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We propose a physical model for the capsids of tailed archaeal viruses as viscoelastic membranes under
tension. The fluidity is generated by thermal motion of scar-like structures that are an intrinsic feature of the
groundstate of large particle arrays covering surfaces with non-zero Gauss curvature. The tension is generated by
a combination of the osmotic pressure of the enclosed genome and an extension force generated by filamentous
structure formation that drives the formation of the tails. In continuum theory, the capsid has the shape of
a surface of constant mean curvature: an unduloid. Particle arrays covering unduloids are shown to exhibit
pronounced subdiffusive and diffusive single-particle transport at temperatures that are well below the melting
temperature of defect-free particle arrays on a surface with zero Gauss curvature.

I. INTRODUCTION

The protein shell — or capsid — that surrounds
the genome of a virus has become a proving ground
for new methods of microscopy, structure determi-
nation, and micromechanics [1]. Viral capsids also
provide interesting realizations of the statistical me-
chanics of interacting particles confined to curved
surfaces [2]. Most spherical capsids obey the el-
egant icosahedral construction principle of Caspar
and Klug (CK) [3]. Simulation studies of simple
particle models [4] have provided a physical basis
for the CK model. Separately, thin-shell elasticity
theory has developed into an important tool for un-
derstanding the global shape of viral shells [2, 5]
and the response of viral shells to mechanical de-
formation [1].
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Forty years ago a new domain of life was discov-
ered: the Archaea [6]. Archaea resemble rod-like
bacteria (prokaryotes) in size and shape but their
metabolism is closer to that of plant and animal cells
(eukaryotes). Other properties, such as the struc-
ture of their membranes, are unlike those of either
prokaryotes or eukaryotes. Many — though not all
— of the Archaea survive in extreme environments
of high temperatures, salinity, or acidity. They are
infected by an equally exotic family of double (ds)
or single-stranded (ss) DNA phage viruses: the ar-
chaeal viruses [7]. Many archaeal viruses have un-
usual morphologies (see Fig. 1) that appear to be
unrelated to viral capsids that obey the CK construc-
tion.

The aim of this article is to develop a physical de-
scription for the capsids of a group of Archaeal vi-
ral shells typified by the spindle-shaped Acidianus,
a two-tailed archaeal virus (ATV) [11] shown in
Fig. 2. ATV presents a unique characteristic: it un-
dergoes a dramatic shape change outside the host
cell. At first, when released from the host, the ATV
is lemon or spindle-shaped and does not have any
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FIG. 1. Electron microscopy images of archaeal viruses.
a) Sulfolobus spindle-shaped virus. b) Acidianus two
tailed virus (ATV). c) Acidianus bottle-shaped virus. d)
Sulfolobus neozealandicus droplet-shaped virus. Scale
bars equal to 100nm. Reprinted by permission from
Macmillan Publishers Ltd: Nature Reviews Microbiol-
ogy [8], copyright (2006). Originally adapted from [9]
and [10].

FIG. 2. Cryo-electron micrographs of the conformational
change of ATV and its reconstruction. Scale bars rep-
resent 50nm. Reprinted by permission from Macmillan
Publishers Ltd: Nature Reviews Microbiology [8], copy-
right (2006). Originally adapted from [11].

tails (Fig. 2, top). Subsequently, ATV may grow
tails, from opposite ends, that appear to be com-
posed of a cylindrical tube of capsid proteins sur-
rounding a central filamentous structure. Tails may
become ≈ 750nm long [11]. During tail growth,
the ATV looses half of its volume but its area ex-
pands only slightly [11], which suggests that the
number of capsid proteins is nearly constant. The

tail growth process is controlled by the temperature
of the surrounding medium [9]: at T ≈ 85◦C, the
tails fully grow in about one hour, at T ≈ 75◦C
complete tail growth occurs in seven to eight days,
while at T ≈ 4◦C no tail growth is detected in
vitro. Tail growth may increase the probability of
contacting a host cell in the surrounding environ-
ment [9, 11] and it appears that the speed of tail
growth is linked to the availability of host cells in
the surrounding medium. The tail growth process
is the subject of active research motivated by ques-
tions about the structure and function of the tails and
the source of the energy for the growth of the tails.

We start in Section II with a continuum descrip-
tion of the ATV capsid, followed by simulations of
models of discrete protein arrays of the ATV cap-
sid in Section III. We conclude with a summary and
discussion in Section IV.

II. CONTINUUM THEORY OF ATV CAPSIDS

The continuum description of ATV is based on
three assumptions:

(i) The protein capsid of the ATV virus is a
closed, isotropic, fluid or viscoelastic sheet of fixed
area A. This is motivated by the fact that the mas-
sive conformational changes observed for the ATV
capsid are inconsistent with positionally ordered
capsid proteins.

(ii) The conformational change of the ATV cap-
sid with temperature is assumed to be driven by the
growth of a central, cylindrical filamentous struc-
ture. We will define L to be the length of this
filament and a its radius. The assembly free en-
ergy gain per unit length of filament, the “exten-
sion force”, will be denoted by τ . This extension
force refers to “bare” filament sections not adhering
to capsid material. The adhesion free energy gain
per unit length due to attractive interactions between
the capsid proteins and the filament will be denoted
byw. If capsid proteins in contact with filament ma-
terial undergo any conformational changes then this
is to be included in w.

(iii) The enclosed genome is a uniform, isotropic
fluid or viscoelastic medium in a state of mechan-
ical equilibrium. This means that the free energy
per unit volume f of the genome can depend only
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on the density of the enclosed double-stranded (ds)
DNA material. The ratio Vm/V will serve as a di-
mensionless measure of the density of the enclosed
DNA material. Here, V is the capsid volume and
Vm is the minimum volume of the 62 kbp double-
stranded (ds) ATV DNA genome. Vm can be esti-
mated to be about 3 × 105nm3, assuming standard
ds B-DNA parameters. The volume V of an ATV
capsid before tail growth is about twice larger than
the volume of the capsid with fully extended tail-
groups, so the genome density roughly doubles dur-
ing tail growth.

The large change in volume means that the capsid
must be water permeable. As a result, the genome
must exert a uniform osmotic pressure Π on the
capsid (Pascal’s Law). The osmotic pressure is re-
lated to the free energy density f(Vm/V ) by Π =
−f + (Vm/V )f ′. The Equation of State Π(Vm/V )
of aligned DNA has been measured in osmotic com-
pression experiments of DNA bundles [12, 13]. In
the absence of condensing agents, the osmotic pres-
sure is about 104Pa at half the maximum B-DNA
packing density, and this will be our estimate of the
ATV osmotic pressure before tail growth. The os-
motic pressure inside ATV capsids after tail growth
is more difficult to estimate. Osmotic pressures in-
side the λ phage virus, which has a genome length
comparable to ATV, have been measured to be in
the range of 106Pa [14]. These very large osmotic
pressures are believed to be an important driving
agent for the injection of the viral genome into host
cells [14].

In this description, the total continuum free en-
ergy has the general form

G = fV + γA− τL− 2wX . (II.1)

Here, γ is the surface tension of the capsid gener-
ated by the osmotic pressure. The assumption of
fluidity of the capsid means that γ is uniform along
the capsid surface under conditions of mechanical
equilibrium. Next, 2X is the length of two symmet-
ric, capsid-covered tail sections extending from the
central body of the capsid of volume V.

Based on Fig. 2, we look for minima of this
free energy in the shape of a body of revolu-
tion matched to the capsid-covered tail sections at
matching points that are a distance ±(L − 2X)/2
from the center (Fig. 3). Minimizing the free en-

ergy first with respect to the overall filament length
L while keeping the central body fixed — so for a
fixed value of (L− 2X)/2 — leads to the condition

τ + w = 2πaγ . (II.2)

Next, minimizing G with respect to X at fixed L
leads to

w/(2πa) = γ(1− cos θ) , (II.3)

with θ the contact angle between the central body
of the capsid and the filament at the two matching
points. This is Young’s Law of the general theory
of wetting [15]. Finally, minimization of G with re-
spect to the shape of the capsid leads to the Laplace
Law [15]

Π = 2γH . (II.4)

Here, H is the local mean curvature of the capsid
surface. Since, by assumption, the osmotic pressure
of the interior of the virus is uniform and since γ is
uniform as well, the capsid surface must be a sur-
face of constant mean curvature. For ATV osmotic
pressures in the range of 104Pa and mean curva-
tures in the range of 1/(100nm), the surface tension
would be in the range of 5 · 10−4N/m.

There are only a few surfaces of constant mean
curvature with axial rotational symmetry and, of
these, only the unduloid surfaces [16] resemble
ATV capsids 1. Unduloids are surfaces of revolu-
tion obtained by rotating an elliptical catenary [17].
Fig. 2 (bottom micrograph) suggests that for ATV
capsids with fully developed tails the contact angle
is small or zero 2. In the following we will assume
for simplicity that θ = 0 so w = 0. According
to Eq. (II.2) , this means that γ = τ/(2πa). For the
estimated value of the surface tension, the extension
force τ of the ATV central filament would be in the
range of 50pN.

1 There is an interesting resemblance between the shape of
an ATV capsid at various stages of tail growth with that of
droplets wetting a cylindrical fiber, which indeed are described
by unduloids.

2 It is possible that the contact angle is actually non-zero but that
the capsid profile is smoothed out because of the effects of a
large Helfrich bending energy
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The unduloid shape with zero contact angle is
shown in Fig. 3 and it is fully determined by the
smallest and largest diameters 2a and 2c. The con-
stant mean curvature H of the body of the capsid
equals 1/(a + c). The mean curvature of the cap-
sid covering the tail groups equals 1/a, so there is a
mathematical singularity at the matching points.

2a

L - 2X

2c

FIG. 3. Capsid with zero contact angle in the shape of an
unduloid. The smallest diameter is 2a, the largest diame-
ter is 2c.

If we define the parameter k as k2 = 1 − (a/c)2

then the dimensionless volume V/c3, area A/c2,
and length (L − 2X)/c of the unduloid can be
expressed in terms of c, using results from refer-
ence [16]:

V/c3 =
2π

3
[(2 + 3(a/c) + 2(a/c)2)E(k)

− (a/c)2K(k)] ;
(II.5)

(A− 4πaX)/c2 = 4π(1 + a/c)E(k) ; (II.6)

(L− 2X)/c = 2E(k) + 2(a/c)K(k) , (II.7)

where K(k) and E(k) are complete elliptical inte-
grals of the first and second kind. Moreover, the
Laplace Law reduces to

Π(Vm/V ) = τ/(πa(a+ c)) . (II.8)

These equations are to be solved by first inverting
Eq. (II.5) to express c(V ) in terms of the volume
V . Next, the intersection of a plot of the Equa-
tion of State Π(Vm/V ) as a function of V with
τ/(πa(a+c(V ))) determines the volume V for dif-
ferent values of τ and hence c. The values of X and

L as a function of τ then follow from Eq. (II.6), re-
spectively, (II.7). An example is shown in Fig. 4
for a schematic form of Π(Vm/V ) and for the case
that the ratio c/a between the largest and smallest
unduloid diameter is large compared to one. In that
case Eq. (II.5) reduces to c(V ) ' (3V/4π)1/3. For

τ
3

τ
1

τ
2

τmin

1 Vm/Vmax Vm/V

Π

FIG. 4. Graphical construction for the capsid volume.
Vertical axis: osmotic pressure Π. Horizontal axis: di-
mensionless density Vm/V with Vm the minimum vol-
ume corresponding to densely packed double-stranded
(ds) DNA. Solid black line: Schematic Equation of State
of ds DNA under physiological conditions in the absence
of condensing agents. The osmotic pressure diverges at
Vm/V = 1. Dashed curves: τ/[πa(3V/4π)1/3] for dif-
ferent values of the extension force τ . At the minimum
value τmin, the length L of the central filament equals the
diameter 2c of the unduloid

increasing extension forces τ , the enclosed volume
shrinks and approaches the close packing limit Vmin.
The capsid becomes increasingly elongated with in-
creasing τ , consistent with Fig. 2. With decreas-
ing τ , when c increases, X shrinks as L/2 − c(V )
according to Eq. (II.6) and vanishes at a critical
extension force τmin, where the area of the undu-
loid equals the maximum available area A and L =
2c(V ).

For τ less than τmin, the capsid surface no longer
has the shape of an unduloid. It is in contact only
with the very tip of the filament. This regime of
small τ is most easily treated by starting from the
case that there is no central filament. In the ab-
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sence of a central filament, the capsid is spherical
with a radius R0 subject to the minimum osmotic
pressure Π0(Vm/V0) = 2γ0/R0. The radius R0 is
determined by the fixed area constraint A = 4πR2

0,
which fixes the volume as V = (4/3)πR3

0. The
minimization of G reduces to the problem of de-
termining the shape of a circular sheet of radius
R with a tension γ0 subjected to a point force τ
exerted in the normal direction. This is a stan-
dard exercise [15], leading to a protrusion profile
ζ(r) = ζ ln(R/r)/ ln(R/a) where ζ is the maxi-
mum height of the protrusion. This profile should
correspond to the two protrusions of Fig. 2 (top mi-
crograph). The corresponding energy is

G(ζ) ' (4πγ0/ ln(R0/a))ζ2 − 2τζ . (II.9)

The capsid tension thus generates a harmonic restor-
ing force for ζ. Minimizing with respect to ζ gives
a linear force-displacement curve:

ζ(τ) ' τ/ (4πγ0/ ln(R0/a)) . (II.10)

As an example, for the protrusion to have a size in
the range of 10nm with a tension γ0 in the range of
5 ·10−4N/m, the polymerization force τ must be in
the range of 50pN, consistent with the earlier esti-
mate. “Passive” polymerization forces near thermal
equilibrium, as measured for microtubules and actin
filaments, are in the range of 10 pN or less [18],
which suggests that the polymerization force for the
ATV central filament is an active process involving
consumption of ATP.

The full force-extension curve is obtained by
matching the linear and non-linear regimes at τ =
τmin as shown in Fig. 5.

This continuum theory is, at least qualitatively,
consistent with the currently available observations
for the case of ATV with fully extended tail groups.
The increase in osmotic pressure produced by the
tail growth suggests that one of the roles of the ATV
shape change is to prime the capsid for release of the
genome through one of the tails after the virus has
attached itself to a host cell.

If assumption (i) of continuum theory – capsid
fluidity – indeed is valid then this sets ATV capsids
apart from CK viral capsids in a fundamental way.
The CK construction for viral capsids is based on
the assumption that the capsid proteins form an or-
dered array. So under which conditions could viral

L

2R0

τmin τ

X

FIG. 5. Force-extension curve of the central filament as a
plot of filament length L versus extension force τ . For τ
less than τmin, when the length X of the tails is zero, the
filament only indents the capsid and the force-extension
curve is approximately linear. For larger values of the
extension force, the capsid develops tails. The area of the
capsid limits the maximum value of the filament length.

capsids be in a fluid state? It is certainly possible
to generate capsid fluidity by reducing the energy
scale for attractive interactions between capsid pro-
teins towards the thermal energy kBT . However,
capsid fluidity has to be consistent with the require-
ment that the ATV capsid is strong enough to absorb
the tension generated by the osmotic pressure of the
enclosed genome, which we estimated to be of the
order of 5 · 10−4N/m or larger. In the next sections
we will use numerical modeling to explore under
what conditions a viral capsid can have a sufficient
amount of capsid protein transport from the main
body of the capsid to the tails on relevant time scales
while retaining a sufficient level of lateral stiffness
to absorb the tension.

III. SIMULATIONS OF ATV CAPSID PROTEIN
ARRAYS

Simulations were performed on particle arrays
placed on scaffolds with various shapes. The par-
ticles interacted with each other via radial pair-
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potentials with a minimum at a spacing rm of 6nm
with variable binding energy ε. These particles do
not represent individual ATV capsid proteins. In-
stead, they represent – in a coarse-grained represen-
tation – oligomers composed of 5, 6, or 7 proteins,
known as “capsomers”. The minimum spacing rm
between the particles is about twice the size of a
capsid protein. It should be noted though that cur-
rently it is not known if ATV subunits indeed pre-
assemble into capsomers. However, in many known
cases the proteins of viral capsids pre-assemble into
roughly circular pentamer and hexamer oligomers.
A radial pair potential, with short-range repulsion
representing the relative incompressibility of cap-
somers and the longer-range attraction representing
hydrophobic attraction between the rims of the cap-
somers, is a crude but reasonable coarse-grained
potential for the interaction between protein cap-
somers. Particle arrays of this type placed on spher-
ical surfaces have earlier been shown to reproduce
the CK construction [19] of small spherical viral
capsids so they are the natural starting point for nu-
merical models of ATV.

About 103 of these particles, the estimated num-
ber of capsomers of an ATV capsid, were placed
on unduloid scaffolds based on the CK construc-
tion principle (Section III A). We used Monte-Carlo
(MC) annealing to test whether the CK constructed
states were in fact groundstates. Next, we carried
out Kinetic Monte-Carlo (KMC) simulations and
evaluated the mean-square displacements (MSDs)
of the particles as a function of time. From the
MSDs we obtained particle transport rates for dif-
ferent values of ε. We also carried out KMC sim-
ulations on spheres and cylinders in order to com-
pare with particle kinetics on spherical capsids in
the absence of the tails, and particle kinetics on the
cylindrical tails. Finally, we placed the particle ar-
ray under tension in order to verify the Laplace’s
Law of continuum theory and the ability of capsids
in the fluid state to absorb tension.

A. The Caspar-Klug Construction for Unduloid
Capsids.

The CK construction for the capsids of cylindri-
cal viruses [3] places capsid proteins along an ar-

ray of interlocking, equidistant spirals of fixed pitch
(Archimedean Spirals) and radius where every pro-
tein has the same local symmetry as every other
protein. In order to construct similar particle ar-
rays on an unduloid, we covered the unduloid with
Archimedean Spirals separated by a constant spac-
ing (see Fig. 6b). In Appendix B, we construct
a general differential equation for curves covering
surfaces of revolution. In Fig. 6 (b) we show an un-
duloid covered by eight of these spirals. The mini-

(a)

(b)

FIG. 6. Spiral construction: (a) Initial unduloid; (b) Eight
equidistant spirals covering the unduloid surface and con-
structed according to the method of Appendix B (one spi-
ral is colored in red to highlight spacing).

mum pitch is reached at the maximum diameter of
the unduloid, after which the pitch increases again
in a symmetric fashion.

Next, we placed particles along the spirals that
interacted with each other via a Lennard-Jones (LJ)
pair potential given by:

V (r) = ε
[
(rm/r)

12 − 2(rm/r)
6
]
. (III.1)

Here, r is the spacing between two particles, ε the
binding energy, and rm the inter-particle spacing at
the minimum of V (r). The spacing between the
spirals was equal to ≈ rm. Particles were placed
sequentially along the spirals starting from the two
endpoints, as shown in Fig. 7. As particles were
added, the particle array was periodically allowed
to relax by letting the particles make random moves,
followed by a zero-temperature Monte Carlo relax-
ation step. An unduloid can be almost completely
covered by this method, apart from a few small gaps
around the equator that were filled by hand. If this
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FIG. 7. Sequential placement of particles on the eight
helices covering the unduloid of Fig. 6. The arrays is
constructed first on two half unduloids, which are then
merged. Any holes left after merging are filled with par-
ticles

same procedure is applied to five equidistant spi-
rals covering a sphere then the T=7 and T=13 CK
construction is recovered (e.g., see Fig. 23 in Ap-
pendix B).

In order to visualize the capsomers represented
by the particles, we performed a Voronoi tessella-
tion, as shown in Fig. 8. Voronoi cells with five
edges – colored blue – represent pentamers, cells
with six edges – colored grey – represent hexam-
ers, while cells with seven edges – colored red –
represent heptamers. For comparison, an icosahe-
dral particle array covering a sphere is composed
of hexamers plus twelve pentamers distributed over
the vertices of an icosahedron (e.g., see Fig. 12(a)).

Isolated heptamers and pentamers can be viewed
as 7-fold, respectively, 5-fold disclination defects of
a hexagonal array of capsomers, while heptamer-
pentamer pairs can be viewed as dislocation de-
fects [20]. In Fig. 8a, two rings of isolated disloca-
tions can be seen to surround the unduloid midway
between the equator and the necks of the unduloid,
while a ring of dislocation pairs surrounds the equa-

(a)

(b) (c)

FIG. 8. Voronoi construction corresponding to the ini-
tial particle configuration covering the unduloid. Cells
with five edges are colored blue (pentamers), cells with
six edges grey (hexamers), and cells with seven edges red
(heptamers). (a) Side view showing isolated dislocations;
(b) Front view showing eight spiral dislocations strings;
(c) Front view overlaid with construction spirals.

tor. Next, in Fig. 8b, a view of the unduloid along its
axis shows eight strings of dislocations emerging in
a spiral pattern from the two endpoints as well as an
accumulation of heptamers near the ends. Such dis-
location strings can be viewed as grain boundaries
of a hexagonal lattice 3.

B. Monte-Carlo Annealing

In order to determine whether the CK construc-
tion corresponds to the ground state configuration,
we carried out annealing Monte Carlo simulations

3 The appearance of the grain boundaries can be understood by
cutting eight identical adjoining triangular wedges from the
ends of a cylindrical tube. Gluing together the edges of these
adjoining triangles produces eight grain boundaries. The spiral
arrays at the ends of the unduloid is a twisted version of this
construction.



8

of unduloids covered by particle arrays placed ac-
cording to the spiral construction method and in-
teracting via LJ potentials. The particle positions
were constrained to a discrete mesh with a mesh
size a that was small compared to the lattice con-
stant rm of the particle array (a = rm/16). We im-
posed fixed boundary conditions at the two necks of
the unduloid by fixing in place eight particles form-
ing rings at the ends of the unduloid. The system
was initially heated to a temperature well above the
binding energy ε of the LJ potential after which the
temperature was slowly reduced back to nearly zero
(T ∼ 10−3ε). Further details of the simulated an-
nealing procedure are summarized in Appendix C.
The annealing procedure was first performed for the
case of about 1000 particles placed on a cylinder in
the hexagonal groundstate configuration. The heat-
ing pulse produced large amounts of heptamers and
pentamers (Fig. 9b). After annealing, the system re-
turned to the defect-free ground state (Fig. 9c).

(a)

(b)

(c)

FIG. 9. Annealing of a cylinder. (a) Initial state, (b) Inter-
mediate state after the heating pulse, and (c) Final state.

We then repeated the annealing procedure for an
unduloid covered by 920 particles. Fig. 10 shows
the initial state (the spiral construction), a snapshot
of an intermediate state with large disorder shortly
after the heating pulse, and a snapshot of the final
state. As a consequence of the annealing, the spiral
grain-boundary defects that initially were attached
to the endpoints in the CK construction broke free
from the ends of the unduloids and ended up as free-
floating dislocation strings. The detached strings
were either “charge-neutral,” i.e., with equal num-

(a)

(b)

(c)

FIG. 10. Monte Carlo annealing. (a) Initial state with spi-
ral order. (b) Intermediate state after heating pulse (im-
ages corresponds to 1000 Monte Carlo steps — see also
Fig. 11). (c) Final state.

bers of pentamers and heptamers, or the number
of pentamers exceeded the number of heptamers by
one.

These observations are consistent with the fact
that particle arrays placed on surfaces with posi-
tive Gauss curvature lower their elastic energy by
the introduction of 5-fold disclinations [20, 21],
while 7-fold disclinations lower their elastic energy
in saddle-like sections of the surface with negative
Gauss curvature [22] (see also Fig. 16). Finally,
dislocations minimize their elastic energy in sur-
face sections with zero Gauss curvature. Mobile
disclinations and dislocations placed on an unduloid
will, at finite temperatures, perform some form of
Brownian motion in this curvature-determined en-
ergy landscape that is also influenced by interac-
tions between the defects.

The total interaction energy and the number of
pentamers, hexamers, and heptamers is shown in
Fig. 11 as a function of the number of MC steps.
Following the heating step, the energy increased
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very rapidly from an initial value of about −1500ε
for the spiral structure to a highly defected state with
an energy of about −500ε. During cooling, the en-
ergy decreased to approximatively −2600ε, which
is well below the energy of the CK spiral construc-
tion. In the final state, the number of hexamers has
increased while the number of pentamers and hep-
tamers has decreased. We can conclude that for par-

MC steps
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FIG. 11. Evolution of the energy (left vertical axis) and
capsomer numbers (right vertical axis) versus Monte-
Carlo steps during the annealing of an unduloid. The
vertical dashed line corresponds to the intermediate state
shown in Fig. 10b.

ticle arrays interacting with a radial pair potential of
the LJ form, the CK spiral construction is not the
lowest energy state for an unduloid.

We repeated the annealing procedure for the case
of a spherical shell covered by 1002 particles, start-
ing from a T=100 CK icosahedral state (Fig. 12).
After Monte Carlo annealing, this array also did not
return to the CK state (Fig. 12c). The final state was
again defected and had a lower energy (' −3100ε)
than the CK state (' −2400ε). The final state of
the sphere was again characterized by free-floating
scars.

Particle arrays covering spherical surfaces are in
fact known to undergo a transition as a function
of sphere radius from a state with twelve five-fold
disclinations to a state with a distribution of grain-
boundary type “scars” [23]. These scars relax the
elastic stress that accumulates around the five-fold
disclinations when the size of the sphere increases.
As a check, we repeated the annealing procedure for

a small CK shell (a T=7 shell, see Appendix E) and
found that this shell indeed had no defects in the fi-
nal configuration, apart from the twelve pentamers.
We conclude that the defect strings distributed over

(a) (b)

(c)

FIG. 12. Annealing of a particle array covering a sphere.
(a) Initial, (b) intermediate (image corresponds to about
1/8 of the annealing simulation time), and (c) final con-
figurations.

the central section of the unduloid have the same
physical origin as the scars that are present in the
ground state of particle arrays covering large spher-
ical surfaces.

C. Mean-Square Displacement and Viscoelasticity

In order to examine the transport properties of
unduloid-shape capsids, we next carried out Ki-
netic Monte Carlo (KMC) simulations with parti-
cles performing a Brownian random walk on the
underlying fine discrete mesh. The “bare” diffu-
sion coefficient D0 ∝ a2ν0 of single particles on
the mesh, with 1/ν0 the KMC time step and a the
mesh size, was kept fixed, which means that the
temperature was fixed (further details are summa-
rized in Appendix D). Initial states were produced
by the annealing method presented in Section III B,
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except for the sphere for which we adopted the
CK construction as the initial state. We computed
mean-square displacements (MSDs) as a function
of time for different values of the dimensionless in-
verse binding energy kBT/ε of the LJ interaction
potential. Specifically, we increased kBT/ε by in-
crements of 0.75 between adjacent MSD plots (as
marked on some of the curves in Figs. 13 and 14.)

Fig. 13 shows MSD versus time plots for the case
of cylindrical surfaces. For comparison, we show

FIG. 13. Mean square displacement (MSD) 〈u2〉/r2
m on a

cylinder versus time on a log-log scale. Time is expressed
in units of the inverse step frequency ν0 and distance in
units of rm, the equilibrium spacing of the LJ pair poten-
tial. The dimensionless inverse potential depth kBT/ε is
increased in multiples of 0.75 as indicated for some of the
curves. The horizontal line is the MSD of a hexagonal lat-
tice at the melting point. The black solid line is the MSD
of an isolated particle.

also the MSD/time plot for a single particle (black
line), which is linear on a log-log scale with slope
one, as expected for simple diffusion. The MSD
plots for the interacting particles can be divided
into two groups. For kBT/ε less than or equal to
3.25, the late-time MSD is, within error bar, inde-
pendent of time. For kBT/ε larger than or equal
to 4.00, the slope of the late time MSD/time plots
is close to one, consistent with single-particle self-
diffusion. This suggests that a melting transition
takes place at a value of kBT/ε between 3.25 and
4.0. The self-diffusion coefficient is in general not
an ideal dynamical characteristic for melting transi-

tions because self-diffusion coefficients are not zero
below a melting transition [24]. However, simula-
tion studies of arrays of particles interacting via LJ
pair potentials, either with periodic boundary con-
ditions [25] or as particle clusters [26], report that
around the melting transition the self-diffusion co-
efficient does increase by more than an order of
magnitude over a small temperature interval. This is
consistent with the rapid onset of self-diffusion seen
in Fig. 13, so it is indeed reasonable to assume that a
melting transition did take place for kBT/ε between
3.25 and 4.0. Interestingly, numerical simulations
of two-dimensional LJ hexagonal arrays report that
at the melting transition 〈u2〉/r2

m ' 0.021 [27],
which can be viewed as a version of the Lindemann
melting criterion. For our case however, the late-
time value of 〈u2〉/r2

m for kBT/ε = 3.25 was about
twice larger. This relative stabilization of an ordered
array on a cylindrical surface as opposed to a pla-
nar surface is attributed to the restriction on thermal
fluctuations imposed by the cylindrical geometry.

Next, we repeated the simulations on an undu-
loid surface with results shown in Fig. 14. The
MSD/time plots no longer saturate at late times,
even for the smallest value of kBT/ε. Instead, for
larger kBT/ε the MSD/time plots show a change in
the slope α on a log-log plot from about 0.5 (sub-
diffusion) to about 1.0 (diffusion). The cross-over
for the case of kBT/ε = 7 takes place at time t∗

obtained from the intersection of the two solid lines
shown in Fig. 14. As kBT/ε is reduced, the cross-
over time t∗ shifts to higher values and for kBT/ε
less than about 1.75 we only observe subdiffusion.

If an MSD/time plot has the power law form
〈u2(t)〉 ∝ tα then that translates in the frequency
domain to 〈u2(ω)〉 ∝ 1/|ω|1+α. The Fluctuation-
Dissipation Theorem states that 〈u2(ω)〉 =
(2kBT/ω)Im(1/G(ω)) for thermally equilibrated
particle systems, where G(ω) is the frequency-
dependent complex dynamic modulus of the parti-
cle system. For a Newtonian fluid Im(1/G(ω)) ∝
1/ω while for an ordered solids, Im(1/G(ω)) ∝
ω at low frequencies. Materials that, as in the
present case, have a low-frequency complex mod-
ulus G(ω) ∝ ωα with an exponent α that lies in be-
tween these two limits are viscoelastic. That means
that, though they are not simple liquids, when sub-
ject to a constant shearing stress they undergo a
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FIG. 14. Mean square displacement 〈u2〉/r2
m (MSD) of

a particle array on an unduloid, with rm the equilibrium
spacing of the ordered lattice. The dimensionless inverse
potential depth kBT/ε is increased in multiples of 0.75 as
indicated for some curves. The horizontal red solid line
is the late-time MSD of the particles on a flat Lennard-
Jones hexagonal lattice at the melting point. The upper
black solid line has a slope for an MSD proportional to t
(diffusion) and the lower black solid line has a slope for
an MSD proportional to tα with α ' 0.5 (subdiffusion).
For kBT/ε = 7 subdiffusion crosses over to diffusion at
a scale t∗ determined by the intersection of these black
lines.

steadily increasing shear deformation. When ap-
plied to the ATV capsid, this means that the steady
shear stress generated by the tail sections can pro-
duce lare-scale deformations of the capsid shape for
values of kBT/ε that are well below the melting
point of the cylindrical sections.

The mechanism underlying the viscoelasticity at
small kBT/ε is the stress-induced motion of the de-
fects arrays present in the groundstate. We saw that
particle arrays on both unduloid and spherical sur-
faces contain unbound dislocations and scars. Two-
dimensional materials with free dislocations and/or
mobile grain boundaries indeed are known to have
the flow properties of viscoelastic materials [28].

The late-time MSDs of unduloid, sphere, and
cylinder were all fitted to straight lines. These
slopes were then averaged over six different KMC
simulations for each value of kBT/ε to arrive at
the effective diffusion coefficients shown in Fig. 15.

The single-particle diffusion coefficients of particle
arrays covering either an unduloid or a sphere lack
the onset feature shown clearly by the diffusion co-
efficients of the cylindrical surface. The obvious
interpretation is that the intrinsic defects that are
present in the case of the unduloid and the sphere,
but not in the case of the cylinder, prevent freezing.
The diffusion coefficients for the unduloid case lie,
in general, between those of the cylinder and the
sphere.

kBT=0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
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FIG. 15. Average late-time slope of the MSD vs time as
a function of kBT/ε with ε the LJ binding energy. The
average slope together with its standard deviation (error
bars) were obtained from six different KMC analyses per
kBT/ε and per geometry. Black line: unduloid. Red line:
sphere. Blue line: Cylinder (Online in color). Vertical
dashed line: estimated melting point for the cylinder.

We propose that ATV tail growth is enabled by
transport of particles from the main body of the
capsid to the roots of the growing tails where they
are absorbed into the tails. It still is possible that
particle transport at the minimum cross-section of
the unduloid is significantly less than the one at the
maximum cross-section, in which case tail growth
would be suppressed. In order to check for non-
uniformity of the MSDs, we repeated the previ-
ous simulations using periodic boundary conditions
so transport in the neck regions is not suppressed
(previous simulations were carried out with fixed
boundary conditions at the necks). An example of
a simulation result with periodic boundary condi-
tions is shown in Fig. 16 for kBT/ε = 2.5. Fig. 17
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shows that MSDs computed using periodic bound-
ary conditions are, within error bars, the same in
the tail and in the central regions. Thermal pro-
duction of defects in the neck region is comparable
to that in the main body except that there is an ex-
cess of isolated heptamers. This is consistent with
the fact that the elastic energy of 7-fold disclina-
tions is minimized in regions of negative Gauss cur-
vature [20]. Equilibrated particle arrays placed on
surfaces with negative Gauss curvature have indeed
been observed to carry a distribution of seven-fold
disclination defect [22].

FIG. 16. Late-time snapshot of a simulation with periodic
boundary conditions at kBT/ε = 2.5
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FIG. 17. Average MSD slope vs time as a function of
kBT/ε for an unduloid with periodic boundary condi-
tions. Black line: MSD of particles in the center (central
third). Red line: MSD of particles in the tails (initial and
final thirds). Blue line: all particles (Online in color).

In order to estimate the transport rates of protein

oligomers on ATV, we use the fact that the self-
diffusion coefficient D of particles as part of an ar-
ray must be proportional to the diffusion coefficient
of isolated particles. Physical self-diffusion coef-
ficients can thus be obtained by dividing numeri-
cally computed self-diffusion constants by the bare
diffusion coefficient D0 ∝ a2ν0 and then multiply-
ing with an experimentally measured single-particle
diffusion coefficients under appropriate conditions.
As an example, for kBT/ε = 2.5, which is well be-
low the melting point for the cylinder, the effective
diffusion coefficient obtained from the late-time (so
with t > t∗) MSD/time slope is 0.5 × 10−4 (our
units). Dividing by the single-particle diffusion co-
efficient D0 ' 2.7 × 10−3 in our units and mul-
tiplying by the diffusion coefficient of a particle in
water with the size of ATV capsid oligomer (about
10−6cm2/s) leads to an effective diffusion coeffi-
cient of about 2 × 10−8cm2/s. If the size of the
ATV virus is estimated to be 100nm (Fig. 2), then a
capsid oligomer could diffuse over the length of the
ATV body in ≈ 1.25× 10−1s.

D. Tension Fluctuations

The final step was to examine the properties of
particle arrays under tension. Recall that, according
to continuum theory, tension across the surface of
closed shells is generated by a pressure difference
across the surface of the shell. The first aim is to
verify that for discrete arrays the same is true and
that the Laplace Law is obeyed. Also, according
to Laplace’s Law, a local tension reduction must be
compensated by an increase in the local mean curva-
ture, thus a bulge formation. If the stretching along
the bulge produces a further decrease of the tension
then the curvature will increase even further, even-
tually leading to an aneurysm-type rupture. There-
fore, if there is a tension reduction along the scars
and defects or any other source of tension variation,
this could lead to an aneurysm-type mechanical in-
stability.

We performed MC simulations of tense particle
arrays, using as our starting configuration a repre-
sentative particle array obtained in the MC analy-
ses presented in Section III B (see Fig. 18(b)). The
initial array was typically in a state of slight com-
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pression. Next, we instantaneously decreased the
equilibrium distance rm of the LJ potential by δr,
which places the system under tension correspond-
ing to a strain of δr/rm. We then carried out MC
simulations to allow the particle arrays to relax to-
wards equilibrium. For kBT/ε = 0.05, the array
did not rupture for stretching strains δr/rm below
about 0.05 while for stretching strains of 0.06, the
system did rupture, as shown in Fig. 18(c)). The
rupture strain decreased for lower values of ε.

We then computed the forces exerted on each par-
ticle and added the component of each force in the
direction normal to the surface. Subsequently, we
divided the total normal force component by the
area of the Wigner-Seitz cell centered at each par-
ticle and calculated a “site pressure” Π at the posi-
tion of that particle. We then averaged Π in space
over the ring of nearest neighbors and in time over
30 MC steps equally spaced over the last ten percent
of the duration of the simulation. We computed the
local in-plane stretching tension τi in a similar fash-
ion. The local value τi was found to be within a
factor two of the Laplace Law value 2ΠH , with H
the mean curvature. The discrepancy is attributed
to the discreteness of the underlying mesh and the
discreteness of the particle array, which limits the
applicability of continuum theory.

Fig. 18(a) shows the pressure distribution for an
imposed stretching strain of 0.049. About 96 per-
cent of the surface was under tension. If the im-
posed tension is decreased, then the fraction of the
surface under tension decreases further. The pres-
sure scale is shown in units of 0.043ε/r3

m, with an
average pressure of about ten units. For ε = 5kBT ,
T = 300 K and rm = 6 nm, the average pressure
would be about 40 kPa, close to the pressure we
estimated as relevant for ATV before tail growth.
The standard deviation of the pressure fluctuations
— approximately 24 kPa — is comparable to the
mean. The pressure variations that can be seen in
Fig. 18(a) are, at least in part, correlated with the
distribution of defects in Fig. 18(b), though scars
are not lines of low tension.

(a) (b)

(c)

FIG. 18. (a) Averaged normal forces per unit area com-
puted with a particle array under tension on an undu-
loid. The system was under an applied tension of approx-
imately 5% while kBT/ε = 0.05. Note that there are
significant pressure variations. (b) Corresponding defect
array. Note that there is some correlation between low
pressure regions and heptamers. (c) Capsid rupture under
a larger applied tension of ≈ 6%.

IV. SUMMARY

We propose a model for the capsid of the ATV ar-
chaeal virus as a viscoelastic membranes under ten-
sion generated by genomic osmotic pressure. Ac-
cording to continuum theory, the capsid has the
shape of a surface of constant mean curvature,
specifically that of an unduloid. Growth of the cen-
tral filament reduces the capsid volume, compresses
the genome and increases the osmotic pressure. The
increase in osmotic pressure suggests that one of the
roles of the ATV shape change could be to prime the
capsid for release of the genome through the tails
after the virus has attached itself to a host cell.

In order to further study the mechanisms under-
lying the tail growth, we performed simulations of
particle arrays covering an unduloid. We found
that for radial interaction potentials, the CK spi-
ral construction is unstable against the formation of
scars and other defects that appear to be an intrinsic
feature of the thermodynamic groundstate of large
particle arrays on an unduloid, just as they are on
spherical surfaces. Because of the presence of these
defects, the body of the capsid remains viscoelas-
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tic at capsomer-capsomer interaction strengths well
above the onset point of positional order on the
cylindrical tail sections. This viscoelasticity would
allow for the large observed shape changes.

Is the capsomer transport rate sufficiently high for
the tail growth of an ATV virus? For kBT/ε = 2.5
the effective late-time self-diffusion coefficient is in
the range of 2 × 10−8cm2/s. If one assumes that
tail growth requires a supply of about ten circum-
ferential oligomers for the growth of one oligomer
length of tail, this leads to a tail extension rate of
about 300nm/minute.

The most serious concern we encountered with
the proposed model is that of rupture generated by
tension non-uniformity. The range of imposed ten-
sion strains over which the particle array is fully un-
der tension yet does not rupture is small. More-
over, inside this range, the surface is subject to
large-scale pressure fluctuations that may lead to
mechanical instability of the aneurysm type. We
believe, but have not yet shown, that anisotropic
pair potentials could increase the stability range and
suppress the fluctuations by organization of parti-
cles into polymeric linear arrays, e.g., into spirals
as shown in [29] for a polyelectrolyte on a spheri-
cal surface. When wound around the unduloid ac-
cording to the CK spiral construction these poly-
mers might suppress rupture and aneurysm instabil-
ities. In the presence of a sufficient level of thermal
fluctuations, the protein chains still would be able
to slide past each other so the shear elastic modu-
lus would be zero for longitudinal sliding transport
while the shear modulus in the transverse direction
would remain finite. We hope to address these ques-
tions in future work.

If the proposed description does apply, then ATV
capsids would be very interesting model systems
from the viewpoint of the statistical physics of par-
ticle arrays on curved surfaces. While scar-type de-
fects of particle arrays covering spheres have been
discussed in the colloid literature, they have not
(yet) been seen for large spherical viral shells. In the
proposed description, scars are an intrinsic feature
of the capsid of ATV viruses and play a functional
role in maintaining the viscoelasticity of the capsids
that allow for the growth of the tails, even when the
capsomers have relatively high binding energies.

Experimental tests of the proposed model should

be possible. The level of resolution of current
electron-microscopy should be sufficient to confirm
(or disprove) the presence of scars along the capsids
of ATVs. The 100nm ATV capsids also may just be
large enough for tracking fluorescently-labeled cap-
sid proteins that could measure MSD/time plots.

An interesting challenge for the proposed model
is the fact that in the early stage of tail growth the
capsid does not appear to be a surface of constant
mean curvature. We proposed earlier that this may
be due to non-uniformity of the osmotic pressure. In
fact, a variety of puzzling capsid shapes have been
reported for other archaeal viral capsids that — at
least at first sight — also do not resemble surfaces
of revolution of constant mean curvature (e.g., see
Fig. 1). It is not known if that is due to some form
of internal structure or to pressure non-uniformity.

Is the tense-surface description of viscoelastic or
fluid capsids restricted to archaeal viruses? Obser-
vational bias towards ordered viral capsids whose
atomic structure can be resolved by X-ray diffrac-
tion may have obscured the possibility that viral
capsids could be in a quasi-fluid state. Significant
levels of fluidity, structural disorder, and pleomor-
phism have been reported for the archaeal HRPV
virus [30] and HRPV itself may be related to the
Bunyaviridae family of non-archaeal viruses. Mem-
bers of the Bunyaviridae family indeed appear to be
characterized by pleomorphism [31].
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Appendix A: The unduloid

The unduloid is a surface of revolution with a
constant mean curvature. This surface arises from
the minimization of surface area subject to the con-
straint of fixed volume. The quantity to be mini-
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mized in such a case is∫ L

0

[
y(x)

√
1 + (dy(x)/dx)2 − λy(x)2

]
dx ,

(A.1)
where y(x) is the curve that is rotated about the x
axis and λ is the Lagrange multiplier corresponding
to the constant volume constraint. The quantity λ
can also be seen as representing the internal pres-
sure of an enclosed isotropic substance. Standard
methods lead to the following relation:

y(x)√
1 + (dy(x)/dx)2

− λy(x)2 = C , (A.2)

where C is a constant. This equation is readily ma-
nipulated into the form

dy(x)

dx
= ±

√
y(x)2 − (C + λy(x)2)2

λy(x)2 + C
, (A.3)

which leads us to the quadratures solutions∫
λy2 + C√

y2 − (λy2 + C)2
= ±

∫
dx . (A.4)

The left hand side of (A.4) can be rewritten in the
following form∫

y2 + r1r2√
(r1 − y)(y − r2)(y + r1)(y + r2)

, (A.5)

where

r1 =
1

2

[
1

λ
+

√
1

λ2
− 4

C

λ

]
; (A.6)

r2 =
1

2

[
1

λ
−
√

1

λ2
− 4

C

λ

]
. (A.7)

The integral in (A.5) can be expressed in terms of el-
liptic integrals. The solutions of interest arise from
a positive discriminant in (A.6) and (A.7), leading
to real values for the roots r1 and r2.

Taking the Lagrange multiplier λ to be positive,
we can distinguish between two cases, correspond-
ing to two possible signs of the combination C/λ.
If C/λ is positive, which is the condition that is rel-
evant to the work reported here, then the graph on

FIG. 19. The two possibilities for the parameters in the
quadrature equations leading to a minimum surface of
revolution with fixed volume. The case illustrated on the
left relates to the work reported here.

the left hand side of Fig. 19 applies. The two red
curves in that graph correspond to±(λy2 +C). The
straight line is at 45◦ with respect to the two axes.
According to (A.2), we must have y ≥ C+λy2. The
equality in this expression holds if dy(x)/dx = 0.
Furthermore, we restrict y(x) to be positive, as it
corresponds to the radius of the surface of revo-
lution. The solution to the minimization equation
must therefore lie in the portion of the upper quad-
rant of the left hand graph for which the black line
lies above the upper red parabola. In this case, both
r1 and r2 are greater than zero and correspond to
the two points of intersection of the black line with
the upper parabola. At those points the derivative
dy(x)/dx vanishes.

We can go further and scale out the constant√
r1r2. Then, the only remaining parameter deter-

mining the surface of revolution is, say, the rescaled
smaller root, r1/

√
r1r2. The other scaled root is

its inverse. A surface corresponding to these condi-
tions is shown in Fig. 20.
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FIG. 20. A minimizing surface corresponding to the con-
ditions illustrated on the left hand side of Fig. 19.

Appendix B: Particle placing on a surface of
revolution

In this section we discuss a strategy to place
spherical particles of the same diameter (represent-
ing protein capsomers) on a surface of revolution
so that the particles are (approximately) evenly dis-
tributed. As described in the previous section, let a
surface of revolution be described by the function
y(x), where x represents the distance along the axis
of symmetry (Fig. 21.) A simple strategy to place
the particles on this surface would be to wrap them
along helices. In order to evenly distribute parti-
cles on a non-cylindrical surface the pitch of the he-
lices must change as they wrap around the surface.
Let us consider m helices winding around the sur-

x

y
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1 2

A
B

C

D

ψ

FIG. 21. Schematic of helices on a surface of revolution.

face (as shown schematically in Fig. 21). We as-
sume that the helices are closely spaced so that the
distance between helices measured along the sur-
face may be approximated by their straight line dis-

tance. Let us consider two adjacent helices 1 and 2
as shown in Fig. 21 and choose two points A and B
on each helix, respectively, at the same meridional
angle θ. The distance |AB| approximated by the
arc-length is

√
1 + (dy/dx)2dx. Similarly, the dis-

tance between points A and D placed at the same x
is y(dθ/dx)dx. Consequently for the right-triangle
DAB, the angle ψ (]ADB) is given by

sinψ =

√
1 + (dy/dx)2√

1 + (dy/dx)2 + y2(dθ/dx)2
. (B.1)

The perpendicular distance d between the helices
is given by

d = |AC| = |AD| sinψ. (B.2)

If the helices are to be evenly spaced everywhere,
d must be a fixed constant for the surface. More-
over, for them helices evenly spaced at every cross-
section, it is clear that |AD| is proportional to y,
since m|AD| = 2πy. This observation together
with equation (B.2) implies

y
√

1 + (dy/dx)2√
1 + (dy/dx)2 + y2(dθ/dx)2

= r2 , (B.3)

where r2 is an arbitrary constant. If the helices are
assumed to arise perpendicularly at x = 0, i.e.,
dθ/dx(0) = 0, then it is clear from (B.3) that r2

represents the radius of the surface of revolution
at x = 0. We solve this (first order) differential
equation for θ(x) by choosing an initial condition
θ(0) = θ0 to distinguish each of the m helices.
Each helix is then described by the parametric equa-
tion

r(x) = xi + y(x) cos(θ(x))j + y(x) sin(θ(x))k.
(B.4)

We note that while (B.3) may be solved numerically
for an arbitrary surface of revolution, for the cases
considered here – cylinder, sphere and unduloid –
it is possible to solve the equation in closed form.
For a cylinder of radius r, defined by the equation
y(x) = r, the construction is trivial. We now sum-
marize the results for the unduloid and the sphere.
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1. Helices on an unduloid

Making use of (A.5), we can rewrite (A.4) as

dy

dx
= ±

√
(r2

1 − y2)(y2 − r2
2)

y2 + r1r2
. (B.5)

Using (B.5) in (B.3) and writing θ as a function of
y, we obtain

dθ

dy
=
r1 + r2

r2

1√
r2
1 − y2

, (B.6)

which can be integrated to yield

θ(y) =
r1 + r2

r2
arcsin(y/r1) + θ0 . (B.7)

2. Helices on a sphere

In the case of the sphere, it is more convenient to
choose the azimuthal angle φ to be the independent
variable, instead of x. The transformation between
φ and x is given by x = 1−cosφ, while the surface
of the sphere, as a surface of revolution, is defined
by y(φ) := sinφ.

Rewriting (B.3) in terms of φ, we obtain

dθ

dφ
= ±

√
sin2 φ− sin2 φo
sinφ sinφo

, (B.8)

where, for convenience, we write r2 = sinφ0. This
equation can be integrated to yield

θ(φ) = cscφ0

[
−
√
− sin2 φ0

tanh−1

(
cosφ

√
cos 2φ− 1√

cos(2φ0 − cos 2φ)

)
+ i ln

(√
cos 2φ0 − cos 2 + i

√
2 cosφ

) ]
+ θ0 .

(B.9)

By suitably choosing φ0, we can cover the sur-
face of a sphere using just one helix as shown in
Fig. 22 or using five helices as shown in Fig. 23 to
obtain a CK T=7 icosahedral structure.

FIG. 22. Helix uniformly covering the sphere.

FIG. 23. Five helices covering a sphere. The T=7 con-
struction is recovered when they are decorated with parti-
cles.

Appendix C: Metropolis Monte-Carlo algorithm

We use the Metropolis Monte-Carlo method to
calculate the particle positions on an underlying
fixed grid corresponding to the particle ground state
(Section III B). The algorithm proceeds as follows:

1. (Particle move) A particle is chosen at ran-
dom and moved to a node in its first neighbors
ring. The node to which the particle moves is
also chosen at random and the set of possi-
ble moves includes the particle’s original lo-
cation, i.e., the particle may be left in place.
The particles move on a fine underlying tri-
angular lattice with mesh size a. We choose
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a = rm/16, where rm is the particle equilib-
rium distance (Fig. 24).

2. (System energy) For each move of a particle
k, the new energy of the entire system Enew,k
and change in energy ∆Ek = Enew,k−Eold,k
are computed. Enew,k and ∆Ek are computed
after only particle k has moved.

3. (Move acceptance or rejection) If for par-
ticle k, either ∆Ek < 0 or η <
exp (−∆Ek/T̃ ) the move is accepted, oth-
erwise it is rejected. Here T̃ = kBT and
η ∈ [0, 1] is a randomly chosen number.

4. (Annealing at constant temperature) Steps
1 through 3 are repeated for each of the N par-
ticles of the system.

5. (Temperature schedule) The pseudo tem-
perature T̃ is lowered according to T̃t+1 =

αT̃t and steps 1 through 4 are repeated, i.e.,
steps 1 through 4 are carried out only once at

constant T̃ . α = T̃final

T̃initial

1/M
where M is the

number of Metropolis Monte-Carlo steps at
different temperatures.

The steps outlined in the foregoing are summarized
in Algorithm 1.

Algorithm 1 Metropolis Monte-Carlo Algorithm
Consider a system of N particles k moving on an un-
derlying fine lattice (Fig. 24). Each node on the finer
lattice is denoted by n and the subset of nodes in the
first ring of neighbors of particle k is denoted by Ωk.
Ωk includes the node at which particle k is. The system
initial scaled temperature is T̃init and the final scaled

temperature is T̃final. We define α = T̃final
T̃initial

1/M

for t ∈ {1, 2, · · · ,M} do . Decrease temperature
T̃t = αT̃t−1

for k ∈ {1, 2, · · · , N} do . Iterate over particles
Randomly choose a particle k.
Randomly select a node n̄ ∈ Ωk
Move particle k to n̄. We denote this state Sk.
pk ← e−∆Ek/T̃t

η ← RAND[0, 1]
if ∆Ek < 0 ∨ η < pk then . Accept criterion

Accept Sk
end if

end for
end for

In order to calibrate the parameters governing the
Metropolis Monte Carlo algorithm, i.e., initial and
final temperatures and rate of temperature decay,
we first compute the minimum energy configuration
for known cases, i.e., the particle configuration on
a cylinder (Fig. 9) and on a small icosahedral ge-
ometry corresponding to a T=7 virus (Appendix E).
Subsequently, we apply the same minimization al-
gorithm to the unknown unduloid case. Since the
minimum energy particle configuration is likely to
be non unique, we repeat the analyses several times
to ensure that the computed configuration is repre-
sentative of the particles minimum energy states.

In all the simulations reported in Section III B and
Appendix E, we set T̃initial = 5, T̃final = 5 × 10−3

and the total number of Monte Carlo steps is equal
to 15,000. Each complete Monte Carlo step corre-
sponds to N attempted particle moves, where N ≈
1000 for the cylinder, sphere, and unduloid geome-
tries.

FIG. 24. A zoomed-in view of the underlying lattice on
which the particles move.

Appendix D: Kinetic Monte Carlo method

For the diffusive transport studies discussed in
Section III C, we use the null process method [32],
a version of the kinetic Monte Carlo method that
is based on the familiar n-fold method [33]. This
method was originally introduced in the context of
large reaction-diffusion systems with a fixed num-
ber of processes. According to the null process
method, the system is divided into a number of
“cells” or subsystems and a modified version of the
n-fold algorithm is applied to each subsystem. To
achieve synchrony, “null” events are introduced. In
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a subsystem, a null event represents no change to
the subsystem but retains a finite probability of be-
ing selected. However, the algorithm is designed
such that there is at least one subsystem in which the
null event never occurs. Consequently, the method
still retains the rejection-free paradigm of the n-fold
scheme. A parallel generalization of this scheme
has been developed in [34].

To apply the method to the problem at hand, we
divide the system of N particles into subsystems
each with one particle. Each particle (indexed by
k ∈ {1, 2, · · · , N}) is randomly perturbed while
holding the others fixed. The rate of every such a
transition is computed according to

rk = νoe
−∆Ek/T̃ , k ∈ {1, 2, · · · , N},

where ν0 is a constant that determines the time-
scale. After rk is computed for all particles, each
move is accepted with probability pk = rk/rmax,
where rmax is the maximum rate:

rmax = max
k∈{1,2,··· ,N}

{rk}

The rejection probability of 1 − pk is equal to the
probability of acceptance of the null event. Finally,
time increments are chosen according to a Poisson
distribution:

∆t = − ln ξ

rmax
,

where ξ ∈ (0, 1) is a random number from a uni-
form distribution. A pseudo-code for this method is
summarized in Algorithm 2.

Algorithm 2 Kinetic Monte Carlo Algorithm
Divide the system of N particles into N subsystems
with one particle each.
For every time step do:
for k ∈ {1, 2, · · · , N} do

Randomly perturb particle k while holding others
fixed. Call this state Sk.

Compute rate rk for such a transition to Sk accord-
ing to:

rk ← νoe
−∆Ek/T̃ ,

where ν0 is a constant scaling for time.
end for
rmax ← maxk∈{1,2,··· ,N}{rk} . Compute max. rate
for k ∈ {1, 2, · · · , N} do

pk ← rk/rmax

η ← RAND(0, 1)
if pk > η then . Accept Sk with probability pk

Accept Sk
end if

end for
ξ ← RAND(0, 1) . ∆t from Poisson distribution
∆t← − ln ξ

rmax

Tests

We verified our algorithm with two of the tests
discussed in [34]: 1) diffusion of particles on a lat-
tice without interactions and with absorbing bound-
ary conditions; and 2) diffusion of identical particles
with annihilation interaction given by the reaction
A+A→ 0.

For the first case, we use a two dimensional
square lattice with 1229 non-interacting particles
subjected to the condition that any particle reaching
the boundary is absorbed (that is, removed). The
time dependence of the concentration is plotted in
Fig. 25 and agrees well with the theoretical predic-
tion reported in [34].

The second test case involves identical interact-
ing particles (A) on a square lattice. The interaction
is governed by the reaction A+A→ 0, that is, two
particles within a (prescribed) threshold interaction
radius annihilate each other. The time dependent
concentration (with 961 particles at time t = 0) is
shown in Fig. 26. The asymptote for large t agrees
with a 1/t dependence for the concentration and it
is in agreement with the theoretical prediction [34].
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FIG. 25. Concentration vs time for diffusion problem
with no particle interactions and absorbing boundary con-
ditions.
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FIG. 26. Concentration vs time for diffusion problem
with annihilation reaction A+A→ 0

Appendix E: Annealing of T=7 structure

We additionally validate the Monte Carlo anneal-
ing procedure used in Section III B and presented

in Appendix C for small spherical viruses, such as
T = 7. The initial particles’ distribution corre-
sponding to the capsomers of a T = 7 structure is
constructed according to the procedure described in
Appendix B 2 (Fig. 27a). Subsequently, the Monte
Carlo algorithm presented in Appendix C is applied,
maintaining the same analysis setup (e.g., initial
temperature, rate of temperature decay, depth of the
Lennard Jones potential) as for the unduloid, cylin-
der and sphere cases. Following the initial tempera-
ture increase, heptamers are formed as the energy of
the system increases (Fig. 27b). As the temperature
is gradually lowered, the ground state correspond-
ing to a T = 7 structure is recovered (Fig. 27c). Due
to the motion during the annealing procedure, the
particles in the final configuration do not occupy the
same positions as at the beginning, but the T = 7
structure is rotated as shown by the superimposed
initial and final capsomer outlines (Fig. 27c). This
result verifies that, using the adopted procedure, the
particles undergo large enough displacements (i.e.,
do not necessarily fall back into their original posi-
tions) and explore other possible configurations.

(a) (b) (c)

FIG. 27. Initial, intermediate (at 1100 Monte Carlo steps)
and final capsomers configuration during Monte Carlo an-
nealing of a T = 7 virus structure. Due to the particles’
motion during the annealing procedure, the initial and fi-
nal capsomers configurations are rotated with respect to
each other.
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