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We propose a novel mechanism of adherent cell mechano-sensing, based on the idea that the
contractile acto-myosin machinery behaves as a catch-bond. For this, we construct a simplified
model of the acto-myosin structure that constitute the building block of stress fibers and express
the stability of cross-bridges in terms of the force-dependent bonding energy of the acto-myosin
bond. Consistent with experimental measurements, we then consider that the energy barrier of
the acto-myosin bond increases for tension and show that this response is enough to explain the
force-induced stabilization of an SF. Further numerical simulations at the cellular level show that
the catch-bond hypothesis can help in understanding and predict the sensitivity of adherent cells to

substrate stiffness.

The contraction of adherent cells is a phenomenon that
plays a large role in many biological processes such as
morphogenesis [1], wound contraction [2], stem cell dif-
ferentiation [3] and the development of many diseases
[4]. The molecular mechanisms by which cells gener-
ate motion and force depend on a series of highly co-
ordinated events occurring in both the cytoskeleton and
at the cell membrane. Of particular importance are the
contractile elements of the cytoskeleton, made of stress
fibers (SF) [5, 6]. These filaments, that assemble from
proteins present in the cytosol (including mainly globu-
lar actin and myosin) generally anchor to the cell sub-
strate via focal adhesions and can ultimately span the
entire length of the cell. Importantly, these filaments are
capable of sustaining appreciable levels of contraction,
which they owe to the underlying acto-myosin machin-
ery powered by ATP. In the past decade, a number of
studies have shown that both SF density and contrac-
tion in adherent cells were sensitive to the mechanical
environment [3, 7, 8]; a stiffer environment generally pro-
motes a denser, stronger cytoskeleton and eventually cell
spreading [9]. Understanding the fundamental origin of
these behaviors has motivated a number of theoretical
studies, from the cellular to the molecular level. A line
of thought has been to view cells as contraction dipoles
[10] that could sense the compliance of their substrate
and accordingly polarize by minimizing their deforma-
tion energy [11]. Others have considered the contractile
cytoskeleton as an active material in which filament sta-
bility is promoted by tension [12-14]. The molecular ori-
gin of this phenomenon was explained by the presence of
signaling pathways that induced a positive feedback for
SF stabilization with force [15]. Other classes of models,
based on cross-bridge dynamics [16] have also been used
to explain the effect of tension on cytoskeleton reorga-
nization under static and cyclic conditions [17]. A more
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thorough review of existing models was discussed in [18].
While bio-chemical signaling has often been argued as
an possible factor, the way by which SFs stabilize with
tension still remains an open question. In this paper,
we invoke a well-known mechano-sensitive element used
by biology, the catch bond, to explain both the force-
stabilization response of SF's and the developement of in-
tricate cytoskeletal architectures in adherent cells. Such
bonds are typically found on the membrane of leucocytes
and bacteria [19] and act to strengthen the adhesion with
a solid substrate in the presence of an external force.
They may also play the role of rigidity sensors on the
surface of adherent cells, through specific membrane re-
ceptors and notably the asf5; integrin [20]. Contrary to
the conventional slip bonds whose detachment rate in-
creases with force as described by Bell’s law [21], catch
bonds are able to extend their lifetime under the appli-
cation of a small to moderate force. While the origin
of this behavior may be complex at the molecular scale
(arising from mechano-chemical interactions or multiple
force-dependent bond states for instance [22, 23]), the
overall response of catch bonds is quite robust across bi-
ological systems. Of particular interest in the case of
SFs is the finding, notably by Guo et al. [24] that the
actin-myosin complex does display a catch-bond behav-
ior, with a maximum stabilizing force around 6pN. This
observation is further confirmed by Capitanio et al. [25]
who measured a force-induced reduction in the detach-
ment rate of myosin from actin after its working stroke
for forces ranging between 0 and 6p/N at high ATP con-
centration and Reconditi et al. [26] who found similar
trends in the mechanics of muscle fibers. Alternatively,
there may be other types of mechano-sensitive mecha-
nisms in the SF machinery, which could include, for in-
stance, a force-dependent transition among the different
nucleotide states of myosin during its mechano-chemical
cycle on actin. These considerations, along with the data
from Guo et al. [24] clearly indicate the possibility of
catch-bond within SFs. To investigate this hypothesis,
we propose to explore whether the existence of a catchy
acto-myosin bond could be at the origin of (a) the force
and stiffness-induced SF stabilization and (b) the com-



plex acto-myosin cytoskeleton architecture observed in a
majority of adherent cells. For this, we proceed in two
steps; first, we introduce an active visco-elastic model of
SF that incorporates the idea of force-induced stabiliza-
tion of cross-bridges. Second, we propose a simple model
of the acto-myosin cytoskeleton of adherent cells, made
of a random assembly of force-sensitive SF's. A computa-
tional procedure is introduced to predict the contractile
behavior and cytoskeleton architecture of adherent cells
laying on beds of micro-posts. Results are discussed in
the light of experimental data from the literature.

I. MODELING STRESS FIBERS AS ACTIVE
VISCO-ELASTIC FILAMENTS

As shown in Fig. 1, SFs are generally viewed as bun-
dles of polar actin filaments which, depending on matu-
rity, can display a periodic appearance associated with
the presence of organized repeating structure of myosin
and alpha-actinin molecules [27]. Myosin filaments pos-
sess proteins domains, or heads, that have the ability
to execute power strokes towards the positive end of an
actin filament. This operation, collectively, results in
an overall shortening of the acto-myosin assembly at a
speed that can vary depending on the type of myosin
(see discussion in appendix A.3. and Table 1). Based on
these observations, we propose to model a SF control seg-
ment as a parallel assembly of three key elements (Fig.
1): (a) a contractile element that captures the change
Ad; in SF length due to the sliding of myosin heads on
actin filaments at a rate Ads; = vs (here v, is negative)
(b) an elastic element of stiffness k [24, 28] characteriz-
ing the elasticity of cross-bridges and whose stretch Ad,
is recoverable upon unloading and (c) a bond element
that represents the strength of the actin-myosin complex.
Note that initially, the segment is in an optimal config-
uration, i.e., active actin sites and myosin cross-bridges
perfectly overlap and a deviation from this length is given
by Ad = Ads; + Ad.. Now assuming that the overlap
ratio decreases linearly with sliding Adg, the maximum
number of cross-bridges that can be formed during con-
traction is estimated as

N(ds) = N¢N, (1 — Ad,/Ad™) (1)

where Ny is the number of myosin minifilaments in
the control segment while N, is the number of myosin
heads per myosin filament. In this work, we choose
AdT* = (/4 [29] as the distance at which the actin-
myosin filaments generally cease to overlap. This rela-
tionship is at the origin of the length-tension relation in
muscle mechanics [30].

A. Active visco-elastic model

The dynamics and force generation in acto-myosin
units have traditionally been studied using the sliding

filament theory [16, 31, 32]. Based on the detailed ki-
netics and transition between different states of myosin
motors during their working cycle, the theory enables the
determination of the fraction of attached cross-bridges
on an actin filament as well as their velocity and work-
ing force in terms of external conditions. Although such
an approach would provide a good starting point to our
derivation, its level of details may divert us from our main
objective, i.e., understand the role of acto-myosin catch
bond on cell mechano-sensitivity. We therefore keep this
alternative for future work and instead propose a sim-
plified approach which consists of investigating the equi-
librium of a SF segment by considering the balance of
entropy, conservative and non-conservative forces within
the acto-myosin assembly as it is subjected to an ex-
ternal force F.. To describe the former two contribu-
tions, we build a Gibbs free energy functional in the form:
G =U — TS where U, S and T are the stored internal
energy, entropy and thermodynamic temperature in the
control segment, respectively. To evaluate S, we first in-
vestigate the number of possible bond configurations in
the attached (A) and detached (D) state amongst the
available acto-myosin bonds. If we define 0 < n < 1 as
the ratio N4 /N of attached bonds (N4 being the num-
ber of attached bonds), the entropy of the system reads
S = —kpN(Ads) [nln(n) + (1 —n)In(1 — n)] where kg is
the Boltzmann constant. The internal energy of the unit
is then composed of two terms: the stored elastic energy
%kAdi and the adhesion energy FEj} stored in attached
bonds. This yields U = nN(Ady) (kAd2/2 — Ey). The
total Gibbs energy functional can then be written:

Eln, Ade] = kpTN(Ady) [nln(n) + (1 —n) In(1 = )]
n %nN(Ads)kAdﬁ —N(Ad,)E,

— | F.Ad.. 2)
Ade

The Rayleigh dissipation potential can similarly be writ-
ten in term of the sliding velocity vy and the external
force I, as:

Dlvs) = %wa? — Fovs. (3)
The term Nnpu is to be interpreted as the overall viscosity
between actin and myosin filaments while p is the viscos-
ity arising from a single cross-bridge. The latter can be
considered as a lumped representation of a number of
physical phenomena occurring during the working stroke
of a myosin head, i.e., size and rate of the motor swing
as well as how the rates of attachment and detachment
of the myosin head on actin depend on force [33, 34].
The consideration of each individual mechanism, which
is beyond the scope of this work, would therefore likely
yield a non-linear viscosity that depends on force in a
more complex fashion than presented here. Neverthe-
less, the presented model, as it captures the main trends
exhibited by the above phenomena, is sufficient for the
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FIG. 1. Overview of the contractile machinery of adherent cells from the molecular to the micron scale. (a) At the molecular
scale, the dynamics of contraction starts from the motion of myosin motors that can attach to actin filaments and walk along
them via coordinated configurational changes of the myosin head powered by ATP. The stability of these cross-bridges is affected
by the applied load f. In this study, this unit is modeled by a series of three elements comprised of a contractile element (whose
contraction rate is vs), a compliant element of stiffness k, that captures the elasticity of the cross-bridge and an ”adhesive”
element that represents the bond between actin and myosin. (b) A SF segment is primarily made of aligned and polarized actin
filaments cross-linked by a series of thick actin myofilaments whose motion along the actin tracks is facilitated by the motion of
cross-bridges. The overall SF contraction strain and force depend on the force generated by each individual myosin head and the
number of attached acto-myosin bonds, whose fraction is represented by the variable n. This organization can be represented by
a parallel assembly of single cross-bridge elements shown in (a) which may be in an attached and detached state. (c) Assembled
in series, these segment make up SFs which constitute the main contractile element of adherent cells. SFs typically organize
into a well aligned network whose elements can span a cell between two adhesion points. vs is the sliding velocity, f is the
external force against contraction, k is the acto-myosin bond stifjness, Ads is the contraction, Ad. is the elastic stretch of the
bond, n is the ratio of the number o attached cross-bridges to that of total available crossbridges N(Ads) at contraction Ads.

present analysis. Finally, one now should specify the en- the functional:
ergy provided to the system by ATP hydrolysis in order
to power the sliding of myosin heads on actin filaments.
For this, we introduce the active force ¢ produced by a
single myosin molecule and compute the power produced

in the control segment as:

F, ve, vs] = Dlvs] + E[, ve] — Alvs]

whose minimization dF[n, ve, vs] = 0 leads to the equa-
tion:

(64 F) 61 + (00, F) 6ve + (64, F) 6vs = 0.

A[Us] = NT]CU3~ (4)

It is clear here that the term ( is what drives the con-

Enforcing that fact that the variations of 7, ve and v are
independent 6, F, §;F and d,, F must all vanish, one can

tractility of the acto-myosin unit and may be linked to
the difference in chemical potential between ATP and its
reaction products as discussed in [35]. The governing
equation of our active acto-myosin filaments may then
be obtained by balancing dissipation, energy release rate
and active work. For this it is convenient to work with

obtain the three Euler-Lagrange governing equations:

nNkAd, — F, = 0, (5)

n _
Eb+kBT1n(l77) = 0, (6)
pus+C—f = 0. (7)



The first equation is interpreted as the mechanical equi-
librium of the control segment, while the second denotes
its chemical equilibrium (equality of the chemical poten-
tials) of bonds in their attached and detached states. The
last equation finally describes how the cross-bridge veloc-
ity is affected by the balance between the active force ¢
and passive force f = kAd,. Interestingly, if one defines

the natural (or maximal) sliding velocity as v = —(/u,
Eq. (7) can be rewritten:
vs =0 (1= f/C). (8)

In the range 0 < f < (, this relation may therefore be
thought of as a simplified (bi-linear) form of the velocity-
tension relationship [36] that describes how the sliding
velocity decreases if an opposing force f is applied to
the acto-myosin unit. This expression is consistent with
recent findings [25, 26] that the myosin stroke size (and
hence its velocity) decreases with applied load. In this
context, ¢ can be interpreted as a stall force, i.e., the
force that must be applied to a single cross-bridge to stop
its motion. Experimental approaches have estimated its
value to be around 5pN[37] in algal cells.
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FIG. 2. (a) Energy landscape of the acto-myosin bond in the
direction of applied force. The bond needs to go over the en-
ergy barrier (or transition state) in order to switch from its
bound to unbound state. For a catch bond, the height of the
energy barrier increases with moderate force until it starts de-
creasing for larger magnitude. This ultimately yields a force-
wnduced stabilization of the bond. (b) Relationship between the
height AEy of the energy barrier and applied force as predicted
by the Pereverzev and Prezhdo model [38] used in this study,
for different values of bond catchiness *. The case a* = 0
corresponds to a slip bond response.

B. Acto-myosin catch-bonds

To complete the model, we now need to express the fact
that the actin-myosin complex displays a catch-bond be-
havior. For this, consider the energy landscape of a single
bond as depicted in Fig. 2a, in which AF is the energy
barrier separating the bound and unbound states. Typ-
ically, the larger the energy barrier, the longer a bond
can live under thermal fluctuations. When subjected to
a tensile force f, the energy barrier of a conventional
“slip bond” typically decreases according to Bell’s law

4

[21] as Ey(f) = EY — fAx where EY is the reference en-
ergy of the bond and Az ~ 3nm [39] is the width of
the barrier. As shown in the literature [24, 25|, acto-
myosin complexes are temporarily stabilized when mod-
erate pulling forces are applied, a response that can be
interpreted as an temporary increase in the energy bar-
rier AFE,; with forces. Although a number of functions
can be chosen to satisfy that criterion, we choose here
the following two-parameter function originally proposed
by Pereverzev and Prezhdo [38] as:

Ey(f) = E? +a [1 - e*f/fo] N 9)

where o« measures the “catchiness” of the bond and fj
is used to scale the force at which the bond stabilizes
(Fig. 2b). We note that when a = 0, the above expres-
sion degenerates to that of a slip bond following Bell’s
law. In this study, we choose Ey = 4.8kgT, fo = 2.2pN
and explore a range of bond catchiness between 0 and
Qmaz = 2.4kpT, in order to match a maximum stabiliza-
tion at n = 5% [17] for a peak force of 6pN [24], consis-
tent with the literature. A single value of bond stiffness k&
was further chosen, corresponding to non-muscle myosin
(NMM) and smooth muscle myosin (Table 1). For this
parameter, values reported in the literature are limited
and very scattered, which motivated the discussion and
parametric study provided in Appendix A.4. Overall, we
show that the magnitude of k does affect the kinetics
and forces generated by SF, but does not affect the main
trends of its response discussed in the remainder of this
manuscript. Using the expression for Fj in Eq. (6), one
finds that the level i of cross-bridge attachment obeys:

E)+a {1 76_%} — fAx

-n

—kpTln (1’7> = 0. (10)

C. Stress fiber mechano-sensitivity

Let us now assess the consequence of this model on the
mechano-sensitivity of a SF control segment subjected to
a constant external force F' by investigating its stabiliza-
tion via the fraction of attached bonds 7. For clarity, we
assume here that the SF does not contract during the
application of the force (i.e. vs = 0). In this case, 7 is
directly calculated from (10) as

e—Ev(f)/(kBT)
n(f) = 1+ e Bo(N/(kpT) (11)

where the force in an attached acto-myosin bond is
obtained from (5) as f = F/(nN(Ads)). This enables
us to explore the force-induced activation of the SF as
a function of bond catchiness o* = a/ama,. Fig. 3
therefore illustrates, for different values of bond catch-
iness «, how the variable 7 is affected by (a) the force
f on a single acto-myosin bond and (b) the total force



F = nNf on the acto-myosin assembly. Fig. 3a shows
that for a slip bond (o* = 0), the steady state fraction
7 monotonically decreases with force as predicted by
Bell’'s law while as o* approaches unity, the fraction of
attached bond becomes close to its maximum (= 5%)

for a critical force determined by f. = foIn (ﬁ) We

also observe a clear difference between the stability-force
behavior for a single bond and the full segment as
shown in Fig. 3b. Multiple bonds exhibit a cooperative
behavior since for a given macroscopic force F, the
force in individual bonds increases with decreasing 7.
As a result, we still see the force induced stabilization
under the critical force F. = Nn(f.)f. for a > 0 but
a catastrophic disassembly occurs for a larger force.
Passed its maximum value F,, the resisting force F
therefore decreases quickly as cross-bridges become
unstable and detach, a behavior is reminiscent of the
fracture behavior of a fiber bundle, showing catastrophic
disassembly at critical force [40].
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FIG. 3. Effect of (a) local (on a single cross-bridge) and (b)
global (on the full SF segment) force on the fractionn of bound
acto-myosin bonds in the SF segment in the absence of cell
contraction (vs = 0). Predictions are shown in the case of an
acto-myosin slip bond o* = 0, moderate catch bond o™ = 0.5
and strong catch bond o = 1. These results clearly show
the force-induced stabilization of the cross-bridges as the bond
catchiness is increased (panel a). They also show a dramatic
disassembly of the acto-myosin bundle when the applied force
F* reaches its critical value (panel b). f* = f/C and F* =

F/¢

We next explore the behavior of the same SF segment
when it is allowed to contract against the load, i.e. cross-
bridges slide on actin filaments at a velocity given by Eq.
(8). In this context, Fig. 4 provides results regarding
the time history of the contraction (top panels) and its
steady state for different external forces (bottom panels).
More specifically, the time response of the SF segment
was investigated by plotting the fraction n (Fig. 4a) and
the normalized acto-myosin force f* = f/¢ (Fig. 4b) for
three values of acto-myosin bond catchiness a* = O,%
and 1, respectively. These results show that when the
applied force F' is moderate (F' is smaller than a critical

value F, determined above), bond catchiness promotes
acto-myosin stability which yields an increase in the frac-
tion of activated cross-bridges with a.. One also sees that
this activation monotically increases in time as the seg-
ment contracts at a rate given by Eq. (8). However,
once the force f per each-cross bridge reaches its maxi-
mum value (, contraction ceases and the segment reaches
its maximum contraction strain. The latter is sensitive
to both applied force and bond catchiness as shown in
Fig. 4c. On this figure, one indeed sees that the nor-
malized segment contraction §* = Ad/Ad;,q. decreases
with the amount of tension F*. When F* = 0, maximum
SF shortening is reached while when the tension reaches
its stalling value Fis (which corresponds to a cross-bridge
force f = (), no shortening is observed. One further
notices that if the force increases to a critical value Fg,
the force in each cross-bridge reaches its maximum ca-
pacity fr (corresponding to the peak force of 6pN) and
the segment ruptures. In this process, we also note that
bond catchiness plays a role in stabilizing the segment
against external tension as it delays both the stalling
and the rupture force significantly. We finally show in
Fig. 4d the effect of applied force on the overall activa-
tion a = n * N(Ads)/(N.N,) of attached crossbridges.
Similarly to Fig. 3, in the case of a catch bond, we ob-
serve an obvious activation of the number of cross-bridges
with external force until the force in an acto-myosin bond
reaches its stalling (and rupture) value. For a slip bond
however, the activation of the SF segment is negligible
and quickly reaches its maximum capacity when a force
is applied. Overall, these results point out that external
tension is key to the activation and stabilization of a SF
segment and that this response is strongly dependent on
the catchiness of the acto-myosin bond.

Due to its biological relevance, we now investigate the
model’s prediction regarding the stiffness sensing capa-
bility of a SF; this can be done by considering a vir-
tual experiment in which the control segment is attached
to a rigid support on one end and to a compliant sub-
strate, represented by a linear spring of stiffness K on
the other (Fig. 5). Assuming that the spring is in its un-
stretched configuration when the SF is in its relaxed state
(Ad = 0), the external force becomes F = KAd. In Fig.
5(a&b), we show the time evolution of the fraction of ac-
tive cross-bridges n and the contraction rate v* = v, /v?
for an external stiffness K = k/2 and explore the effect
of the bond catchiness on this process. As observed with
the constant force, bond catchiness is a critical parameter
for stiffness sensing; when a* = 0, activation is insensi-
tive to stiffness, while for larger values of a*, one sees
a monotonic increase in SF activation with time, until
it reaches a steady state. Interestingly, as bond catch-
iness increases, the model predicts a slow down of the
contraction dynamics (Fig. 5b) as observed in experi-
mental studies of contractile cells (See Fig. 7). This
response may be attributed to the fact that a stronger
catch bond induces larger forces f in acto-myosin bonds,



FIG. 4. Investigation of a SF segment as it is contracting
under a constant load F* = F/( for different values of nor-
malized bond catchiness o = 0,0.5 and 1. Top figures: (a)
Fraction of attached cross-bridge n and (b) force f* = f/¢
on an active crossbridge as a function of time for F* = 1.2.
Bottom figures: (c) Normalized strady-state SF' contraction
0; = Ads/AdT*® and activation a = n* N(Ads)/(NzNy) of
an SF segment as a function of applied force F*. The symbols
+ and O indicate the points at which the SF segment stalls
and ruptures, respectively.

which in turn yield smaller sliding velocities as predicted
by Eq.(8). Beyond this dynamic response, external stiff-
ness is also known to strongly influences SF contraction
at steady state. In the model, the steady state corre-
sponds to a vanishing sliding velocity v = 0, which trans-
lates, using Eq. (7), to the conditions that the force in
acto-myosin bonds is f = (. This implies, after a sim-
ple calculation and assuming that Ads >> Ad,, that
contractile force is related to stiffness K by:

_ K0
=

*

(12)

where F* = F/(N(¢), K* = K/k and 7 = n(f = ().
A graphical representation of this expression is given in
Fig. 5c for different values of bond catchiness. This re-
sult shows that the SF contraction force increases sharply
with external stiffness for small stiffness (F* ~ K*
as K* — 0 ) and asymptotically reaches the plateau
Fr .. = 7 for stiffer environments (when K* >> 7).
Since the value of 77 strongly depends on o*, results show
that stiffness sensitivity of the SF is highly dependent on
bond catchiness: when « decreases, i diminishes until it
reaches an irrealistically low activation value (7 < 0.05%)
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FIG. 5. Investigation of a SF segment as it is contracting
against a spring of normalized stiffness K* = K/k for dif-
ferent values of normalized bond catchiness (a* = 0,0.5 and
1).Top figures: Time evolution of (a) n and (b) shortening
velocity v = v, /v for a spring stiffness K* = K/k = 0.5.
Bottom figures: (c) Relationship between the external stiff-
ness K* = K/k and the contractile force F* = F/( applied by
the control segment at steady state for different values of bond
catchiness a*. The relationship between mazimum contractile
force F .. and bond catchiness is shown in (d).

when o = 0 (Fig. 5d). The model therefore suggests
that the catch-bond behavior is critical for stiffness sens-
ing.

II. FROM STRESS FIBER TO CYTOSKELETON

In the remainder of this work, we scale-up the SF
model to the cellular level in order to investigate the effect
of the catch-bond hypothesis on the mechano-sensitivity
of cells lying on micro-pillars as measured in a number of
experimental studies [41-43]. For this, we take N; = 20,
N, =10 in Eq. (1) and assume that the cytoskeleton of
an adherent cell initially consists of randomly distributed
network of SFs that can anchor at focal adhesion sites,
with densities that range between 5 and 15 SF per um?
[41, 43] or at the cell periphery (the actin cortex) with a
density that range between 5 and 15 per pum [44] (Fig. 6).
Although distributed in an isotropic fashion, the length
£ of each SF is taken to follow an exponential probability
distribution given by (Fig. 6¢.):

$(£) = Aexp(=Al) (13)



where A = 0.2um is known as the rate parameter. We
note that this distribution indicates that small SFs can
assemble and grow more easily than longer ones, and are
thus more likely to be found in the network [45]. Within
this structure, the response of SFs follow Eqs. (5), (6)
and (7) with the difference that the elastic shortening d.
and the sliding velocity vy are scaled with the length of
each individual SF. The other two important elements of
the model are the actin cortex, modeled here as a passive
elastic shell surrounding the cytoskeleton and underlying
elastic micro-posts, coated with adhesion proteins and
to which the stress fibers can adhere at their end sites
(Fig. 6b). The motion of these SFs is therefore directly
dictated by the mechanical properties of the pillars, de-
termined by their elastic modulus £, and geometrical
properties via classical Euler-Bernoulli theory [41]:

F= (3EPIP) d, (14)

h3

where h is the pillar height, I, its moment of inertia
and d, the deflection of its tip. For direct comparisons
with experiments, we here model cylindrical micro-posts
of radius r = 1.5um (I, = r*/4 ) and whose height h
can be adjusted to control the effective lateral stiffness.
The motion of SFs anchored to the actin cortex similarly
follow the displacement of the cortex, as determined by
its ability to deform through elastic stretch and bending.
Although the cortical membrane is a thin structure that
completely surrounds the cell’s body, it is approximated
here as one-dimensional elastic element delimiting the
cell and providing anchor points to SFs. Its deformation
is therefore mainly driven by the contraction of attached
SF as described in previous studies [46, 47]. For sim-
plicity, we use a small deformation, linear elastic Euler-
Bernoulli beam model with elastic modulus F. = 20kPa
[48, 49], such that the governing equations can be written
as [50]:

E Aty =0 (15)
q(z,t) =0 (16)

where subscripts ,z denote a derivative with respect to
the linear distance along the cortex. Furthermore, A, and
I. are the cross-sectional area and moment of inertia of
the cortex, u and v are its axial and transverse displace-
ment respectively while g(z,t) is the distributed load
arising from the SF anchored on the cortex (Fig. 6b).
Following [51, 52] the flexural stiffness and stretch stiff-
ness are taken to be 1.42x107° dyn-cm and E,. = 20kPa,
respectively. In what follows, we use a numerical for-
mulation, based on finite elements and whose details are
given in appendix, to solve the problem of an adherent
cell contracting on a bed of micro-post. In agreement
with previous models [53, 54], we assume that neither
deformation (u = 0) and nor active stress-fibers (n = 0)
are observed prior to contraction. Furthermore, since the
cell cortex is in its minimum energy state prior the con-
traction, its initial shape can be approximated as a series
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Cortex Cortex
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1 SF length (/ in um) 30

SF Tension Qo

FIG. 6. (a) Schematic of a two-dimensional adherent, cell
on micro-posts of length (Lp) within which the contraction
of the SF cytoskeleton is balanced with micro-post bending
(tip deflection A and cortical tension. In the equivalent two-
dimensional problem, the anchoring point for SFs are divided
into two domains: the tip of micro-posts 1 and the cortical
membrane Q2. (b) The micro-posts resist SF traction by pro-
viding a reaction expressed by (14) while the cortical tension
balances these forces through bending as expressed in (15). (c)
In its initial state, the cytoskeleton is modeled with a isotropic
and random distribution of SF spanning adhesion points and
whose length follow an exponential distribution expressed in
(13)

of straight lines between the adhesion sites on the bound-
ary. The nonlinear finite element procedure is then used
to compute SF shortening and contractile force (from (5)
and (6)) in equilibrium with the surrounding pillars and
the cortex at all times as the cell contracts. A steady
state is eventually obtained when the force f in all cross-
bridges balance the active force (.

A. Cellular scale mechanosensitivity

To assess the global mechano-sensitivity of the cy-
toskeleton, we first numerically reproduce the experimen-
tal work described by Tan et al. [41] on smooth muscle
cells (BPASMC) in which the cytoskeleton contractility
was measured as a function of the overall cell spreading
area. For this, our simulations considered square-shaped
two-dimensional smooth muscle cells (whose properties
are given in Table 1) laid on a square lattice of 4, 9
and 16 microposts, respectively. The average contrac-
tion force on each pillar was then computed from the
micropost deflection (following eq. (14)). A nonlinear
relationship was reported between average force and cell
area as shown by the average and standard deviation
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FIG. 7. (a & b) Effect of cell area on contractility. (a) Predicted SF distribution for smooth muscle cells (BPASMC) lying
an a micropillar substrate consisting of 4, 9 and 16 pillars respectively, all assuming o™ = 1. With a fixed pillar radius and
spacing of 1.5 and 6 pm, the cell spreading areas are respectively 140,440 and 900um?, consistent with experimental conditions
presented in the work of Tan et al. The density o] anchoring sites for SFs used to match experimental results are respec-
tively 7 per wm? on the pillar surfaces and 6 per wm on the cortex. The micropost bending sitiffness is 32 nN/um [41]. (b)
The average force per pillar was computed for the three cell sizes under the hypothesis of an acto-myosin slip bond (a* = 0),
moderate catch bond (o = 0.5) and strong catch bond (o = 1). The predicted values are compared with experimental results
represented by vertical bars (whose positions and lengths depict the mean and standard deviation of the measurements [41]. (c
& d) Dynamics of fibroblast contraction as a function of substrate stiffness. (c¢) The evolution of contraction with
force was investigated with a square cell lying on four pillars, for which the effective stiffness K = 3E,I,/h* (Eq. (14)) was
varied between 12 and 80 nN/um. For these simulations, the density of SF anchoring sites was chosen to be 9 per pm? on the
pillar surface and 12 per pm on the cortex. The curves show the evolution of the contractile force per pillar in time as predicted
by the model for a* =1 (solid lines) and measured experimentally for the fibroblast cells (REF52) investigated in Trichet et al.
[48]). (d) Role of bond catchiness on the rate of cell contraction at early times (t=0) as a function of micro-post stiffness (K is
comprised between 0 and 80nN/um). The dashed line and vertical bars (mean and standard deviation) are experimental data
taken from the study of Trichet et al. [48]. The density of SF anchoring sites were chosen as 10 per yum? on pillars and 12 per
pum on the cortex, respectively while the micropost radius and spacing are 1.5 and 6 pm respectively.

plots in Fig. 7a. In the same figure, we show the sim-
ulation results at steady state for the three cells under
investigation when an acto-myosin slip bond (a* = 0),
a moderate (o* = 1/2) and a strong acto-myosin catch
bond (a* = 1) is considered, respectively. The distribu-
tion of active SF and cell deformation are also shown for
the three cases, all of them in the case a* = 1. Gener-
ally, the results show that, once again, bond catchiness
is an important factor to mechano-sensitivity and con-
traction. Indeed, when o* = 0 (slip bond), myosin con-
traction immediately triggers the detachment of cross-
bridges, which results in a near-zero net contraction of
the cell as a whole. For increasing bond catchiness how-
ever, SF that are locally oriented in directions of large

stiffness (between two attachments, for instance) become
activated and are able to apply a contractile force. Fur-
thermore, it became clear from the simulations that while
all posts are subjected to pulling forces from SFs, only
those close to the cell boundary could undergo signifi-
cant bending. Indeed, forces are unbalanced on these
pillars since no SFs can be found on the external side
of the cell, a mechanism is reminiscent of the concept
of surface tension between two fluids with different in-
ternal cohesive energies. From this observation, one can
deduce that cell contraction increases non-linearly with
area for two main reasons: (a) for a cell undergoing ho-
mogeneous contraction, the deflection of external pillars,
and thus measured force, is proportional to its distance



to the center of the cell (in average) and (b) the effec-
tive stiffness felt by a SF increases linearly with distance
(and thus cell size) according to K, = K{/2 (a discussion
is provided in the next section). In other words, larger
cells behave as if they interacted with a stiffer environ-
ment and are thus characterized with a higher contrac-
tion (as seen in Fig. 5¢). We next evaluate model predic-
tions regarding the transient dynamics response of adher-
ent cells on micro-posts with varying stiffness. For this,
we invoke the experimental work of Trichet et al. [43]
who explored the time-dependent contractile response of
fibroblast (REF52) cells on pillars with effective bend-
ing stiffness 12,34,56 and 80nN/um respectively (Fig.
7b). Generally, contractile forces increased monotoni-
cally with time, at a decreasing rate until it reached a
plateau, which corresponds to the steady state force. In-
terestingly, while the overall trends to do change with
micropost stiffness, the scale of the contractile force does
increase significantly with post stiffness. Modeling-wise,
these experimental conditions were reproduced by con-
sidering a square cell laying on four microposts (see Fig.
7(c&d)) and for which the average post force was com-
puted in time, for the four effective pillar stiffness given
above. A comparison of simulations (solid lines) and ex-
perimental results (dotted lines) a provided for the case of
a strong catch bond. One observes a good match between
simulations and experiments for strong catch bond since
the stabilization of bond with force allows SF to con-
tract faster (since less force is applied on each bond) and
harder (since more cross-bridges are active) when they
interact with stiffer substrates while these trends disap-
pear when slip-bonds are considered (as shown in Fig.
5¢). This observation was confirmed when we plotted
the rate of contraction in terms of substrate stiffness for
non-existent, moderate and strong catch bonds as shown
in (Fig. 7c). One can clearly see that when a* = 0,
the cytoskeleton becomes insensitive to the mechanical
properties of its substrate.

B. Mechano-sensitive organization of the
cytoskeleton

To conclude our study, we finally investigate how the
mechano-sensitive response of a SF segment as described
by Egs. (5) (6) and (7), can give rise to a complex archi-
tecture of the actin cytoskeleton observed in most adher-
ent cells. In this context, we simulate the contraction of
a fibroblast cell (NIH/3T3) on soft circular pillars as pre-
sented by McGarry and coworkers in [12]. The initial cell
geometry and underlying pillars are represented in Fig.
8. This geometry was generated by identifying the micro-
posts located on the cell boundary from the experimen-
tal image and assuming that the cortex is described by
straight lines between those posts in its unloaded state.
For the simulations, the pillar stiffness was taken to be
80nN/um and the cytoskeleton contraction was com-
puted until it reached its steady state value (on the order
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FIG. 8. (a) Time sequence of the SF activation a =

N(ds)n/(NoNy) of a fibroblast cell (NIH/3T3) on micro-post
studied by McGarry et al. [12]. The radius, spacing and stiff-
ness of the microposts are 1.5, 10 um and 80nN/um respec-
tively. For this simulation, the density of SF anchoring site
was chosen to be 8 per um? on the pillars and 6 per pm on the
cortex, respectively. (b) Corresponding average force per pil-
lar shown as a function of time for three types of acto-myosin
bonds as characterized by o* ranging from strong catch bond
(o = 1) to slip bond (a* = 0). Circles correspond to time
points I, II and III in (a) while the dashed line shows steady
state experimental measurements from [12]

of hundreds of seconds). Fig. 8(I-III) depicts the evolu-
tion of the stress fiber activation a = 1 * N(d5)/(NzNy),
cortex deformation and the corresponding overall force
per pillar when the strong catch bond hypothesis is used.
Surprisingly, one can see that although smaller SF are
predominant as dictated by the distribution Eq.(13), the
first SF to activate are the longest. To explain this coun-
terintuitive observation, let us consider two similar SFs



of different lengths, attached to compliant microposts of
stiffness K at their ends. The effective stiffness felt by
these SFs is then K, = F/e where e = Af/{ is the con-
tractile strain in the SF. For a micropost, the force is re-
lated to deflection as F' = KAd with A¢ = 2Ad and the
effective stiffness becomes K, = K{¢/2. In other words,
longer SF's effectively sense a larger stiffness than their
smaller counterparts, which explains their early activa-
tion. Eventually, the deflection of microposts and cortex
trigger a larger resisting force causing small SFs to in-
crease their activation level as well. These dynamics re-
sult in a sharp increase in SF density and micropost forces
and a steady increase of the average pillar force in time.
We note that as discussed above, the unbalanced forces
on boundaries are responsible for the cortex deformation
into curved arches [47] and the large micropost deflection
on the edge of the cell. Au contraire, interior pillars, be-
ing subjected to more isotropic forces, tend to marginally
deform. This restricted deformation in turn, makes in-
terior posts effectively stiffer and prone to adhere to a
higher number of SF's. Eventually, the final cytoskeleton
organization is strongly dependent on the adhesion pat-
tern, micropost stiffness as well as the overall morphology
of the cell. To probe the effect of bond catchiness, we re-
peated the same simulation for the moderate catch bond
(a* = 0.5) and slip bond hypothesis (a* = 0). While the
former displays similar trends as for a strong catch bond
but with a lesser SF activation and force, the slip bond
hypothesis showed, as expected, only marginal contrac-
tion and a quasi-nonexistent SF cytoskeleton (Fig. 8b).

III. CONCLUSION

In summary, the role of catch-bonds in cell mechan-
ics is likely to extend far beyond our current knowledge
of mechano-sensitive membrane adhesion. Here, we pre-
sented a model of acto-myosin interactions within SF
structures that shows that the presence of a catch-bond
behavior can explain the activation of the cytoskeleton in
response to force and stiffness. The model importantly
showed that the consideration of catch bond was enough
to explain a number of experimental measurements of
cell contractility with stiffness and size, in both the static
and dynamic regimes. Although the catch bond behav-
ior of acto-myosin was demonstrated ex-vivo [24], the
model motivates further experimental studies that can
test whether this hypothesis is indeed correct in living
systems.
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V. APPENDIX: NUMERICAL
IMPLEMENTATION OF THE MODEL AT THE
CELLULAR SCALE

A. A.l. Variational formulation

The cell contraction is governed by three equations
given in (5), (6) and (7). One can also estimate the
degree of inelastic contraction in a SF as:

Ady(t) = / ve(t)dt (17)

and [|d2 — d1]| = [(Ad,(t) + Ad.)dl is the total con-
traction of a SF calculated from the displacements of its
two ends d; and da. In the cellular scale model, the
total change in energy of the system F is composed of
three components; a contribution F SF from SFs, a con-
tribution £¢ from the cortex deformation and finally, a
contribution £4 from the microposts deformation such
that:

A~ _ ! .C m2 .A
F=> /fndH/Fg dr + Y & (18)
n=1 n=1

where m1 and mo are the total number of SFs in the
cell and number of attached pillars respectively. The first
term is the integration of the free energy of SF's over their
respective lengths ¢, the second term is the integration of
the internal energy of cortex over the boundary I'" while
the last correspond to the bending energy of the micro-
posts. Note that the work done by an external force is
comprised in the first term such that it is equal to the
integration of the external forces over the cell boundary
I

> / (F.0Ad,)dl = / fert . 5ddr (19)
n=1 r

where ¢t being the force vector on the cell boundary
and d the associated displacement field. The stored elas-
tic (bending) energy £7' in a micropost reads:

1 (3B,L,\ , .,
et =5 (5 ) @2 (20)

where dj is the total deflection of the nt" micropost
which is equal to the resultant of the displacement field
dp = (d2+d?)("/?) and d,, d,, are the horizontal and verti-
cal components of the displacement vector (in our prede-
fined orthonormal coordinate system). The work contri-
bution from the cortex finally originates from both axial
deformation and bending; assuming that these modes of
deformation are uncoupled, one can write £

1 [ od ad
c_ - [ 22 e}
72 Jyom et g 40
1 [ 0% 0%d
3 ). axﬁL (ECIC)aTﬁlde (21)



where dj = d. - (1 —n) and d; = d. - n are the axial
and transverse components of cortex deformation and n
is the unit normal of the corresponding cortex segment
with a length L.. The integral of the cell cortex is over its
axial direction x| (see Fig. 9). Since SF are assumed to
not separate from adhesion complexes, the displacement
field of the system can be written in terms of those of
cortex d = d. and pillars d = d,,. Based on variational
principles total work functional can be written as:

(6aF)6d + (6,F)0n + (8,, F)ovs = 0 (22)

This ultimately leads to:

dcr\dl
N n
d;L"’ |

® Pillar Nodes dj
O Cortex Nodes d.

FIG. 9. Schematic of the assembly of the comprising el-
ements; cortex, pillars and SF’s. There are nodes only on
the cell boundary, which are shared by either SF-cortex or SF
pillar coupling.

(i / (5Ad”)nAd”de£) +
n=1

ddd) ady  9%d, 0%d |
—_ ECAC = EcIc - |d
+/F <8$| ( )61’” + ox? ( ) O0x? ol

(23)
i/(én) (Eb +kpTIn (1 1 >) a0 =0 (24)

i /(5vs) (—vs /00 + 1 — k(Ad — Ady(t))/¢) d =
- (25)

where the assembly operator Aj establishes the connec-
tion between the index of each SF and the index of their
connection with the cortex of micro-posts. This concept
is well known in the finite-element literature.

B. A.2. Finite element implementation

In the proposed model, SF reach a pseudo-equilibrium
state when the variation of the work F is minimized with
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respect to the field variables comprised of two displace-
ments (d, and d, where d* = d2+dz), rotation of the cor-
tex segments 6., activation parameter n the contraction
ds and its rate v,. Here we introduced a new variable 6,
(defined as the first derivative of the transverse displace-
ment with respect to the axial direction, . = dd /0x))
in order to satisfy the continuity of the cortex deforma-
tion. The rotation can be written as tan=*(2d, /L..) for a
discrete cortex segment, and assuming that rotations are
small 0. = (2d, /L.). The balance equations (23), (24)
and (25) are collected in a residual form as a function of
the variables:

R(x,t) =0 where x=[u; u, 0. 1 vs].

The linearized form of the system of equations is obtained
as follows:

OR(x,1)
ox

A numerical solution of this equation is obtained using
the finite element (FE) method. From this view point,
we use simple structural elements to model SFs, frame
elements to describe the cell cortex [50] and connector
elements for the connection between SFs and adhesion
sites (to enforce the no separation condition with the
penalty method). The equilibrium solution is then found
using a standard Newton-Raphson iterative procedure in
the form:

x +R(x,t) =0. (26)

oxF = — (K(x¥)) ™ R(x")

k41 k k (27)
X =x" 4+ 0x

where K(x) = 0R(x)/0x. Regarding the FE interpola-
tion, we use linear shape functions N for displacement,
Hermitian shape functions H for the cortex rotation and
transverse displacement and constant shape functions for
both activation and contraction rate as follows:

w1 = Nw = [Nl NQ]W

w29 = Hw = [Hl HQ Hg H4]W
w3 = w
where N1(£) = (1 =¢)/2, Na(§) = (1+§)/2, Hi(§) =

1 — 3¢2/12 4 263 /13, Hy(€) = € — 263 + €9 /12, Hy(€) =
3¢2/12 — 263 /13 and Hy(€) = —€2/1 + €3 /12, € being the
coordinate in a parametric space comprised between -1
and 1. For the mechanics part of the problem stiffness
matrix K takes the form:

N
Kym = A[/TTiN Ad™)n "k;d—deﬁ

4N (3E e ) dN

dx h3 dx

TdNT dN
A[[/dFT e (EA)da?

_12ygT 2
+(TTdH (ECI)ZIQI >dr]

dx?



where

Ku1u1 Ku1U2 Kulec
Kug’u.l Kug’u.z K'U«Zec
Kou, Koo, Koo,

Kmm =

The transformation matrices (T and T) from local to
global are:

s
—-s c
0

where ¢ = cos(f) and s = sin(f) For the force-activation
coupling the stiffness matrix term is:

KT

uz"

K7

uin ]T =

T
AI/ (TTddl\i (AdQ)k‘SjTh) de.

The stiffness tangent for the activation parameter is:

o[ )

and its coupling with the force on the SF is:

Knu, Kipu,| =
[AI/ ((a(exp(—f/fo)) _ Ax)k‘leT> de] .

X

And finally the stiffness tangent term for the dissipation
is:

K,... = As / —1/2%¢

[Kvsul Kvsuz] =

7 dNT —k dN

de (¢ dx

o/ (r

KU1UQ
K’U.z u
Ky

nuz

Kyw, O 0

)

The final form is:

K’U.l’u.l
Ku2u1
Ky

nui

Kulﬁc Kum Kul'Us
I<uzt9C Ku277 Kuzvs
cu2 K‘gcec 0 O

0 K, 0
K’UsUs

clU1
VsUul

After solving the system of equations one can calculate
the total contraction as:

ds (") = dg(t%) + vy (tF 1) at.

An overview of the computational algorithm in given in
Fig. 10

_ o o
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Initialize Contraction
v = vg

Ads(At) = ds(0) + vs At

Find contraction at ¢ + At ;
Ads(t + At) =
Ad,(t) + vyt + At)At

Solve for x = [d, d, 0 1 vy];

oxF = (K(x")) 7 R(x¥)

xFHl = xF 4 oxF
[

FIG. 10. Algorithm used to solve (23), (24) and (25).

C. A.3. Model parameters and differences between
non-muscle myosin and smooth muscle myosin.

A summary of the model parameters used in our study
is given in Table 1. We note here that there exists some
significant ditferences in the properties of myosin heads
based on their types.

Kinetics: In the literature, it is reported that the
sliding velocity of myosin heads ranges from 0.05 [58, 59]
to 2 pm/s [29] in non-muscle myosin IT and from 0.3
[60] to 0.8um/s [61] for smooth muscle myosin. In
this study, we have only investigated the dynamical
behavior of NMM (Fig. 7(c&d) and Fig. 8) for which
a sliding velocity v = 1um/s was selected consistent
with experimental measurements in fibroblasts[29].
We note here that results on smooth muscle cells
presented in Fig. 7(a&b) are at steady state and thus
independent of the chosen value of sliding velocity.
Nevertheless, for those cells, our model would predict
contraction-time relationships that are similar to those
presented in Fig. 7c but characterized by ditferent time
scales (due to ditferences in sliding velocities [29, 59, 62]).

Mechanical Properties: Regarding the mechanical
properties, cross-bridge stiffness for the skeletal muscle
cells ranges from 130 [63] to 2400 pN/um [64-66]. In the
literature, there is a lack of data about the acto-myosin
bond stiffness for the smooth muscle and non-muscle
cells investigated in this paper. In order to be consistent
with previous studies [28, 57], we however chose this
stiffness to be 600 pN/um throughout the investigation
of cellular mechano-sensitivity. Although our selection
may be inaccurate in certain cases, we note from Fig.
11b that the effect of cross-bridge stiffness on the rate of
contractile force is insignificant.

Catch bond properties: We used the catch bond data
of skeletal muscle cells due to the lack of experimental
data for both non-muscle and smooth muscle cells. Our
choice for the critical force (f.) of 6pN, however, does
not affect the trends of the catch bond behavior. This
choice would only change the maximum load that a
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TABLE I. Parameters for the SF model

Parameter Meaning Value

Ax Width of the energy barrier 3 nm [39]

fo Normalizing force 2.2 pN

FEo Reference energy of catch bond 198719 J

a Bond catchiness 2.4 kT
Ng Number of myosin heads per filament 20 [17]

Ny Number of myosin filament per bundle 10 [55, 56]

l Length of the control segment 1pm [55, 56]
T Absolute temperature 300K

¢ Stall force 5pN [37]

k Actomyosin bond elasticity 600 pN/pum [28, 57]
v Maximum contraction velocity of SF 1 pm/s [29]

SF can carry and would change the SF density at the
cellular level. As the critical force f. reduces, the SF
density in the cell should increase in order to match
experimental data [43].

D. A.4. Effect of acto-myosin bond stiffness on
mechanosensing

The reported data on the acto-myosin bond stiffness
is limited to skeletal muscle cells from different ani-
mals (rabbit and frog). It is furthermore very scattered,;
for instance, measured values for rabbit skeletal muscle
cells range from 130pN/um [63] to 1700 & 700pN/um
[64, 65] while it has been estimated to be between
1000 — 2200pN/pm [66] for frog. Because of this variabil-
ity, we propose here to perform a parametric study to bet-
ter understand the effect of bond stiffness k£ on mechano-
sensitivity and contraction dynamics, as predicted by the
model in the case of a strong catch bond (a* = 1). We
chose three stiffness values & = 10, 100, 2000pN/um
and investigated the SF response under the virtual ex-
perimental setup presented in Fig. 5. In the results re-
ported in Fig. 11, one sees that acto-myosin bond stiff-
ness affects both the SF sensitivity to external stiffness
and the rate of SF activation. Fig. 11a indeed shows that
the contractile force of the SF becomes weaker as k de-
creases, such that when k = 10pN/um, a quasi-inexistent
contraction is observed. This follows from the fact that
highly compliant cross-bridges can only apply little force
even in the case of large contraction strains. Fig. 11b fur-
ther shows that the rate of SF activation a increases with

bond stiffness. However, regardless of bond stiffness, we
observed that the key trends exhibited by the model are
always consistent both at the SF and at the cellular level.
In other words, bond stiffness and SF density can always
be adjusted accordingly to match model predictions and
experimental measurements at the cellular level, without
modifying the trends shown in this paper. This moti-
vated our choice of fixed value k = 600pN/um for our
simulations.

eccccee

k = 10pN/um

k =100pN/um
k = 2000pN/um

10

0.05

Oleasssioeceegesoecpecen. 0

K 1

FIG. 11. Parametric study of acto-myosin bond stiffness
(k = 10,100 and 2000pN/um using the control segment con-
nected to a linear spring. (a) Normalized contractile force
F* = F/C as a function of normalized external stiffness
K* = K/2000. One sees that the stiffness sensing ability
of the SF’s increases with bond stiffness k. (b) Activation pa-
rameter a versus time for K* = 0.5. The rate of crossbridge
activation also increases with bond stiffness k.
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