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Abstract

We analyze the dynamics of a discharging electrolytic cell comprised of a binary

symmetric electrolyte between two planar, parallel blocking electrodes. When a volt-

age is initially applied, ions in the electrolyte migrate towards the electrodes, forming

electrical double layers. After the system reaches steady state and the external current

decays to zero, the applied voltage is switched off and the cell discharges, with the ions

eventually returning to a uniform spatial concentration. At voltages on the order of

the thermal voltage VT = kBT/q ≃ 25 mV, where kB is Boltzmann’s constant, T is

temperature and q is the charge of a proton, experiments on surfactant-doped nonpolar

fluids observe that the temporal evolution of the external current during charging and

discharging is not symmetric.1, 2 In fact, at sufficiently large voltages (several VT ), the

current during discharging is no longer monotonic: it displays a “reverse peak” before

decaying in magnitude to zero. We analyze the dynamics of discharging by solving the

Poisson-Nernst-Planck equations governing ion transport via asymptotic and numerical

techniques in three regimes. First, in the “linear regime” when the applied voltage V is

formally much less than VT , the charging and discharging current are antisymmetric in

time; however the potential and charge density profiles during charging and discharging
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are asymmetric. The current evolution is on the RC timescale of the cell, λDL/D,

where L is the width of the cell, D is the diffusivity of ions, and λD is the Debye length.

Second, in the (experimentally relevant) thin-double-layer limit ǫ = λD/L ≪ 1, there

is a “weakly nonlinear” regime defined by VT . V . VT ln(1/ǫ), where the bulk salt

concentration is uniform; thus the RC timescale of the evolution of the current magni-

tude persists. However, nonlinear, voltage-dependent, capacitance of the double layer

is responsible for a break in temporal antisymmetry of the charging and discharging

currents. Third, the reverse peak in the discharging current develops in a “strongly

nonlinear” regime V & VT ln(1/ǫ), driven by neutral salt adsorption into the double

layers and consequent bulk depletion during charging. The strongly nonlinear regime

features current evolution over three timescales. The current decays in magnitude on

the double layer relaxation timescale, λ2
D/D; then grows exponentially in time towards

the reverse peak on the diffusion timescale, L2/D, indicating that the reverse peak is

the results of fast diffusion of ions from the double layer layer to the bulk. Following the

reverse peak, the current decays exponentially to zero on the RC timescale. Notably, the

current at the reverse peak and the time of the reverse peak saturate at large voltages

V ≫ VT ln(1/ǫ). We provide semi-analytic expressions for the saturated reverse peak

time and current, which can be used to infer charge carrier diffusivity and concentration

from experiments.

Keywords: Poisson-Nernst-Planck Equations, Electrolytic Cell, Electrochem-

istry, Discharging Current, Electrical Double Layers
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1 Introduction

Charge carriers accumulate at a charged interface, forming electric double layers comprising a diffuse

layer and fixed charge on a surface.3 Electrical double layers are a key component of electrochemical

systems. For example, capacitive desalination exploits double layers adjacent to high surface area

electrodes to separate ions from the bulk solution.4–6 Electrochemical capacitors store charge at the

electrode-electrolyte interface for energy storage applications, and are notable for their high power

compared to batteries and energy density compared to conventional capacitors.7–10 A simple device

exhibiting charge separation is an electrolytic cell, e.g. parallel plate blocking electrodes that charge

and discharge in response to cycling the applied voltage.11 An applied voltage leads to a separation

of ionic charge in solution that generates a non-uniform electric field across the device, with a higher

electric field in the double layers and a lower electric field in the electroneutral bulk of the cell. The

ions accumulate in double layers adjacent to the electrode surface that are typically thin compared

to the width of the cell. The width of the diffuse double layer is characterized by the Debye length,

λ̂D =

√

ε̂k̂BT̂ /2q̂2ĉ0 where ε̂ is the permittivity, k̂B is Boltzmann’s constant, T̂ is temperature,

q̂ is the charge of a proton and ĉ0 is the initial concentration of ions. Variables and parameters

with a carat superscript are dimensional, while those without a carat are dimensionless. When

the applied voltage is switched off, the cell discharges as the ions eventually return to a uniform

concentration distribution. The external current spikes in response to the step changes in voltage,

and then eventually decays in magnitude to zero. This spike and decay in the magnitude of the

external current is seen during both the charging and discharging process.

One might expect that given the globally cyclic nature of the charging and discharging process,

the temporal evolution of the external current during charging would be antisymmetric (i.e. oppo-

site in sign but equal in magnitude) to the current during discharging. However, experiments at

high voltages compared to the thermal voltage VT in nonpolar fluids doped with surfactant1,2, 12, 13

show that while the current during charging monotonically decays, the discharging current is non-

monotonic, resulting in a maximum and minimum in the current. The maximum in the magnitude

of the current is referred to as the “reverse peak”.2 Nonpolar fluids are doped with surfactant that

self-assemble into inverse micelles to stabilize charges, thereby preventing undesirable buildup of

large electric potentials,14 in systems ranging from petroleum15, 16 to electronic inks.12,17 Novotny
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and Hopper1 reported a reverse peak in the external current while measuring the current response

to a field applied to xylene doped with Aerosol OT. They suggest that the non-monotonic current

response stems from dissociation and recombination of the charge carriers, in this case surfactant

micelles. Novotny13 performed similar experiments for blocking and nonblocking electrodes, and

compared to numerical solutions of the Poisson-Nernst-Planck (PNP) equations describing the dif-

fusion and migration of charge carriers in a fluid. Novotny included a term for bulk dissociation

and recombination of the micellar charge carriers, as well as Faradaic reactions at the electrode

interfaces to account for nonblocking electrodes. Novotny found that the blocking electrode model

matches experiments when dissociation and recombination are included, to account for charge

transfer between micellar charge carriers.

Kornilovitch and Jeon2 measured the current carried by poly-isobuthylene succinimide inverse

micelles in IsoparM during charging and discharging of parallel plate electrodes and also compared

the results to the numerical solution of the PNP equations. They did not include a term for dis-

sociation and recombination, yet observed a reverse peak; thus recombination is not necessary to

the formation of a reverse peak. Kornilovitch and Jeon2 proposed a relation between the time the

reverse peak occurs t̂p, measured from the time when the voltage is turned off, to the diffusiv-

ity of the charge carriers, D̂ ∼ 0.1(L̂2/t̂p), accurate to 50%, where L̂ is the width of the device.

Their analysis assumes that the charge carriers are monodisperse and have equal diffusivities. This

effort to provide an estimate of the charge carrier diffusivity can supplement existing character-

ization methods for charge transport in doped nonpolar fluids, including measuring conductivity

as a function of dopant concentration18 and performing dynamic light scattering for charge car-

rier mobility.12 The transient, frequency-dependent current measured during electrical impedance

spectroscopy (subjecting material to small amplitude AC voltage) can also be fit to standard circuit

models to calculate the double layer capacitance and Debye length of doped nonpolar fluids.19, 20

Further, in a discharging experiment the total concentration of the charge carriers in the cell can be

calculated by integrating the current with respect to time at high voltage.2, 21 The charge carrier

mobility can be calculated from the initial current during charging and discharging,21 however this

is challenging due to the initial spike in the current.

At high voltages V ≫ VT , the dynamics during discharging are fundamentally different from

the dynamics during charging.1, 2 Bazant et al.11 performed asymptotic analysis and numerical
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computations to model the charging dynamics of an electrolytic cell at the experimentally-relevant

limit of thin Debye lengths, λ̂D ≪ L. They solved the PNP equations for charge transport in

three regimes based on the magnitude of the applied voltage V̂ compared to the thermal voltage,

V̂T = k̂BT̂ /q̂. The “linear regime” where the applied voltage is less than the thermal voltage,

formally V̂ ≪ V̂T , is characterized by a uniform bulk salt concentration profile everywhere in the

cell, where the salt concentration is equal to the mean of the cation and anion concentration. The

double layers behave as linear (voltage-independent) capacitors here, and the charging dynamics

is on the RC timescale. The “weakly nonlinear” regime occurs at an applied voltage 1 . V̂ <

V̂T ln 1/ǫ. Here, at the limit of thin double layers λ̂D ≪ L̂, the salt concentration is uniform in the

bulk electroneutral electrolyte, but the double layers behave as nonlinear capacitors, meaning that

the total charge stored increases nonlinearly with the applied voltage. Again, charging is on the

charging RC timescale, but now capacitance is a function of voltage. In the “strongly nonlinear”

regime, V̂ & V̂T ln 1/ǫ, the bulk is depleted of ions due to neutral salt adsorption by the double

layers, where depletion refers to a bulk salt concentration lower than the initial concentration

ĉ0. In contrast to the linear and weakly nonlinear regimes, here charging occurs on the diffusion

timescale. Bazant et al.11 report asymptotic and numerical solutions for the linear and weakly

nonlinear regimes, and derive effective macro-scale equations for the strongly nonlinear regime.

Beunis et al.22 solved the PNP equations at specific limits of the dynamics of charging, including

an extreme case of full charge separation at very large voltage V̂ ≫ V̂T ln 1/ǫ, resulting in transient

space charge layers and a power-law decay in the external current. The possibility of a transient

space-charge was also suggested by Bazant et al.11

We adapt the analysis of Bazant et al.11 to solve for the current during discharging in the linear

and weakly nonlinear regime. The initial condition for each of these analyses is the steady-state

solution derived by Bazant et al.11 after the system has fully charged. In the linear regime, the

charging and discharging current are found to be antisymmetric, although the potential and charge

density are not. In the weakly nonlinear regime, the magnitude of the discharging current decays

to zero over a longer period of time than the charging current, breaking the antisymmetry between

current during charging and discharging. However, the current in the weakly nonlinear regime

monotonically decays in magnitude, indicating that an analysis of the strongly nonlinear regime,

where neutral salt is transferred between the double layer and the bulk, is necessary to capture
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the reverse peak in the current. At applied voltages several times larger than the thermal voltage

during charging, the bulk is depleted of ions due to the large capacitance of the double layers. This

bulk depletion and subsequent replenishment during discharging is a characteristic feature of the

strongly nonlinear regime that is not included in the weakly nonlinear analysis.

This paper begins with a presentation of the governing Poisson-Nernst-Planck equations and

boundary conditions. Numerical calculations used to verify our asymptotic results are presented

in section 3. In section 4, we solve the linear regime equations via a Laplace transform for small

voltages. In section 5, we compare the discharging current to the charging current in the weakly

nonlinear regime. We present numerical solutions to the PNP equations for the strongly nonlinear

regime in section 6 and analyze the dynamics of discharging at three relevant timescales. We then

provide discussion on the physics behind the reverse peak. In section 7, we note the saturation of

the reverse peak at very large voltage and provide semi-analytic expressions for the reverse peak

current and time. The charge carrier diffusivity and concentration can be estimated from these

expressions. Finally, we conclude in section 8 with a summary of our findings and suggestions for

future work.

2 Mathematical Model

We consider a binary, symmetric electrolyte containing ions of equal diffusivity sandwiched between

planar, parallel, blocking electrodes. In the absence of an applied field or a charged electrode

surface at steady state, the ionic concentration within the electrolyte is uniform. When a potential

difference is applied across the electrodes, ions migrate leading to an external current that charges

the electrodes. The system reaches steady state when the ion flux decays to zero throughout the

cell. This redistribution of ions is reflected in the external current, which spikes when the applied

voltage is suddenly switched on then decays to zero at steady state. There are no Faradaic reactions

so the ion flux at the electrodes is always zero. We use the variable t̂ to denote time during the

discharging process, whereas time is denoted as ŝ during charging. The applied voltage is switched

on at ŝ = 0 and switched off at t̂ = 0. Figure 1 depicts the moment when the applied voltage is

switched off. The ions initially pinned in the double layer redistribute into the electroneutral bulk,

discharging the parallel plate electrodes. As t̂ → ∞, the ions return to a uniform concentration
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profile and the external current again reaches zero. Thus, the system considered here is such that

the total number of ions in the cell is conserved throughout time. That is, the electrolytic cell is

closed, as opposed to being in contact with a reservoir across which ions could be exchanged during

the charging and discharging processes. Our goal is to quantify the external current dynamics

during discharging of the electrolytic cell.

Cathode
� = -V

Anode

x = -L x = L

Cathode
� = 0

Anode
� = 0

x = -L x = L

t = 0 t → ∞

!D

a. b.

x

z

y

� = V

Figure 1: Schematic of discharging dynamics in an electrolytic cell immediately before discharging
(a) and at steady state at long times (b). a) Initially, at t̂ = 0 ions are concentrated in double layers
at the electrodes and uniformly distributed in the bulk. At t̂ = 0, the applied field is switched off
and b) the ions eventually redistribute to a uniform concentration profile.

We apply the PNP equations to model the discharging dynamics. We neglect the presence of

a Stern layer at the electrode surfaces to focus on the simplest case of discharging dynamics. The

PNP equations consist of equations for the flux of ions driven by diffusion and migration, a charge

conservation equation, and Poisson’s equation relating the gradient of the electric field to the local

charge density. The cell is thin in the x̂ direction (figure 1) but wide and long in the ŷ and ẑ

directions. Hence, we assume that the transport is one dimensional in the x̂ direction. The flux

density of cations, ĵp, is

ĵp = −D̂
∂p̂

∂x̂
−

D̂q̂

k̂BT̂
p̂
∂φ̂

∂x̂
, (1)

where p̂ is the cation concentration, φ̂ is the electric potential, and D̂ is the diffusivity of the ions,

assuming equal diffusivity. The flux density of anions ĵn is

ĵn = −D̂
∂n̂

∂x̂
+

D̂q̂

k̂BT̂
n̂
∂φ̂

∂x̂
. (2)
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The charge conservation equations are

∂p̂

∂t̂
= −

∂ĵp
∂x̂

, and
∂n̂

∂t̂
= −

∂ĵn
∂x̂

. (3)

Poisson’s equation is

∂2φ̂

∂x̂2
= −

q̂

ε̂
(p̂− n̂). (4)

The boundary conditions include no flux conditions for the ions at the electrode-electrolyte interface,

∂p̂

∂x̂
= −

q̂

k̂BT̂
p̂
∂φ̂

∂x̂
and

∂n̂

∂x̂
=

q̂

k̂BT̂
n̂
∂φ̂

∂x̂
, at x̂ = ±L̂. (5)

The electric potential φ̂(x̂ = ±L̂) = 0 at the electrode interfaces for t̂ > 0. At t̂ < 0, the cell is

at steady state following the charging process driven by a voltage V̂ , so the charging steady state

solution is the initial condition for discharging. In the linear and weakly nonlinear regime, we use

Bazant et al.’s11 steady state solutions as the initial condition. In the strongly nonlinear regime,

we solve the PNP equations during charging numerically and use the numerical solution when the

current reaches zero (within an error tolerance) as the initial condition for discharging.

We non-dimensionalize the above equations by normalizing length x̂ by L̂; the electric potential

φ̂ by V̂T ; and ion density p̂ and n̂ by ĉ0, the initial uniform ion concentration before charging. Bazant

et al.23 show that the relevant timescale for the exponential decay in the current during charging

in the linear regime is the RC time, t̂ ∼ L̂λ̂D/D̂, where λ̂D is the Debye length. Two dimensionless

groups emerge: the dimensionless Debye length ǫ = λ̂D/L̂ and the dimensionless applied voltage

V = V̂ /V̂T . These two groups fully characterize the charging and discharging dynamics, and

remain constant throughout the charging-discharging cycle. Recall, all un-hatted variables are

dimensionless. The resulting dimensionless charge conservation equations (3), rewritten in terms

of the mean salt concentration c = 1
2
(p+ n) and half the charge density ρ = 1

2
(p− n) are

∂c

∂t
= ǫ

∂2c

∂x2
+ ǫ

∂

∂x

(

ρ
∂φ

∂x

)

and
∂ρ

∂t
= ǫ

∂2ρ

∂x2
+ ǫ

∂

∂x

(

c
∂φ

∂x

)

, (6)

where ǫ = λD/L ≪ 1 at the experimentally relevant thin double layer limit. The dimensionless
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form of Poisson’s equation (4) is

− ǫ2
∂2φ

∂x2
= ρ. (7)

The dimensionless boundary conditions are

∂ρ

∂x
= −c

∂φ

∂x
,

∂c

∂x
= −ρ

∂φ

∂x
, and φ = 0 at x = ±1. (8)

After solving for the concentration, charge density, and potential, the external current can be

calculated from Gauss’ law.23 The external current is equal to the change in the electric field with

time at the electrode surface, and can be calculated at either electrode due to symmetry in the

electric field about x = 0. The dimensionless expression for the current J in the external circuit is

J = ǫ
∂2φ

∂x∂t

∣

∣

∣

∣

x=−1

, (9)

where J is scaled by 2ÂD̂ĉ0q̂/L̂, and Â is the surface area of the electrode.

3 Numerical Solution to the PNP Equations

The dimensionless PNP equations (6)-(7) along with the boundary conditions (8) are solved numer-

ically using MATLAB’s pdepe solver, a finite-difference based, initial-value problem solver. The

numerical solution provides insight on the behavior of the system at a range of applied voltages

V and Debye lengths ǫ to guide our asymptotic analyses. The experimental and numerical results

from Kornilovitch and Jeon2 indicate that as the applied voltage increases for a fixed value of ǫ ≪ 1,

the dynamics transition from linear to nonlinear, indicated by the appearance of a reverse peak in

the magnitude of the current. We solved the PNP equations for ǫ = 0.01 and voltages ranging from

V = 0.5 − 40 in figure 2.

Here, the time during charging is s, where the applied voltage undergoes a step change from

φ(±1) = 0 to φ(±1) = ±V at s = 0. The current during charging decays monotonically for all V .

The time variable during discharging is t, where the applied voltage is switched off at t = 0, so that

φ(±1) = 0 for t > 0. After the applied voltage is switched off, the external current ultimately decays

in magnitude towards zero at steady state. However, the decay is only monotonic at lower applied
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Figure 2: Magnitude of the current resulting from step changes in voltage at ǫ = 0.01. Time is
scaled by the RC timescale. a) The applied voltage is turned on at s = 0. The current decays
monotonically towards zero during charging. b) The applied field is switched off at t = 0. At
low voltages V = 0.5, 3, 7, the magnitude of the current decreases monotonically towards zero
during discharging. At larger voltages, V = 10, 13, 25, 40, the magnitude of the current decreases
to a minimum, then reverses and increases to reach a maximum, the reverse peak, followed by a
monotonic decay towards zero. At large voltage, V = 25, 40 the current appears to saturate; the
curves for V = 25, 40 overlap.

voltages (V = 0.5, 3, 7). At V ≥ 10, the magnitude of the current reaches a minimum before

reversing towards a maximum referred to as the reverse peak. As the applied voltage increases

further (V = 25, 40), the current appears to saturate, meaning that the reverse peak does not shift

with increasing voltage. After the reverse peak, the current decays exponentially in time for all

voltages, with a similar slope. This indicates that the time scale for the decay in the current at

a specific value of ǫ is constant across a range of applied voltages. We aim to identify the charge

transport dynamics that result in the asymmetry between charging and discharging in the nonlinear

regimes, and the limiting factor leading to saturation of the reverse peak.

4 Linear Dynamics

We follow the analysis of Bazant et al.11 describing the ion dynamics during charging to solve for

the charge density and potential profiles during the discharging process. At low applied voltages

where the applied voltage is less than the thermal voltage, formally V ≪ 1, all quantities are

written as a regular expansion in V , resulting in c = c0 + V c1 + O(V 2), ρ = V ρ1 + O(V 2), and
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φ = V φ1 +O(V 2). The expansions are inserted in (6), yielding

∂2c1
∂x2

= 0. (10)

Integrating (10) results in c1(x) = a(t)x + b(t). The no-flux boundary conditions (8) to O(V ),

∂c1
∂x

= 0 at x = ±1, require that a = 0. Finally, the integral of the concentration
∫ 1

0
c1dx = 0,

as the number of ions is conserved in the absence of Faradaic reactions, thus b = 0 and c1 = 0.

The concentration is thus equal to the initial concentration in the electrolyte, c0 through O(V ).

The O(V ) charge density evolves according to the linear Debye-Falkenhagen equation,24 written in

terms of ρ = V ρ1 as

1

ǫ

∂ρ

∂t
=

∂2ρ

∂x2
−

1

ǫ2
ρ. (11)

The initial condition for this equation is the steady state charge density ρss after charging,11

ρss(x) = −V
sinh(x/ǫ)

sinh(1/ǫ)
. (12)

The linearized boundary conditions (8) are

∂ρ

∂x
= −

∂φ

∂x
, at x = ±1. (13)

We solve (11) by a Laplace transform L in time, where L(f(t)) = f̌(T ) and T denotes the Laplace

variable. The Laplace-space quantities are denoted by a check superscript. The Laplace transformed

Debye-Falkenhagen equation is

(

T

ǫ
ρ̌+

V

ǫ

sinh(x/ǫ)

sinh(1/ǫ)

)

=
∂2ρ̌

∂x2
−

1

ǫ2
ρ̌, (14)

Assuming antisymmetry in the charge density about x = 0, the solution is

ρ̌ = A sinh (mx)−
V ǫ

m2ǫ2 − 1

sinh(x/ǫ)

sinh(1/ǫ)
, (15)
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where m =
√

T/ǫ+ 1/ǫ2 and A(T ) is an as yet unknown function of T . Inserting (15) into the

Laplace transform of Poisson’s equation (7) and integrating once yields

∂φ̌

∂x
= −

A

mǫ2
((m2ǫ2 − 1) cosh (m) + cosh (mx)) +

V

m2ǫ2 − 1

sinh (x/ǫ)

sinh (1/ǫ)
. (16)

By requiring the potential φ(t, 0) = 0 due to antisymmetry, and applying the boundary conditions

(13) we find that

A(T ) =
m2ǫ3V

(m2ǫ2 − 1)(m(m2ǫ2 − 1) cosh (m) + sinh (m))
. (17)

Integrating (16) yields the Laplace transform of the electrical potential,

φ̌ = −
A

m2ǫ2
[m(m2ǫ2 − 1)x cosh (m) + sinh (x/ǫ)] +

V ǫ

m2ǫ2 − 1

sinh (x/ǫ)

sinh (1/ǫ)
. (18)

At long times, T → 0, the charge density (15) decays exponentially. Specifically, at this limit,

the charge density can be expanded as

ρ̌S→0 =
V
2
csch (1/ǫ)[x cosh (x/ǫ) + (2ǫ− 3 coth (1/ǫ)) sinh (x/ǫ)]

1 + T coth (1/ǫ)
+O(T ). (19)

This Laplace-space equation for the charge density at long times can be inverted to yield

ρt→∞ =
V

2
sech (1/ǫ)[x cosh (x/ǫ) + (2ǫ− 3 coth (1/ǫ)) sinh (x/ǫ)] exp (−t tanh (1/ǫ)). (20)

This reveals that the time scale for charge density relaxation in the linear regime is

τ = coth (1/ǫ), (21)

where time is scaled by the RC time, L̂λ̂D/D̂. This agrees with the timescale found by Bazant et

al.11 for the charging process. For comparison, in the charging case, the Laplace transform of the

charge density is ρ̌charge = TA sinhmx where A is given in (17).

Equations (15) and (18) for the charge density and electric potential in Laplace space, alongside

(17) for the parameter A, can be inverted numerically using an Euler summation method.25 The

numerically inverted solution for charge density is compared to the long-time solution (20) and
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numerical solution to equations (6-8) in figure 3 for V = 0.5 and ǫ = 0.05. The agreement between

numerics and the Laplace transform solutions indicates that the assumption that the concentration

is uniform and equal to one throughout the cell is valid at low voltages.
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Figure 3: The numerically inverted Laplace transform solution (15) (dash) for the charge density
and the long-time solution for the charge density (20) (line) at V = 0.5 and ǫ = 0.05 are compared
to the numerical solution of the PNP equations (6-8) (circle) at t = 0.01, 1, 5. Only the cathodic
half of the cell is shown.

In the linear regime, the external current during charging and discharging is antisymmetric.

However, the potential and charge density profiles are not. In figure 4, we show the potential

and charge density during charging and discharging. At s1 and t1, the magnitude of the current

|J | = 0.25; at s2 and t2, |J | = 0.05. The two pairs of curves show that, at the same current

magnitude in the charging and discharging cycle, the potential and charge density profiles are not

equivalent. This is counterintuitive given the antisymmetry of the external current (figure 4c). At

t1 = s1, the current is equal to |J | = V/2, or half of its maximum value |J(t = 0)| = V , indicating

that the charging and discharging processes are at the halfway point. As time continues the charge

density during charging increases, while the discharging charge density decreases, emphasizing the

asymmetry of the charging and discharging dynamics. When the applied voltage at the electrode

switches to zero, the potential profile rapidly switches in response (figure 4a), to the potential

profile shown in the schematic in figure 5. The maximum in potential is located at an O(ǫ) distance

from the electrode, where the charge density in the double layer causes curvature in the potential

according to Poisson’s equation (7). In the double layer, the migration of cations is directed towards
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Figure 4: The potential and charge density, from the numerical solution to the PNP equations,
are plotted during charging and discharging at two pairs of times at which the current is equal in
magnitude. Here, ǫ = 0.05 and V = 0.5. At s1 and t1 (line), the current (c) is |J | = 0.25, while
|J | = 0.05 at s2 and t2 (dash). Neither the potential (a) nor charge density (b) profiles match at a
given magnitude of the current. Only the cathodic half of the cell is shown.

the electrode due to the negative electric field, while cation diffusion is toward the midpoint of the

cell driven by the steep drop in concentration from the double layer to the bulk. The potential is

linear in the electroneutral bulk, where cation migration is towards the center. The potential profile

also holds in the weakly nonlinear regime. In the strongly nonlinear regime, charge density in the

bulk leads to curvature in the bulk potential (figure 9b) during discharging according to Poisson’s

equation (7).

-1 0
0

�

x

E < 0 E > 0

Linear potential drop 

in Ohmic bulk

Curvature due to

 charge density

 

Cation Migration

Cation Diffusion

Figure 5: During discharging, the potential is zero at the electrode and the midpoint. The curvature
in the potential is due to the charge density in the double layer according to Poisson’s equation
(7). The electric field is negative in the double layer and positive in the bulk. Cation migration
and diffusion oppose each other in the double layer, whereas they do not in the bulk.
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5 Weakly Nonlinear Dynamics

When the applied voltage is on the order of the thermal voltage, the salt concentration is not uniform

throughout the cell. In order to screen the surface charge on the electrodes, the thin double layers

adsorb neutral salt from the bulk24 at a concentration that depends nonlinearly on the applied

voltage.26 This nonlinear capacitance is characteristic of the weakly nonlinear regime.11 To a first

approximation, accumulation of ions in the thin double layer does not significantly deplete the bulk

of ions, so the bulk salt concentration is c = 1 to leading order in ǫ. Bulk diffusion, accordingly,

is negligible in this regime. To solve for the external current during discharging in this weakly

nonlinear regime, we address the PNP equations (6-8) in the thin Debye limit, ǫ → 0. The equations

(6-8) are singular as ǫ → 0, motivating the use of matched asymptotic expansions.27 In the weakly

nonlinear regime, the electrolytic cell comprises the double layer, or inner region of width x ∼ O(ǫ),

adjacent to the electrode and the bulk, or outer region of width x ∼ O(1), centered around the

midpoint of the cell. The boundary conditions (8) apply at the literal electrode-electrolyte interface.

Bazant et al.11 apply matched asymptotics to the PNP equations (6-7) for charging in the

weakly nonlinear regime. In the bulk, the position x ∼ O(1) as ǫ → 0. Bazant et al.11 perform

regular expansions in ǫ in the bulk, and coordinate rescaling in the inner region, the Debye layer.

The Debye layer is shown to have a quasi-equilibrium Gouy-Chapman structure. Regular expan-

sions in ǫ in the bulk are inserted into (6-7), yielding the leading order bulk concentration, cc = 1,

an asymptotically small charge density ρc, and bulk potential

φc = jc(s)x, (22)

where jc is the current density to leading order in ǫ. The subscript c refers to the charging process.

The position, x is the outer coordinate where x = ±1 corresponds to the outer edge of the inner

region. Matching between the double layer and the bulk shows that the current density jc is

asymptotic to the external current J and is given by the solution to the differential equation11

Cc
djc
ds

= −jc, and jc(s = 0) = V. (23)
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where Cc is the capacitance of the double layer,

Cc = cosh ((jc − V )/2). (24)

The capacitance (24) is a function of the total voltage and the flux of ions jc from the bulk to

the double layer. As ions flow from the bulk to the double layer during charging, the capacitance

increases. It can be shown that the current density jd during discharging is similarly given by the

solution of

Cd

djd
dt

= −jd, and jd(t = 0) = V, (25)

where Cd = cosh (jd/2) is the differential capacitance of the double layer. The initial condition

for discharging can be calculated from φd = jd(t)x where the potential is φd(0,−1) = −V at

x = −1. This shows that the potential drop in the bulk is linear, which is consistent with the

applied potential at V = 0.5 in figure 4. The initial current is thus jd(0) = V . With this initial

condition, the implicit solution to (25) is

t = Fd(jd)− Fd(V ), where Fd(u) = −

∫ u

0

cosh z/2

z
dz. (26)

For comparison, the current in the charging case jc, is given by the implicit solution to11

s = Fc(jc − V ), where Fc(u) = −

∫ u

0

cosh z/2

z + V
dz. (27)

The current during charging jc is not antisymmetric to the discharging current jd in the weakly

nonlinear regime. As stated previously, the current density jd is asymptotic to the external cur-

rent J . In figure 6 we compare the numerical solution to (26) for the current density jd to the

numerical solution to (6)-(8) for the external current J and the numerical solution to (27) for the

current density during charging jc at V = 0.5, 1, 3 and ǫ = 0.05. At low applied voltages V ≪ 1

(linear regime), the current density during charging, discharging and the external current match,

as expected. However, deviations arise at V = 1, and are strongly apparent at V = 3. First, when

comparing the charging and discharging current densities in figure 6, the discharging process occurs

at a more rapid pace than charging. During charging, migration and diffusion oppose each other

16



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

Time, t

C
u

rr
en

t,
 |J

|

Discharging Current

Charging Current

Numerics: Discharging Current

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Position, x

C
o
n
ce

n
tr

at
io

n
, 

c

V = 0.5
V = 1
V = 3

Figure 6: A) Current during discharging jd (dot), given by (25), compared to the current during
charging j0c (dash), given by (27), and the numerically calculated current J (line) during discharging
for three applied voltages, V = 0.5, 1, 3 and ǫ = 0.05. B) Concentration at time t = 0 for V =
0.5, 1, 3. At V = 3, the bulk concentration is not equal to unity due to salt adsorption in the double
layer and ion depletion in the bulk, which invalidates the weakly nonlinear analysis.

during the formation of the double layers. Conversely, during discharging the bulk potential and

diffusion fluxes both promote the movement of cations from the electrode to the bulk, as depicted in

figure 5. Secondly, J 6= V at t = 0. Instead, the current J < 3 initially for V = 3. To leading order,

the flux jd = c0V and c0(x) = 1 for all x at t = 0. Figure 6b shows that the bulk concentration

at V = 3 and t = 0 is lower than 1, c0 ∼ 0.87. If we insert this bulk concentration c0 = 0.87 and

V = 3 into jd = c0V , we find jd = 2.61. At t = 0, |J | = 2.68, according to the numerical solution

for J at V = 3, so the correction in the bulk concentration c0 captures the decrease in current at

t = 0. At long times for V = 3, the external current J matches jd because c0 → 1 as t → ∞, thus

the effect of initial bulk depletion on jd does not play a role as t → ∞. We conclude that the drop

in the magnitude of the external current at t = 0 is due to an increase in the adsorption of ions in

the double layer, balanced by depletion of ions in the bulk.

The weakly nonlinear analysis breaks down when the total concentration in the double layer,

cD ∼ c0ǫ expV to O(ǫ) according to the Gouy-Chapman model,28,29 is on the order of the concentra-

tion in the bulk, c0. This occurs at an applied voltage (normalized by VT ) V ∼ ln 1/ǫ. At ǫ = 0.05,

the breakdown is predicted at V = 3, in agreement with the results in figure 6. Bazant et al.11

define a similar limit for the weakly nonlinear analysis during charging; namely, 4ǫ sinh2(V/4) ≪ 1.
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The weakly nonlinear analysis presented here captures the asymmetry in the current between

charging and discharging stemming from nonlinear capacitance in the double layer. However,

the analysis does not predict a reversal in the current during discharging. Indeed, the current is

monotonic. We must therefore conclude that the non-monotonic current at higher voltages is due

to bulk diffusion, indicating that the reversals in the current must occur on the diffusion timescale.

In the following section, we numerically investigate the effects of bulk depletion and diffusion on

the current at large voltages.

6 Strongly Nonlinear Dynamics

When the applied voltage is larger than V ∼ ln 1/ǫ, the double layers adjacent to the electrodes

deplete the bulk of ions during charging. The weakly nonlinear analysis assumed that the bulk

concentration was equal to the initial uniform concentration; at larger voltages, this assumption

breaks down, indicating a transition to the strongly nonlinear regime. The strongly nonlinear

regime is characterized by the development of a “reverse peak”, or a maximum in the magnitude

of the current during the discharging process, due to neutral salt desorption from the double layer

to the bulk.

Recall, before the electric field is switched on, the ions are uniformly distributed throughout the

cell. After the field is applied, the ions separate to form double layers adjacent to the electrodes.

Once the system reaches steady state, the external current decays to zero, and the applied field is

switched off. After an initial spike, the magnitude of the current decays to a minimum. After this

point, ions from the double layer diffuse and migrate into the bulk, leading to an acceleration in

the current to a reverse peak, before the current magnitude decays to zero. The current during

discharging is shown in figure 7 for ǫ = 0.01 and applied voltages between V = 3 and V = 13, from

which this behavior is clearly observed. The V = 3 case is in the weakly nonlinear regime. The

current is compared to the current density jd (26) calculated from the weakly nonlinear analysis,

which qualitatively matches the numerical results. The weakly nonlinear asymptotics deviate from

the numerical solution at short times due to bulk depletion, as discussed in section 5. As the voltage

increases to V = 7, the weakly nonlinear analysis no longer matches the current, but the latter is

still monotonic (figure 7). As the voltage increases further (V = 10, 13), the reverse peak emerges
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and becomes more pronounced in comparison to the minimum in the magnitude of the current.
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Figure 7: The current at a fixed double layer thickness, ǫ = 0.01, shows the development of the
reverse peak as V increases. The current calculated from the numerical solution to the PNP
equations is compared to the weakly nonlinear current jd (dash) for V = 3 and V = 7. The
transition from weakly to strongly nonlinear occurs at V ∼ − ln 0.01 = 4.7.

The asymmetry between the charging and discharging processes is highlighted by the develop-

ment of the reverse peak. In order to better understand the origin of the reverse peak, we investigate

the current on three timescales relevant to the discharging dynamics. The largest of these is the

diffusion time, t̂D = L̂2/D̂, followed by the RC time t̂RC = L̂λ̂D/D̂, and finally the double layer

relaxation time, t̂λ = λ̂2
D/D̂.

In figure 8, the current is plotted for pairs of V and ǫ that fall within the strongly nonlinear

regime but do not completely deplete the bulk of salt during charging. The emergence of the reverse

peak in cases where the concentration in the bulk is larger than O(ǫ), as shown in figure 9c for

V = 13 and ǫ = 0.01, indicates that total charge separation is not required for a reverse peak in the

current. Figure 8a, scaled on the double layer relaxation time, shows the initial spike in current,

followed by a minimum in the current that occurs at an O(1) time. Time is plotted on a log-log

scale here. On this scale, the current is approximately linear leading up to the minimum in current

magnitude.

In figure 8b, time is scaled by the RC time t̂RC for three values of ǫ and applied voltage V .

When plotted on a log-lin scale, the decay in current after the reverse peak is linear, corresponding

to an exponential decay in the current at long times. The timescale b for the exponential decay

19



0 0.2 0.4 0.6 0.8 1 1.2 1.4
10

-4

10
-3

10
-2

10
-1

10
0

10
1

C
u
rr

en
t,

 |
J|

Time, t/tD (Diffusion Time)

0 10 20 30 40 50 60 70

10
-4

10
-3

10
-2

10
-1

10
0

C
u
rr

en
t,

 |
J|

Time, t/tRC (RC time)

C
u
rr

en
t,

 |
J|

V = 7

�= 0.1

V = 10
�= 0.05

V = 13

�= 0.01

Time, t/tλ ( Double Layer Relaxation Time)

a. b.

c.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-1

10
0

10
1

10
2

10
3

b

Minimum

Reverse Peak

Reverse Peak

t ~ O(tD)

1

a

1

Figure 8: The current during discharging is scaled by three timescales: a) the double layer relaxation
timescale, b) the RC timescale, and c) the diffusion timescale. The three cases shown here, ǫ = 0.1
and V = 7, ǫ = 0.05 and V = 10, ǫ = 0.01 and V = 13, are in the strongly nonlinear regime after
the development of the reverse peak.

J ∼ exp (−bt) is O(1), indicating that the decay is occurring on the RC time t̂RC . This is consistent

with the exponential decay in the current in the linear regime (21), where b = coth(1/ǫ) ∼ 1 for

small ǫ. Finally, the current is rescaled on the diffusion time t̂D in figure 8c. The time at which

the reverse peak occurs is on the order of the diffusion time, indicating that the rapid growth in

the current before the reverse peak is driven by the diffusion of ions from the double layer to the

bulk (figure 9). The exponential increase in the current magnitude is on the timescale a, where

J ∼ exp(at) and a ∼ O(1) preceding the reverse peak.
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While the current during discharging provides insight into the dynamics of the cell, the con-

centration and potential profiles enable a closer look. Figure 9 shows the evolution of the current

magnitude |J |, the potential, φ, concentration c, and charge density ρ for ǫ = 0.01 and V = 13

initially, at the minimum and maximum in current. The cathodic half of the cell is shown in figure

9; equivalent dynamics occur in the anodic half.
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Figure 9: The discharging dynamics for V = 13 and ǫ = 0.01 are shown at multiple times corre-
sponding to the extrema in the current: current (a), electric potential (b), concentration (c), and
charge density (d). Position is plotted as x+ 1 to allow for a log scale in x in b,c and d.

Immediately after the applied field is switched off, the potential at the electrode switches from

−V to 0. Charge density causes curvature in the potential, according to Poisson’s equation (7). At

t = 0, the large, positive charge density in the double layer is reflected in an increase in potential.

As depicted in figure 5, the maximum in potential is outside of the double layer, where the charge

density rapidly decays to zero. Initially, cations are concentrated in the double layers and depleted

in the bulk (figure 9c). From the first time-point to the second time-point, the latter corresponding

to a minimum in the magnitude of the current, anions from the bulk of the cell migrate towards the
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maximum in potential, briefly increasing the charge density and potential, as indicated by the small

arrowheads in figure 9b,d. From the minimum in current (t = 0.32) to the reverse peak (t = 46),

cations from the double layer diffuse and migrate into the bulk driven by strong concentration

gradients, decreasing the concentration at the electrode, increasing the bulk concentration, and

yielding an exponential rise in the magnitude of the current with time (figure 9a,c). The charge

density decreases in the bulk as both cations and anions enter, leading to a drop in the potential.

As time approaches t = 46, the concentration gradient weakens, and the bulk concentration reaches

O(1). Following the reverse peak, the cell behavior can be described by a linear RC circuit: the

bulk resembles an Ohmic resistor in series with the double layer, represented as a linear capacitor.

Accordingly, at times after the reverse peak, the current decays exponentially on the RC timescale,

as shown in figure 8, until the concentration profile is uniform and the current reaches zero. This

is akin to the linear dynamics in section 4. It is evident that the reverse peak is due to the onset

of bulk depletion.

7 Reverse Peak Saturation at Very Large Voltage

At larger voltages, V ≥ 25 at ǫ = 0.01, the discharging current appears to saturate (figure 2). This

saturation is due to total charge separation and complete bulk depletion of salt during charging.

In figure 10, the magnitude of the current at the reverse peak and the time of the reverse peak

scaled by the diffusion time are plotted against ln ǫ at voltages V = 15, 20, 30, 40, and 55. It is

evident from the overlap in data points at V ≥ 30 that the reverse peak has saturated in time and

current magnitude, whereas at V = 15 and 20 the peak is shifting in time despite saturation in the

magnitude of the current at the reverse peak. The current magnitude Jp and time of the reverse

peak tp scale as ln 1/ǫ. Therefor, we fit Jp and tp for V = 55 to the expression a ln 1/ǫ + b using

the data points for ǫ = 0.001 through 0.01. The resulting expressions for the peak current Jp and

peak time tp are

Jp = −aj ln 1/ǫ− bj and tp = at ln 1/ǫ+ bt, (28)

where aj = 0.755± 0.005, bj = 0.085± 0.03, at = 0.116± 0.004 and bt = 0.093± 0.02. The error in

these constants is the standard deviation of the points from the fitted expressions. The expression
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Figure 10: The magnitude of reverse peak in the current (a) and the time of the reverse peak
(b) scaled on the diffusion time are plotted at V = 15, 20, 30, 40, and 55 on a log scale in ǫ,
demonstrating that both scale as ln 1/ǫ to leading order. The line of best fit (dash) is fit to the
peak current and time at V = 55 for ǫ = 0.001 through 0.01.

for the peak current (28) can be re-dimensionalized as

Ĵp = (−aj ln 1/ǫ− bj)
Â0D̂

ǫ2
, (29)

where Â0 = Âε̂k̂BT̂ /q̂L̂
3. The dimensional peak time is

t̂p = (at ln 1/ǫ+ bt)
L̂2

D̂
. (30)

The correlations (29) and (30) can be used to infer the charge carrier diffusivity D̂ and concentration

ĉ0 from experiments. To perform this experiment, the electrolytic cell should be discharged at a

sufficiently large voltage V̂ such that the reverse peak saturates in current and time. Equation (30)

can be solved for diffusivity,

D̂ = (at ln 1/ǫ+ bt)
L̂2

t̂p
. (31)

This expression can be inserted into (29), which is solved for ǫ. The result for ǫ is inserted into (31)

to obtain D̂. The charge carrier concentration ĉ0 can be calculated from ǫ = 1/L

√

ε̂k̂BT̂ /2q̂2ĉ0.

This is a single-point measurement to estimate diffusivity and charge carrier concentration; one
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only needs the value of t̂p and Ĵp.

We applied this method to Kornilovitch and Jeon’s2 experimental results for the saturated

reverse peak in current in an OLOA 11000- doped, Isopar M system. Those experiments were

performed in a 10 µm thick cell, with 0.5 wt.% OLOA 11000 at temperature T = 10 C. Figure

1D in their paper show a peak time of t̂p = 1.63 s and a peak current of Ĵp = −6.3 ∗ 10−8 A, at

V̂ = 8 V. These values were inserted into (29) and (30) to yield a diffusivity D̂ = 3.2 ∗ 10−11 m2/s,

dimensionless Debye length ǫ = 0.024, and charge carrier concentration ĉ0 = 37 nmol/L. These

values are consistent in magnitude with values predicted by Kornilovitch and Jeon’s2 method, D̂ =

7 ∗ 10−12 and ĉ0 = 12.15 nmol/L at V = 1.16 V. Their method was based firstly on estimating the

skewness of the reverse peak for a range of charge carrier concentrations, and secondly integrating

the discharging current over all times to obtain the charge carrier concentration. We emphasize

that our approach requires only a single-point measurement.

8 Conclusions

This work was motivated by the asymmetry between the current during charging and discharging of

an electrolytic cell, which has been experimentally observed.1, 2, 12, 13 This asymmetry arises when

the applied voltage is on the order of the thermal voltage or larger. We analyzed the discharging

process in three regimes defined by the applied voltage magnitude via asymptotic analysis and

numerical methods. We derived asymptotic solutions for the current in the linear and weakly

nonlinear regimes that can be directly applied to analyzing experimental data. For the strongly

nonlinear regime, we identified three relevant timescales for discharging dynamics and the impact

of bulk depletion on the emergence and ultimate saturation of the reverse peak.

The discharging dynamics are linear when the applied voltage is smaller than the thermal

voltage. We solved the charge transport equations via Laplace transforms in the linear regime,

where the concentration is uniform throughout the cell to leading order. We find that the timescale

for the exponential decay in the current during discharging is the RC timescale, and that the current

is anti-symmetric to the charging current. Interestingly, the electric potential and charge density are

not antisymmetric between charging and discharging. This can be attributed to a complementary

diffusion and migration fluxes during discharging (figure 5), where both point towards the midpoint
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of the cell, compared to opposing diffusion and migration flux during charging.

At an applied voltage on the order of the thermal voltage, nonlinear capacitance in the double

layers results in weakly nonlinear dynamics. We analyzed the weakly nonlinear dynamics via

matched asymptotics for thin double layers and derived an asymptotic expression for the external

current. The asymptotic current matches the current calculated from the numerical solution to

the PNP equations provided V . ln 1/ǫ. At V ∼ ln 1/ǫ, the asymptotic current deviates from the

numerical solution at early times due to neutral salt adsorption in the double layers and depletion

in the bulk, indicating a breakdown in the weakly nonlinear analysis. Our work shows that bulk

depletion results in the emergence of the reverse peak in current. The reverse peak occurs on the

diffusion timescale, indicating that the diffusion of ions from the double layer to the bulk drives the

acceleration in current. The timescale for the exponential decay in the magnitude of the current

following the reverse peak is the RC timescale. At long times, the discharging cell behaves as a

linear RC circuit, and mimics the behavior of the linear regime. At very large voltage (V ≫ ln 1/ǫ),

the reverse peak saturates due to total depletion of the bulk salt during charging. We fit the current

and time of the saturated reverse peak to develop a expressions (29) and (30) correlating the peak

current and time to ǫ and the charge carrier diffusivity D̂. These correlations can be used to infer

the value of these two parameters as well as the charge carrier concentration ĉ0 from experiment,

as we have demonstrated.

In this work, we solved the PNP equations for a binary, symmetric electrolyte. When the

diffusivities of the ions are unequal, it can be shown that the decay in the external current in

the linear regime is on the ambipolar RC time, λ̂DL̂/D̂a. Here, D̂a is the ambipolar diffusivity,

D̂a = 2D1D2/(D1+D2), where D1 and D2 are the cation and anion diffusivities. Recall, the reverse

peak occurs on the diffusion timescale. When the ions have unequal diffusivities, it is likely that

multiple reverse peaks in the current will be observed at timescales corresponding to the diffusivity

of the two species and the ambipolar diffusivity. This is an interesting problem for future work;

charge carriers of opposite sign are not necessarily of equal size in surfactant doped non-polar fluids.

The PNP equations assume a dilute solution of non-interacting ions. This can lead to an

unphysically large concentration of ions in double layers at large voltages. Kilic et al.30, 31 analyze

the dynamics of a charging electrolytic cell at large voltage by incorporating the effects of steric

hindrance of ions, via Bikerman’s model.32 Steric hindrance can be especially important for charge
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transport in doped nonpolar fluids as the charges are encapsulated in micelles. For reference,

OLOA 1100 inverse micelles in dodecane are around 7 nM in diameter.20 Kilic et al.30, 31 show

that including steric hindrance via Bikerman’s model limits the ion concentration in the double

layers, which grows exponentially with voltage in the standard PNP equations. Note that more

sophisticated theories of steric hindrance yield concentrations that do in fact grow with voltage,

albeit at a much slower rate than predicted by PNP theory (see Gillespie33 for a detailed discussion).

In any case, with steric hindrance, the weakly nonlinear regime will extend to higher voltage

than VT ln 1/ǫ. The emergence of the reverse peak would likely be shifted to higher voltage using

Bikerman’s model.32 This is an interesting problem for future work.
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