotic solutions

In the case of a prescribed quasi one-dimensional director field and equally charged and mobile

cations and anions, the system of eleven governing equations (35) reduces to a single ordinary

differential equation (49) for the function r = ln c+. Supplemented by the integral constraint (50),

this equation allows us to find the spatial dependence of the ionic concentration and, subsequently,

calculate all of the unknown quantities without the need to make any additional assumptions.

Although the nonlinear Eq. (49) is not solvable analytically, it can be solved asymptotically in
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(a) (b)

Figure 4. Nondimensional concentration of the positive ions in the cell A found from (49)-(50) numerically

(points) and analytically (solid lines). (a): λε = 1, λσ = 1.5. (b): λε = 1.5, λσ = 1. Here F = 47 and

G = 63 correspond to the experiment [11], where E = 24 mV/µm, c̄ = 1019 m−3, L = 50 µm and ε⊥ = 6.

the parameter regime corresponding to a typical nematic electrolyte. As shown in Fig. 4, for the

pattern A the asymptotic solution (56) is in excellent agreement with the results of numerical

integration of the exact problem (49)-(50). The leading order asymptotic approximation for the

pattern C shown in Fig. 5 is less accurate for the charge concentration within the boundary layer.

However, even in this case the flow velocity agrees well with the numerical solution. Overall, the

error incurred by using the approximate expression (56) is quite sensitive to the values of the

nondimensional parameters λε, λσ, G = c̄eL/(ε0ε⊥E) and F = eEL/(kBΘ).

A detailed discussion of the role of G and F can be found in [12]. Briefly, the solution (56)

is correct as long as the following three conditions are satisfied: (a) The applied field E is strong

enough to overcome thermal fluctuations on the length scale of the stripe’s width, i.e., F � 1 and

diffusion can be neglected; (b) The applied field E is lower than Ec = c̄eL/(ε0ε⊥), i.e., G� 1; and

(c) The anisotropy parameters λε and λσ are finite and bounded away from zero. Here the critical

value Ec corresponds to a field that fully separates all the charges in the system so that the flow

is no longer quadratic in the field strength.

To illustrate the role of the assumption (c) that was not explicitly discussed in [12], it is

convenient to consider the pattern A. Indeed, in this case the corresponding expression for c+ is

defined in a simpler way as can be seen from (59) while recalling that c± = 1 ± 1
2
Q. One can

easily find that if λσ → ∞, then c+ → 1 − π csc2 πy/(2G). Similarly, c+ → 1 − πλε sec2 πy/(2G)

when λσ → 0. Clearly, both of these expressions result in negative concentrations for certain

values of y (see Fig. 6). The reason for this can be traced back to the equation (53) that was

derived under the assumption that the deviations of c+ from the bulk concentration c̄ are small
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(a) (b)

Figure 5. Comparison between the numerical (dashed line) and asymptotic (solid line) solutions in the cell

C. Here (a) depicts nondimensional charge concentrationQC = c+−c− and (b) depicts the nondimensional

flow velocity. Both plots were obtained under the assumption that η = 1, λε = 1, λσ = 1.4 and F = 47

and G = 63.

and c+ = er ≈ 1+δr1. But this is not the case when λσ � 1 or λσ � 1 because then r1 is not small

everywhere. Note that, even though the asymptotic analysis fails in these regimes, a numerical

solution of the problem (49)-(50) predicts concentrations correctly (cf. Fig. 6).

In a similar manner, one can show that the solutions (56) are incorrect in the case of strong

positive dielectric anisotropy, λε � 1, since c± grows linearly with λε. Mathematically this is

because the first term in Eq. (49) is no longer small and cannot be neglected.

It should be noted that the asymptotic solutions (56) give qualitatively improper results only

in extremely anisotropic nematics, in which mobilities or dielectric permittivities differ by orders

of magnitude. Otherwise the approximate expressions (56) are quite accurate. Even in the case of

λε = 10 or λσ = 10 they deviate from the numerical results by ≈ 5%.

V. CONCLUSIONS

We considered a nematic electrolyte, an ideal ionic gas in the liquid crystalline matrix, and

proposed a theoretical model of electro-osmosis in such a medium. We showed how the equations

governing this phenomenon can be derived in a simple and efficient way from a variational principle

of the least energy dissipation. An advantage of the proposed approach is that it can be easily

reformulated in terms of the tensorial order parameter instead of the director. This feature opens

a way to a theoretical description of electrophoretic transport of colloidal inclusions, which are

typically accompanied by topological defects.

As an illustrative example, electro-osmotic flows in nematic films with prescribed periodic molec-
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Figure 6. Behavior of the nondimensional concentration c+ found numerically (solid line) and analytically

(dashed line) in the cell A when the nematic is extremely anisotropic. Here (a): λε = 1, λσ = 400; and

(b): λε = 50, λσ = 1. Both plots were obtained under the assumption that F = 47 and G = 63.

ular orientation were considered. Even this quasi one-dimensional problem cannot be exactly

solved analytically. Its asymptotic solutions, however, are in good agreement with the results of

experiments and numerical simulations.

The proposed approach clearly demonstrates that the necessary condition for liquid-crystal-

enabled electro-osmosis is a spatially varying electric charge density Q(r) ∝ E. The directed

motion of the charges under the action of the electric force QE ∝ E2 results in the flow of the

liquid crystal. Since the driving force is quadratic in E the velocity of the flow does not depend

on the field’s polarity.

The charge density Q(r) itself arises from an interplay between non-uniform director field and

anisotropic properties of its dielectric permittivity ε̂ and conductivity σ̂. The latter two can

mutually suppress as well as enhance each other. Hypothetically, in nematics with varying σ̂ and

ε̂ this competition can be exploited for dynamic switching of the flow’s direction.

ACKNOWLEDGMENTS

The authors acknowledge support from NSF DMS-1434185. NJW was also supported in part

by National Science Foundation Grant DMS-1418991.

[1] A. Ramos, Electrokinetics and electrohydrodynamics in microsystems, Vol. 530 (Springer Science &

Business Media, 2011).

23



[2] H. Morgan and N. Green, “AC electrokinetics: colloids and nanoobjects,” (2003).

[3] W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions (Cambridge University

Press, 1989).

[4] M. Z. Bazant and T. M. Squires, Physical Review Letters 92, 066101 (2004).
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