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The recently introduced concept of dynamic communicability is a valuable tool for ranking the
importance of nodes in a temporal network. Two metrics, broadcast score and receive score, were
introduced to measure the centrality of a node with respect to a model of contagion based on time-
respecting walks. This article examines the temporal and structural factors influencing these metrics
by considering a versatile stochastic temporal network model. We analytically derive formulae to
accurately predict the expectation of the broadcast and receive scores when one or more columns
in a temporal edge-list are shuffled. These methods are then applied to two publicly available data-
sets and we quantify how much the centrality of each individual depends on structural or temporal
influences. From our analysis we highlight two practical contributions: a way to control for temporal
variation when computing dynamic communicability, and the conclusion that the broadcast and
receive scores can, under a range of circumstances, be replaced by the row and column sums of the
matrix exponential of a weighted adjacency matrix given by the data.

PACS numbers: 64.60.aq 89.65.-s

I. INTRODUCTION

Epidemics, viral marketing, cultural diffusion, the dis-
tribution of food in ant colonies, and the flow of infor-
mation within the human brain, are amongst a growing
number of applications of network theory which currently
reside at the forefront of modern science [1–5]. Advances
in technology continue to promote the accumulation of
data, providing an optimistic light in the quest to under-
stand these hugely complex systems. The task then, for
researchers across a range of disciplines, is to find opti-
mal ways to measure, model, analyze, and present the
vast information at their disposal.
Network theory has proved to be an invaluable resource

to exploit data on a large scale. Its great utility comes
partly from the its ability to translate problems into a
language independent of the particular subject of study.
Hence, a “node” can represent entities as diverse as a
human, a protein or a word [6–8]. “Edges” can represent
any sort of interaction between the nodes, and concepts
such as percolation, diffusion, paths and walks can all
serve as models for various processes observed in the real
world.
It is remarkable whenever the methods developed for

the analysis of one subject matter are applied to seem-
ingly unrelated problems. This occurs frequently when
networks are involved. For example, the preferential at-
tachment model can explain the distribution of citations
in scientific literature as well as the distribution of popu-
larity in a social network [9, 10], the PageRank algorithm
was developed to rank websites but can also measure the
risk of cancer in humans [11]. These universalities mo-
tivate us to search for ways to measure networks and
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classify them by their properties; if we have a good de-
scription of the network, then we have potentially de-
scribed a part of the “real world” which we would like
to understand, moreover, we also have the entirety of
past research and all the accompanying tools developed
to help attack the problem.

A. Motivation for “dynamic communicability”

Transmissible disease is possibly the best example to
demonstrate the versatility of network analysis. Ulti-
mately the theoretical considerations of network epidemi-
ology involve nodes, edges and some knowledge of the dis-
ease itself such as the transmission probability, recovery
rate and so on. Transmission could occur from one person
to another, from one location to another (e.g. connected
by air travel), or between species, but in each case the
models employed remain well within the confines of the
network framework [12–14]. This also extends to com-
puter viruses [15], Twitter hashtags and internet memes
[16, 17], and possibly even cultural transmission on an
archeological time-scale [18]. Clearly there is much to
be gained from having a grounded understanding of how
things spread through a network regardless of what that
particular network represents.
The work we present here concerns a scenario where we

are given a database containing a set of distinct individ-
uals, a set of pairwise interactions, and the exact time at
which each interaction happened (see Fig.1a). Addition-
ally it is assumed that some transmissible agent was, or
potentially could have been, spreading through the net-
work. A practical question which often arises is: “which
node is potentially the most significant when it comes to
the spread of a transmissible agent?”.
To find the most influential spreader, given data of
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past interactions, there are several options to consider:
the simplest method would be to find the individual with
the highest node degree (this could be defined as either
number of interactions that person had, or the number
of people with whom they interacted). Alternatively we
could use global network properties such as the between-
ness centrality or closeness centrality of a node, both
of which are defined on temporal networks [19]. The
most extensive approach currently being used is to build
a computational model of the process, adding as many
factors into the model as one sees fit; where uncertainty is
present, random variables can be used; and the centrality
of an individual can be computed by running the model
repeatedly and counting the proportion of simulations in
which they are infected [12, 20].
Dynamic communicability, which was introduced in

[21] and is described in detail here in Section II, offers a
balance between the approach of modeling an epidemic-
like process on a network, and simply measuring the size
and shape of a network. Here we determine the influ-
ence of a node by counting the number of time-respecting
walks that began at the node in question. In essence, we
are using a model which assumes that a transmissible
agent moves from one node to another at the exact time
that an interaction takes place (which is known from the
data) and with a given transmission probability. The fact
that it is a walk (as opposed to a path) means that the
agent can revisit previously infected nodes. Assuming
this, and supposing that the pathogen is administered
at node i, the broadcast score of i tells us how large the
expected outbreak will be. Supposing the pathogen is ad-
ministered to a random unknown node, the receive score
of i tells us how likely that pathogen is to reach i.

B. Separating dependencies

In this paper we interrogate the two dynamic com-
municability metrics: broadcast score and its opposite,
receive score. Through theoretical approaches we will ex-
amine how these centrality measures respond to different
temporal network structures. Further, we derive methods
to deconstruct the dynamic communicability measures
into “time dependent” and “structure dependent” com-
ponents. The formulae we derive achieve the same result
as “shuffling” (randomly permuting) either the structural
or temporal columns of the temporal edge-list respec-
tively. This is an increasingly common technique used to
determine the importance of various relationships within
a database [20, 22–24]. Here we employ this technique to
unpick, from the information available, the factors most
relevant to determining the outcome of a contagion-like
process.
The following section explains in detail the dynamic

communicability metrics. In Section III we describe a
stochastic model which can be tuned to reproduce var-
ious properties of the data. The main results from the
model are a set of “shortcut formulae” for decompos-

ing the dynamic communicability metrics into time de-
pendent and structure dependent elements in an efficient
way. We demonstrate these results on two publicly avail-
able data sets, which are described in Section IV, and the
results are presented in Section V. Section VI summa-
rizes the findings from this work which we consider most
significant.

II. DEFINITIONS OF “BROADCAST SCORE”

AND “RECEIVE SCORE”

Communicability, as introduced in [25], is a measure
of centrality based on the concept of “walking” on a net-
work. A walk is any sequence of nodes in which one entry
may only follow another if there is an edge in the network
which connects them (if the network is directed then con-
secutive entries must follow the direction of the edge).
The extension to temporal networks, in which edges ex-
ist only at specified temporal instances, was introduced
in [21] and further developed in [26] and [27]. When deal-
ing with temporal edges, we consider node sequences in
which consecutive nodes are connected by an edge and,
additionally, the time of that edge is later than (or at the
same time as) its predecessor. These are referred to as
“time-respecting” walks.

Based on this premise it is possible to quantify the
relationship between any two nodes: the “dynamic com-
municability” from node i to node j, denoted Qi,j , is a
measure of the relative likelihood that a random walker
injected into the network at i will eventually pass through

j. If we let θ
(k)
i,j be the number of time-respecting walks

of length k that begin at i and end at j, then

Qi,j =

∞
∑

k=0

αkθ
(k)
i,j . (1)

The value α here is analogous to the probability of trans-
mission (across an edge) in an epidemic spreading pro-
cess. When chosen to be sufficiently small, it ensures
that long walks are discounted heavily while short walks
contribute more to the dynamic communicability met-
ric. Several alternative approaches have been proposed
as ways to down-weight walks based on their length. The
original communicability defined on a static network dis-
counts walks of length k by dividing their number by k!,
whereas when the temporal equivalent was introduced
the exponential discounting shown in Eq.(1) was used.
The measure introduced in [26] combines both. The mea-
sure introduced in [27] extends Eq.(1) by additionally
discounting walks according to their duration in time.

For the first centrality measure, known as the “Broad-
cast score” of a node i, we compute the sum of all the
discounted walks that begin at i (bi =

∑

j∈N Qi,j). Sim-
ilarly, to compute the second centrality measure, known
as the “Receive score” of a node i, we sum all of the
discounted walks that end at i (ci =

∑

j∈N Qj,i).
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(a) The left panel shows the network at each time-step (above) and its corresponding adjacency matrix (below). On the right the same
information is represented as a list of temporal edges. Shown also are the different possible ways to randomize (or shuffle) the columns.

Notice that simultaneously shuffling any two columns yields the completely shuffled edge-list shown in (iv).
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(b) Each marker corresponds to a node in the example network.
Each node is given a rank according to its broadcast score (left)
and receive score (right). These rankings are plotted against the
outgoing and incoming degree ranks respectively. The diagonal
line divides the nodes into those that acheive higher broadcast
(or receive) scores than expected, and those that are lower.
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(c) The expectation values for each shuffling are calculated and
the corresponding rank is plotted (we have chosen only to
consider the target shuffling for broadcast score and source

shuffling for receive score). The actual scores are shown by the
darkness of the markers.

FIG. 1. A simple example of a directed temporal network. This example has been designed to illustrate the core concepts of
this work. In Fig.(1b) it is apparent that the dynamic communicability of a node is not necessarily determined by its overall
activity. Fig.(1c) demonstrates how the dynamic communicability metrics can be broken down into temporal and structural
elements. We apply the same visualization method to two real-world data-sets in Figs. (4) and (5).

III. THE MODEL

We use a simple yet versatile stochastic model to gen-
erate temporal networks. The parameters of the model
can be manipulated to create synthetic data with prop-
erties similar to a wide range of temporal networks in-
cluding those observed in many real interactive systems.
Let there be N nodes. The model proceeds over a se-
ries of discreet time-steps τ ∈ {t0, t0 + 1, ..., tend} by the
following rule:

At time τ , with probability ρi,j(τ), a directed
edge exists from node i to node j.

The adjacency matrix at time τ , Aτ , will have a 1 in
location i, j with probability ρi,j(τ) and be 0 otherwise (it
might often be the case that Aτ will be a matrix of zeros).
The dynamic communicability matrix, as introduced in
[21], over the sample (starting at t0 and ending at tend)

is given in general by

Q = (I − αAt0)
−1(I −αAt0+1)

−1 . . . (I −αAtend )
−1 (2)

where I denotes the identity matrix. But, as suggested
in [28], we do not want to count paths that take multiple
moves in a single time-step, so we will instead look at the
variant definition

Q = (I + αAt0 )(I + αAt0+1)...(I + αAtend ). (3)

Eqns. (2) and (3) are equivalent when A2
τ = 0 for all

τ (as this is the only way (I − αAτ )
−1 = (I + αAτ )

can be true) i.e. provided that no walks of length
2 ever exist within a single time slice. Under these
conditions our analysis also applies to the version of
dynamic communicability defined in [26], where Q =
exp(αAt0) exp(αAt0+1)... exp(αAtend ), since exp(αA) =
(I + αA) when A2 = 0.
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The time-dependent matrix

P (τ) =











ρ1,1(τ) ρ1,2(τ) · · · ρ1,N(τ)
ρ2,1(τ) ρ2,2(τ) · · · ρ2,N(τ)

...
...

. . .
...

ρN,1(τ) ρN,2(τ) · · · ρN,N(τ)











, (4)

to a large extent, describes the entire structure of the
network and its evolution over time. Our approach to ex-
ploring dynamic communicability of networks generated
by this model involves considering the various forms that
P can take; then examining the expectation of Q as we it-
eratively increase the number of terms on the right hand
side of Eq.(3). The following analysis requires that the
values contained in P are small enough that the probabil-
ity of generating a matrix containing a path of length 2
or more is negligible. The model is therefore more appli-
cable to temporally highly resolved data-sets as opposed
to those in which a relatively small number of temporal
instances are recorded.

A. Receive score

If we think about constructing Q iteratively i.e. start-
ing at time t0 with Q0 = (I+αAt0), then multiplying on
the right by (I + αAt0+1), then again by the next term,
then the next etc., then

Qt = Qt−1 × (I + αAt0+t), (5)

where t indexes the number of times the iteration has
been performed. After t = tend − t0 iterations we have
the desired Qt = Q. The effect of one iteration can be
seen on a 3× 3 example:





q1,1 q1,2 q1,3
q2,1 q2,2 q2,3
q3,1 q3,2 q3,3









1 0 0
0 1 α

0 0 1



 =





q1,1 q1,2 q1,3 + αq1,2
q2,1 q2,2 q2,3 + αq2,2
q3,1 q3,2 q3,3 + αq3,2



 . (6)

In general, provided A2
τ = 0 for all t0 < τ ≤ tend, if the

i, jth entry of Aτ is 1 then the ith column is multiplied by
α and added to the jth column. Since the receive score
after t iterations is equal to the (row) vector of column
sums of Qt,

c(t) = (c1(t), c2(t), ..., cN (t)), (7)

we can describe its evolution as t increases as follows: at
each iteration choose i and j with probability ρi,j(t0 + t)
and update by setting

c(t+ 1) = (c1(t), c2(t), ..., cj(t) + αci(t), ..., cN (t)). (8)

In matrix notation this is

c(t+ 1) = c(t)(I + αAt0+t). (9)

B. Expectation of receive score

The receive score is dependent on t. To examine this
dependence, we focus on the expectation of ci(t), de-
noted ĉi(t), which is computed by taking the mean over
many networks generated by the described model for
some given P . For analytical considerations we assume
that all of the ci(t) are well approximated by their mean.
A similar approach is found in [29]. The growth of ĉi(t)
is then described by

ĉi(t+ 1) = ĉi(t) + α

N
∑

j=1

ρj,i(t0 + t)ĉj(t). (10)

The right hand side here equation sums over all possi-
ble changes that can happen to cj and their associated
probabilities. This is equivalent to replacing At0+t in
Eq.(9) with the expectation of At0+t, which happens to
be P (t0 + t). We have

ĉ(t+ 1) = ĉ(t)[I + αP (t0 + t)]. (11)

For large time-scales, we can say that ĉj(t+ 1)− ĉj(t) ≈
∂ĉj/∂t, giving

∂ĉ(t)

∂t
= αĉ(t)P (t0 + t). (12)

An almost identical derivation can be performed to find a
similar expression for b̂. In this case, instead of starting
the iterative process at t0 and multiplying on the right, as
in Eq.(5), we start at time tend with Q0 = (I + αAtend )
and iterate by multiplying on the left, i.e Qt = (I +
αAtend−t)×Qt−1. Following similar steps we arrive at

∂b̂(t)

∂t
= αP (tend − t)b̂(t) (13)

where b̂(t) is a column vector of the expectation of the
broadcast scores. Our theoretical results stem from these
two equations, solutions can be found for various forms
of P (τ), here we mention a few simple cases.

C. Time-independent P matrix

When P is a constant matrix, the (well known) general
solution to Eq.(12) is

ĉ(t) = ĉ(t0)e
αPt (14)

where

eαPt =

∞
∑

k=0

1

k!
(αPt)k. (15)
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1. Equivalence to shuffling the time column

Consider a temporal edge-list where the “time” column
has been shuffled as shown in part (iii) of Fig.(1a). The
overall number of interaction events between each pair
of nodes is unchanged, however each of these events now
occurs at some random point in time. The time-series of
interaction events from node i to node j can be modeled
by a Bernoulli process, i.e. at each discreet time-step
there is a fixed probability that an edge from i to j will
exist. If we have a sufficiently large amount of data then
the matrix of these time-independent probabilities, which
happens to be P , can be approximated easily as we show
in this section. The above result can then be used to
predict the dynamic communicability metrics of the time-
shuffled edge-list.
We can infer P from the data by constructing a

weighted adjacency matrix W where Wi,j is the total
number of times each edge appears in the temporal edge-
list. To infer a time-independent probability ρi,j that an
edge exists at time τ (for any t0 ≤ τ < tend) we normalize
by the number of time steps in the sample:

ρi,j =
Wi,j

tend − t0
. (16)

Since t0 − 1 lies outside the time for which data is sam-
pled, At0−1 is a zero matrix, giving ĉ(t0−1) = 1 where 1
is a row vector of length N and all entries are 1. Substi-
tuting the P matrix associated with Eq.(16) into Eq.(14),

and into the equivalent result for b̂, we arrive at the con-
cise formulae for computing the expectation of the broad-
cast and receive scores of a time-shuffled network,

b̂ = eαW1 (17)

and

ĉ = 1
T eαW (18)

respectively. A very fast open-source algorithm for solv-
ing the matrix exponential for large matrices has recently
been developed [30]. Applying this method gives a pre-
diction for the outcome of averaging a large number of
shuffled temporal edge-lists where the “time” column has
been shuffled. The comparison between the prediction
and the actual shuffled data is shown in Fig.(2).

2. Heterogenous “send” and “receive” model

Consider a temporal edge list for which all three
columns have been shuffled as in part (iv) of Fig.(1a).
While much of the relational information will be lost, the
number of times each node is found in the “source” col-
umn will be unchanged and therefore the outgoing degree
of each node is retained, similarly the incoming degree
is unchanged by the shuffling of the “Target” column.
This process bears much resemblance to the configura-
tion model of [31] in which each node has a given degree

but the pairwise connections are randomized. Related
models, which replace the exact degree sequence with
a sequence of fitness variables (giving the propensity of
each node to attract edges), have been studied [32]; this
happens to be a case where Eqs.(17) and (18) can be
solved analytically.
Let si be the probability that node i has an outgoing

edge in any given time-step (we have chosen the letter s as
this represents the ‘sending’ of information), and let ri be
the probability that i has an incoming edge in any given
time-step (r to represent the ‘receiving’ of information).
With the vector notation, s = [s1, s2, . . . , sN ]T and r =
[r1, r2, . . . , rN ]T , we have

P = sr
T . (19)

We add the condition that
∑

i si =
∑

i ri = 1 then the
expected number of edges per time-step is 1 (meaning
that when comparing to data we can treat t as the to-
tal number of interactions). Under these conditions the
solution to Eq.(12) (see Appendix VIIA) is

ĉ(t) = 1+
eα[r

T
s]t − 1

rT s
r
T . (20)

Two main conclusions come from this result: firstly, the
receive score of a node is proportional to its propensity
to attract incoming edges (for broadcast score it is the
outgoing edges, see Appendix VII A). Second, as the
sample size t increases the score increases exponentially.

D. Time-dependent P matrix

A general solution to Eq.(12) for any P (τ) does not
exist, we instead incorporate a limited amount of tempo-
ral information by expanding the “send” and “receive”
model of the previous section. Suppose we have the
model from Section III C 2 with the modification that
the “receive” vector r is now a function of time, say r(τ),
then Eq.(12) reduces to

∂ĉ(t)

∂t
= αr(t0 + t)eαs

T
∫

t

0
r(t0+t′)dt′ (21)

(see Appendix VIIB). Eq.(21) allows us to examine spe-
cial cases where the order in which messages are sent
affects the receive score of each node.

1. Simple time-dependent example

Before we derive a result applicable to real-world data,
we introduce a simple example to provide some intuition
for the time-dependence. We consider the case where
each node is active only once during the duration of the
sample. Suppose node i receives ri edges at time τi. We
can write the corresponding r vector using the Dirac δ:

ri(τ) = riδ(τ − τi). (22)
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The justification for this choice of r(τ) is that the ex-
pected number of messages received by i over some in-
terval will be ri if the time interval includes τi. For conve-
nience we suppose, without loss of generality, that τi = i
for all i ∈ 1, 2, ..., N . In Appendix VIIC Eq.(20) is solved
with this form of r(τ) to get

ĉi(N) = 1 + αri exp



α

i
∑

j=0

rjsj



 . (23)

This result shows that nodes which interact later in the
sample will have, on average, exponentially higher re-
ceive scores. In a similar way, it can be shown that a
node which acts earlier in the sample has an exponen-
tially higher broadcast score.

2. Incorporating empirical data

Suppose that for each node i we know the time of every
received edge but do not know where the edge originated
from (this corresponds to the source shuffled network).
We can achieve this by choosing

ri(τ) =
∑

k∈Ki

δ(τ − τ
(k)
i ) (24)

where Ki is the set of edges for which i is the target

and τ
(k)
i is the time at which edge k was present. More

important, however, is the function Ri(τ) which we define
as the number of messages that have been received by i
between t0 and τ , and can be expressed as

Ri(τ) =

∫ τ

t0

ri(t
′)dt′. (25)

To achieve the correct normalization (for the expectation
of the total number of edges to agree with the data) we
choose si to be the probability that any given edge is sent
from i, this is inferred using

si =

∑

j Wi,j
∑

i,j Wi,j

. (26)

The solution to Eq.(12), which we derive in Appendix
VIID, is

ĉi = 1 + α
∑

k∈Ki

exp



α
∑

j∈N

sjRj(τ
(k)
i )



 . (27)

This formula predicts the average of the receive score
over many networks generated by shuffling the Source
column in the original data. The analytical prediction
and average shuffling results are shown in Fig.(2). In
our data analysis we also use an equivalent formula to
predict the outcome of shuffling the target column and

2 3 4
Time-shuffled

2

3

4

A
n
a
ly

ti
ca

l 
p
re

d
ic

ti
o
n

2 3 4
Source-shuffled

FIG. 2. A demonstration of the accuracy of the derived for-
mulae using a sample of 23 nodes from the Enron data-set
(all of which have at least one outgoing edge within the sam-
ple) and a total of 312 emails. Each marker represents an
employee. In both plots the x-axis shows the receive score
computed by shuffling one column of the edge-list, as shown
in Fig.(1a), and averaged over 100 shuffles. In the left hand
plot the time column was subjected to shuffling and y-axis
shows the receive score as predicted by Eq.(18), in the right
the target column was subjected to shuffling and y-axis shows
the receive score as predicted by Eq.(27). α = 0.02.

calculating the broadcast score. The derivation is similar
to that of Eq.(27). We get

b̂i = 1 + α
∑

k∈Ki

exp



α
∑

j∈N

rjSj(τ
(k)
i )



 (28)

where Sj(τ) is the number of messages that have been re-
ceived by i between τ and tend, rj is the time-independent
probability that j receives a message in any given time-
step.

IV. DATA

A. Enron

We downloaded the entire Enron email corpus that was
made publicly available during an investigation by the
Federal Energy Regulatory Commission into the events
leading to its bankruptcy [33]. The data contains the
mailing history of 150 Enron employees between 1999 and
2003. A folder exists for each of the named employees,
each of which contain a number sub-folders, and each
subfolder contains a number of text files; the text files
contain the emails themselves and some meta-data. The
naming of the folders is not consistent across employees;
most sent emails belong to a folder labelled “sent”, “sent
email”, or something similar but there are also many ex-
ceptions. A consistent format was found across all the
text files with the time-stamp located on the first line,
the “From” field appearing on the second, and the “To”
field starting on the third line and often extending over
several lines where emails have been sent to multiple re-
cipients.
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We crawled every text file within sub-folders named
“sent”, “sent items” and “ sent mail’, reading the spe-
cific lines which correspond to the “From” field, the
“To” field and the time-stamp. Within the “From” and
“To” lines we found all substrings which resemble a dis-
tinct email address i.e. bound on either side by blank
spaces and contain the “@” symbol. From these data we
constructed a temporal edge list of the form shown in
Fig.(1a) where the node IDs are email addresses. Multi-
ple edges were created for emails with multiple recipients.
In several cases the email addresses found in the “From”
field, across the emails of an individual employee, would
not always be identical. Usually this was because of the
use of email aliases although on a small number of occa-
sions this was clearly not the case. At our own discretion,
we replaced the node ID of all aliases relating to an em-
ployee with a single node ID.
Many of the emails were sent to addresses outside of

the corporation, these were removed from our data. We
also found that some employees in the data-set had very
little or no activity; we therefore reduced the sample to
only those who have both sent, and received, at least one
email to other users within the sample. After trimming,
the network has 141 nodes and a total of 21, 303 temporal
edges.
We also incorporated information regarding the roles

of each employee according to enron.org [34]. The fol-
lowing abbreviations have been used for the legend in
Fig.(7b): EMP=employee, TRA=trader, LAW=lawyer,
MAN=manager, DIR=director, VP=vice president,
MD=managing director, PRE=president, CEO=chief
executive, ???=unknown.
The sample of emails we have chosen to use is by no

means complete, however, it is our belief that the meth-
ods used to sample this data avoid introducing any biases
which would compromise the results we present.

B. Sociopatterns hospital ward

We downloaded the Hospital ward dynamic contact
network from the Sociopatterns website (refer to [35] for
details). The data was collected using proximity sensors
attached to each participant. In the original data, ev-
ery instance (instances are recorded every 20 seconds) in
which two participants are “interacting” (i.e. within a
given proximity of each other) is presented in a temporal
edge list of the form shown in Fig.(1a). Consequently, in-
teractions which occur for a prolonged duration appear in
the data multiple times so we performed the following re-
duction: where the same pair of participants were found
to be interacting on multiple consecutive time-steps, all
but one of the corresponding rows in the edge list were re-
moved, leaving only the first of such instances. For each
remaining row we create two edges in the processed tem-
poral edge-list, one in each direction between the pair of
participants interacting, both edges have the same time-
stamp. Our analysis therefore considers transmission to

occur at the first moment an interaction begins and does
not depend on its duration. After processing, the net-
work has 75 nodes and a total of 28, 076 temporal edges.

C. Algorithms

Much of the related literature formulates the problem
of computing a dynamic communicability matrix using a
series of linear algebra operations [21]. This approach
utilizes the adjacency matrix for the network at each
time step (see Fig.(1a)) and assumes that within each
time-slice the hypothetical random walker can traverse
edges instantaneously, i.e. without requiring that time
move forward for them to perform the movement. Con-
sequently, if there is any cycle within a single time-slice
(including for example an edge from i to j and another
from j to i) then there will be paths of infinite length,
meaning that α must be restricted to a particular range
of values to guarantee convergence [36].
In this work we remove the assumption that a walk

can traverse more than one edge per time slice (as sug-
gested in [28]). Moreover, we suggest the following recur-
sive approach to computing the dynamic communicabil-
ity metrics which avoids the need to perform any matrix
operations.
Suppose we have a network G with each temporal edge

denoted by a triple (i, j, t) where i is the source node, j
is the target node and t is the time. Rewriting Eq.(9)
with this notation we have

ci(τ + 1) = ci(τ) + α
∑

(i,j,t)∈G

cj(t) (29)

with ci(t0 − 1) = 1. Then the receive score for node i
computed between time t0 and tend is given by

ci = ci(tend). (30)

Similarly, for the broadcast score we have

bi(τ − 1) = bi(τ) + α
∑

(i,j,t)∈G

bj(t) (31)

with bi(tend +1) = 1. Then the broadcast score for node
i computed between time t0 and tend is given by

bi = bi(t0). (32)

If we were to first compute the vector ci(t0) for all the
nodes i, then commit these values to memory, then com-
pute ci(tend + 1) for all i, and continue in this fashion,
then the addition operations we perform are precisely
the same as those performed in the established matrix
multiplication method [28]. The advantage of this imple-
mentation, however, is that the score for a single node
can be computed lazily, that is, without wasting unnec-
essary time. (It is important, when using this method,
to use memoization to avoid repeating a large number
of calls to the functions ci and bi). Computationally we
can be certain that these algorithms are at least as fast
as the current alternatives.
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FIG. 3. Each marker (short horizontal line) represents an Enron employee or participant in the Sociopatterns experiment. The
broadcast score, computed by Eq.(32), is displayed on the y-axis in (3a) and similarly the receive score in (3b) from Eq.(30)
with α = 0.01 and α = 0.005 respectively. In both the employees (or participants) are divided into distinct categories shown
along the x-axis. Abbreviations are given in Section IV.

V. RESULTS

A. Modeling

In Section III we derived formulae which predict the
outcome of calculating the broadcast score for a large
number of shuffled temporal edge-lists. The amount of
error in these predictions is illustrated in Fig.(2) where
we see that Eq.(18) gives accurate results regarding tem-
poral edge lists with the time-column shuffled. The corre-
sponding result, Eq.(27), appears to be less reliable how-
ever, owing to the computational cost of calculating the
receive score multiple times, we chose only to test a very
small sample. This contradicts the assumptions of the
analytical model; particularly the assumption made in
Section III B that the score ci(t) in an individual genera-
tion of the probabilistic model is well approximated by its
mean, at time t, over many generations. It is likely that
in a small data-set that there is a high variance in the
distribution of receive scores and we expect the predic-
tion to improve as the number of interactions increases.
The creation of these “shortcut” formulae allowed us to
perform data analysis on two large scale temporal edge-
lists which would have otherwise taken an inconvenient
amount of computation.

B. Data analysis

Using the method described in Section II we calculated
the broadcast score for the Enron email corpus and the
receive score for the Sociopatterns hospital ward exper-
iment. We have chosen values of α that produce visu-
ally interesting figures; when too small the calculation of
broadcast and receive scores are dominated by the con-

tribution from walks of length 1 and therefore become
equivalent to the out-degree and in-degree respectively.
Conversely, when α is too large, long walks dominate the
scores and the edges with early timestamps determine the
outcome. To anyone considering using these methods we
recommend that a range of α values be tested, each one
potentially exposing different information about the be-
havior of the system. For an in-depth analysis of α and
its interpretation see [37].
The results are presented first in Fig.(3). In Fig.(4) we

compare the result of each individual with their overall
activity. We note two observations from Fig.(4): one En-
ron employee (a director) stands out as having an unusu-
ally high broadcast score when compared to a low amount
of overall activity (broadcast rank 50, degree rank 125),
and that patients in the hospital ward tend to have large
receive scores considering their overall activity.
Fig.(5) shows the expected results of performing var-

ious shufflings, we can think of the y-axis in these plots
as a measure of how much the score of each individual
depends on temporal properties, and the x-axis for struc-
tural properties. We see that the outlier from the Enron
data-set is, remarkably, unremarkable regarding both of
these measures and neither alone can explain their high
broadcast score (time-shuffled rank 86 and target-shuffled
rank 104, both lower than the actual broadcast rank of
50). However, the fact that both shuffled ranks are higher
than the degree rank suggests that the individual in ques-
tion is sending emails very economically, i.e. sending to
the most efficient recipients, and choosing the optimal
moments in time to send. From this example it appears
that the contributions from both factors add to the over-
all broadcast score.
An alternative interpretation is that the individual in

question was feeding information into the network which
was consequently being disseminated in a way that in-
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FIG. 4. The rank according to broadcast score (left, computed by Eq.(32)) and receive score (right, computed by Eq.(30)), with
α = 0.01 and α = 0.005 respectively, plotted against the out-degree (left) and in-degree (right). Each individual in the network
is represented by a data point, their classification is given by their shape. The abbreviations in the legend are explained in
Section IV. The one-to-one line is plotted as a visual aid to partition the nodes into two groups; those which have higher than
expected scores (top left), and those who have lower than expected (bottom right).

flates their broadcast score (although similar results are
not found for the CEOs who we would expect to be in-
fluential in the same way). The individual in question
was a lobbyist for the corporation, after a very brief in-
vestigation we did not determine a particular reason why
they should be significantly influential.
From Fig.(5b) it is apparent that shuffling the time

column can cause large changes to the receive rank of
a participant whereas the source-shuffling appears to be
less effective. This is because the temporal activity of
the participants deviates significantly from a Bernoulli
process (that is assumed in the time-independent model).
More specifically, nodes exist which are inactive towards
the beginning of the sampling period but have a lot of
activity at later time-steps. The receive score of these
nodes is amplified by the exponential increase over time
that is indicated by the very simple example in Section
IIID 1. Those which are active early on in the sampling
period but have little or no activity at later times will
have lower receive scores. When such effects dominate
the outcome the effect of time-shuffling is significant.
While we do not discuss here the broadcast scores for

the Hospital data, or the receive scores for the Enron
email data, the results can be seen in Fig.(6), Fig.(7)
and Fig.(8).

VI. DISCUSSION

As data-driven industries increasingly find value in tar-
geting the most central, most influential, individuals, it
is important to scrutinize the methods and tools that
network science is promoting. The idea that there is one

magic formula which can produce a meaningful result re-
gardless of the system in question is firstly, wrong, and
secondly, a counter-productive way of thinking. Here we
have scrutinized the dynamic communicability metrics
and found that temporal variation can have a stronger ef-
fect in some systems, like the hospital ward, than in oth-
ers, like Enron. We have found efficient shortcut formu-
lae to quantify the temporal component by randomizing
the structural factors and likewise quantify the structural
component by randomizing the temporal factors. Those
who have data and wish to analyze dynamic communica-
bility should use these methods to add more dimensions,
and more depth, to their analysis.

When we look at the simple example of Fig.(1a), we
can compute the broadcast scores and find that node A
is ranked number one. We can then ask why A is the
most influential broadcaster and find that it is not be-
cause it was the most active (C was in fact the most
active), but because of a complex interplay of temporal
and structural factors; A was the first to communicate,
and importantly, one of those early edges was received
by C who was subsequently the most active node. Look-
ing at large data-sets it is tedious to try to deconstruct
every sequence of contacts that caused each individual to
achieve its score. Instead, we have introduced meaningful
statistics, i.e. the results of shuffling, that provide insight
into the interplay of temporal and structural factors.

Several specific phenomena are commonly found in so-
cial systems whose effects are nullified by the shuffling
process. The structure (or topology) of complex networks
has been extensively studied and many elements have re-
peatedly been found across different systems [38]. De-
gree heterogeneity is one such topological feature which
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FIG. 5. As demonstrated in Fig.(1c). On the y-axis we show the ranking of each node according to expectation of the broadcast
score (left, computed using Eq.(28)) and receive score (right, computed with Eq.(27)) for the expected outcomes of the source
(left) and target (right) shuffled networks (with α = 0.01 and α = 0.005 respectively). The x-axes show the expected scores
for a time-shuffled network computed with Eqs.(17) and (18). The actual broadcast score computed with Eqs. (32) and (30) is
shown by the darkness of the markers. Different roles are indicated by the marker shapes, the abbreviations are explained in
Section IV. These results are also presented in a table in Appendix VIII.

is not nullified by shuffling. On the other hand, features
like community structure, assortativity and clustering are
likely to play a significant role in determining the com-
municability in most applications of this work [39–41].
Similarly, the non-shuffled data is likely to exhibit cer-
tain temporal features. Recent studies of communication
data, similar to the Enron data-set, show that activity
generally occurs in bursts [42]. Others focus on the ef-
fect of circadian cycles which are likely to occur in the
hospital ward data [43].

Clustering and burstiness both increase the number of
walks which revisit nodes. For most contagion processes
these walks would not be permissible since, for exam-
ple, many diseases can only be contracted once, similarly
a piece of information can only be attained once (this
is possibly the reason why bursty networks have been
shown to slow the spread of information compared to
their temporally shuffled equivalent [24]). This remains
a fundamental problem of the dynamic communicability
metric which should not be overlooked.

Another issue that ought to be considered when using
the dynamic communicability metrics is the effect of a
bounded sampling window. Take for example the simple
example of Fig.(1a). Here A has the highest broadcast
score because it is the first node to create outgoing edges.
Had we observed the system just one time-step earlier we
might have found one or more edges from C to A, thus
making C the highest ranked broadcaster above A. This
is a general issue; our analytical results tell us that the
earlier interactions contribute exponentially more than
those which occur later; therefore the first node involved
in the first recorded interaction will, by chance, receive

an unduly high broadcast score. In the case of the receive
score, interactions that occur late in the sample inflate
the score of the involved nodes. The advancement of dy-
namic communicability presented in [28], that assumes
infectiousness decays in the time between interactions,
may mitigate these problems to some extent. We con-
clude this paper by suggesting two possible alternative
solutions:

A. Control for temporal variation

Eq.(27) gives the expectation of the receive score based
on temporal variation. It can therefore be considered as a
control to compare to the actual score. Further, we sug-
gest that a normalized version of the receive score would
be a more appropriate measure to compare individuals
in the same network. The normalized version is the ra-
tio of the actual score, computed using Eq.(30), and its
expectation, computed using Eq.(27).

B. Remove temporal variation

Alternatively, we ignore temporal variation altogether;
in many circumstances this is sensible since the temporal
variation over the duration of the sample is not usually
expected to be the same in the future (unless perhaps
it is driven by a cyclic process). Without knowledge of
when each future interaction will occur, the Bernoulli
process used in the time-independent model is a suitable
choice. In such a case, the past data provides an esti-
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mate of how active each node will be, but the timing
of their interactions remains random. The matrix expo-
nential in Eqs.(17) and (18), can be computed very effi-
ciently to give these approximations to the receive score
and broadcast score. Incidentally, the matrix exponen-
tial has previously been proposed as a centrality measure
[25, 44].
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FIG. 6. Each marker (short horizontal line) represents an Enron employee or participant in the Sociopatterns experiment. The
broadcast score, computed by Eq.(32), is displayed on the y-axis in (6a) and similarly the receive score in (6b) from Eq.(30)
with α = 0.005 and α = 0.01 respectively. In both the employees (or participants) are divided into distinct categories shown
along the x-axis. Abbreviations are given in Section IV.

VII. MODELING

A. Heterogeneous “send” and “receive” model

The Model:

In any given time-step, the probability that
i has an out going edge is si, the probability
that it has an incoming edge is ri.

Making no further assumptions about who communicates
with whom, letting r and s both be column vectors we
have the general stochastic model with

P = sr
T =











s1r1 s1r2 · · · s1rN
s2r1 s2r2 · · · s2rN
...

...
. . .

...
sNr1 sNr2 · · · sNrN











. (33)

There are at least two ways to find the expectation of
broadcast and receive scores for this model. It is possible
to write down an expression for the P k which can then
be substituted into Eq.(15). An alternative method is to
solve Eq.(12) directly. First we express Eq.(12) in terms
of our new variables:

∂ĉ(t)

∂t
= αĉ(t)srT . (34)

Multiplying both sides on the right by s gives

∂ĉ(t)s

∂t
= αĉ(t)srT s. (35)

which is a differential equation describing the time-
evolution of ĉ(t)s, a scalar variable. This has the solution

ĉ(t)s = eα[r
T
s]t. (36)

Substituting the result back into Eq.(34) we get

∂ĉ(t)

∂t
= αrT eα[r

T
s]t. (37)

Which has the solution

ĉ(t) = 1+

(

eα[r
T
s]t − 1

rT s

)

r
T . (38)

In a similar way one can show that the expectation of
the broadcast score is

b̂(t) = 1
T +

(

eα[r
T
s]t − 1

rT s

)

s. (39)

B. Time-dependent P matrix

The Model:

At time τ , the probability that i has an out
going edge is si, the probability that it has
an incoming edge is ri(τ)

Eq.(12) now becomes

∂ĉ(t)

∂t
= αĉ(t)sr(t0 + t)T . (40)

Multiplying both sides on the right by s we get

∂ĉ(t)

∂t
s = αĉ(t)sr(t0 + t)T s

∂ĉ(t)s

∂t
= α[ĉ(t)s][r(t0 + t)T s].

(41)
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This equation now only includes scalar functions of t so
we can solve to get

ĉ(t)s = 1s exp

(

α

∫ t

0

sr(t0 + t′)T dt′
)

. (42)

Substituting this back into Eq.(40) we have

∂ĉ(t)

∂t
= αr(t0 + t)T exp

(

α

∫ t

0

sr(t0 + t′)Tdt′
)

(43)

Since 1s = 1.

C. Simple time-dependent example

The model:

At time τi person i is on the receiving end of
ri edges. As before, the number of outgoing
edges is determined by a time-independent
probability si.

Clearly, after N iterations the process will end so we use
t0 = 0 and tend = N as the initial and final conditions
respectively. To find the broadcast score of a node i we
solve Eq.(43) with

ri(τ) = riδ(τ − τi) (44)

where ri is a scalar and δ is the Dirac delta. The jus-
tification for this version of ri(τ) is that the expected
number of messages sent by i over some time-interval
will be ri if the time interval includes τi. Without loss of
generality we can say τi = i meaning that node 1 sends
first, then node 2 and so on. First we focus on expressing

s
∫ t

0
r(t0 + t′)T dt′ in a simpler form. Since

∫ t

0

rjδ(t
′ − j)dt′ =

{

rj if j ≤ t

0 if j ≥ t
(45)

(This result derives from the fact that the integral of
the Dirac delta between −∞ and t is the Heaviside step
function H(t).) we have

s

∫ t

0

r(t0 + t′)Tdt′ =

N
∑

j=0

sj

∫ t

0

rjδ(t
′ − j)dt′

=
t
∑

j=0

rjsj .

(46)

Substituting this into Eq.(43) then integrating over the
whole sample gives

[ĉi(t
′)]

N

0 =

∫ N

0

αriδ(t
′ − i) exp



α

i
∑

j=0

rjsj



 dt′. (47)

The integral is solved by the translation property of the
Dirac delta and we have

ĉi(N) = 1 + αri exp



α

i
∑

j=0

rjsj



 . (48)

D. Incorporating empirical data

The model:

Let Ki be the set of edges for which i is the
target node, and τ (k) be the time at which
edge k was present. As before, si is the time-
independent probability for i to be the source
an edge.

We achieve this by choosing

ri(t) =
∑

k∈Ki

δ(t− τ
(k)
i ). (49)

We can choose the set Ki and the corresponding τ (k)

in a way that recreates exactly what is observed in the
target and time columns of an empirical temporal edge-
list. We introduce Ri(τ), the number of messages sent
by i between time t0 and time τ , this is expressed

Ri(τ) =

∫ τ

t0

ri(t
′)dt′, (50)

giving

Ri(t0 + t) =

∫ t

0

ri(t0 + t′)dt′, (51)

and therefore Eq.(43) can be expressed

∂ĉ(t)

∂t
= αr(t0 + t)T eα

∑

N
j=1

sjRj(t0+t). (52)

Integrating over the entire duration of the sample gives

[ĉi(t
′)]

tend−t0
0

= α

∫ tend−t0

0

[

∑

k∈Ki

δ(t0 + t′ − τ (k))

]

exp



α

N
∑

j=1

sjRj(t0 + t′)



 dt′

= α
∑

k∈Ki

∫

∞

−∞

δ[t0 + t′ − τ (k)] exp



α

N
∑

j=1

sjRj(t0 + t′)



 dt′.

(53)

Finally, using the translation property of the Dirac delta
function we have

ĉi = 1 + α
∑

k∈Ki

exp



α
∑

j∈N

sjRj(τ
(k)
i )



 . (54)
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FIG. 7. The rank according to broadcast score (left, computed by Eq.(32)) and receive score (right, computed by Eq.(30)), with
α = 0.005 and α = 0.01 respectively, plotted against the out-degree (left) and in-degree (right). Each individual in the network
is represented by a data point, their classification is given by their shape. The abbreviations in the legend are explained in
Section IV. The one-to-one line is plotted as a visual aid to partition the nodes into two groups; those which have higher than
expected scores (top left), and those who have lower than expected (bottom right).
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FIG. 8. As demonstrated in Fig.(1c). On the y-axis we show the ranking of each node according to expectation of the broadcast
score (left, computed using Eq.(28)) and receive score (right, computed with Eq.(27)) for the expected outcomes of the source
(left) and target (right) shuffled networks (with α = 0.005 and α = 0.01 respectively). The x-axes show the expected scores
for a time-shuffled network computed with Eqs.(17) and (18). The actual broadcast score computed with Eqs. (32) and (30) is
shown by the darkness of the markers. Different roles are indicated by the marker shapes, the abbreviations are explained in
Section IV.
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VIII. RANKINGS

A. Sociopatterns hospital ward receive-rank

Rank None Time-shuffled Source-shuffled Time and Source
1 1115 (NUR) 1115 (NUR) 1115 (NUR) 1115 (NUR)
2 1210 (NUR) 1210 (NUR) 1210 (NUR) 1210 (NUR)
3 1190 (NUR) 1207 (NUR) 1295 (NUR) 1295 (NUR)
4 1295 (NUR) 1295 (NUR) 1157 (MED) 1207 (NUR)
5 1109 (NUR) 1109 (NUR) 1190 (NUR) 1157 (MED)
6 1629 (NUR) 1164 (NUR) 1629 (NUR) 1164 (NUR)
7 1149 (NUR) 1193 (NUR) 1149 (NUR) 1193 (NUR)
8 1157 (MED) 1157 (MED) 1109 (NUR) 1144 (MED)
9 1205 (NUR) 1658 (ADM) 1205 (NUR) 1109 (NUR)
10 1658 (ADM) 1190 (NUR) 1098 (ADM) 1149 (NUR)
11 1193 (NUR) 1098 (ADM) 1144 (MED) 1221 (MED)
12 1196 (NUR) 1144 (MED) 1193 (NUR) 1098 (ADM)
13 1098 (ADM) 1114 (NUR) 1196 (NUR) 1159 (MED)
14 1144 (MED) 1149 (NUR) 1181 (NUR) 1196 (NUR)
15 1181 (NUR) 1181 (NUR) 1221 (MED) 1181 (NUR)
16 1625 (NUR) 1221 (MED) 1658 (ADM) 1190 (NUR)
17 1164 (NUR) 1159 (MED) 1164 (NUR) 1260 (MED)
18 1221 (MED) 1625 (NUR) 1130 (MED) 1658 (ADM)
19 1130 (MED) 1365 (PAT) 1625 (NUR) 1205 (NUR)
20 1365 (PAT) 1196 (NUR) 1260 (MED) 1114 (NUR)
21 1383 (PAT) 1205 (NUR) 1159 (MED) 1191 (MED)
22 1114 (NUR) 1245 (NUR) 1114 (NUR) 1625 (NUR)
23 1260 (MED) 1260 (MED) 1365 (PAT) 1148 (MED)
24 1547 (PAT) 1191 (MED) 1207 (NUR) 1365 (PAT)
25 1159 (MED) 1378 (PAT) 1148 (MED) 1245 (NUR)
26 1702 (PAT) 1629 (NUR) 1660 (MED) 1130 (MED)
27 1207 (NUR) 1148 (MED) 1383 (PAT) 1202 (NUR)
28 1378 (PAT) 1179 (ADM) 1671 (ADM) 1179 (ADM)
29 1660 (MED) 1130 (MED) 1378 (PAT) 1629 (NUR)
30 1671 (ADM) 1383 (PAT) 1202 (NUR) 1378 (PAT)
31 1148 (MED) 1352 (PAT) 1352 (PAT) 1352 (PAT)
32 1401 (PAT) 1202 (NUR) 1702 (PAT) 1383 (PAT)
33 1352 (PAT) 1391 (PAT) 1401 (PAT) 1391 (PAT)
34 1307 (PAT) 1702 (PAT) 1142 (NUR) 1105 (NUR)
35 1362 (PAT) 1362 (PAT) 1547 (PAT) 1108 (NUR)
36 1391 (PAT) 1307 (PAT) 1391 (PAT) 1362 (PAT)
37 1232 (ADM) 1374 (PAT) 1485 (NUR) 1142 (NUR)
38 1469 (PAT) 1393 (PAT) 1307 (PAT) 1660 (MED)
39 1202 (NUR) 1105 (NUR) 1469 (PAT) 1485 (NUR)
40 1142 (NUR) 1401 (PAT) 1232 (ADM) 1307 (PAT)
41 1245 (NUR) 1363 (PAT) 1362 (PAT) 1702 (PAT)
42 1179 (ADM) 1660 (MED) 1245 (NUR) 1401 (PAT)
43 1108 (NUR) 1395 (PAT) 1179 (ADM) 1168 (MED)
44 1701 (PAT) 1142 (NUR) 1108 (NUR) 1100 (NUR)
45 1460 (PAT) 1168 (MED) 1460 (PAT) 1393 (PAT)
46 1168 (MED) 1108 (NUR) 1261 (NUR) 1374 (PAT)
47 1784 (PAT) 1547 (PAT) 1613 (NUR) 1613 (NUR)
48 1261 (NUR) 1320 (PAT) 1701 (PAT) 1363 (PAT)
49 1152 (MED) 1100 (NUR) 1168 (MED) 1395 (PAT)
50 1209 (ADM) 1671 (ADM) 1191 (MED) 1246 (NUR)
51 1485 (NUR) 1327 (PAT) 1769 (PAT) 1261 (NUR)
52 1191 (MED) 1701 (PAT) 1784 (PAT) 1671 (ADM)
53 1769 (PAT) 1232 (ADM) 1152 (MED) 1327 (PAT)
54 1416 (PAT) 1469 (PAT) 1209 (ADM) 1701 (PAT)
55 1100 (NUR) 1385 (PAT) 1416 (PAT) 1547 (PAT)
56 1374 (PAT) 1209 (ADM) 1100 (NUR) 1385 (PAT)
57 1105 (NUR) 1399 (PAT) 1385 (PAT) 1232 (ADM)
58 1385 (PAT) 1460 (PAT) 1105 (NUR) 1460 (PAT)
59 1395 (PAT) 1152 (MED) 1363 (PAT) 1469 (PAT)
60 1393 (PAT) 1116 (NUR) 1374 (PAT) 1209 (ADM)
61 1363 (PAT) 1261 (NUR) 1395 (PAT) 1152 (MED)
62 1613 (NUR) 1769 (PAT) 1393 (PAT) 1320 (PAT)
63 1535 (ADM) 1377 (PAT) 1327 (PAT) 1238 (NUR)
64 1327 (PAT) 1485 (NUR) 1320 (PAT) 1769 (PAT)
65 1320 (PAT) 1323 (PAT) 1373 (PAT) 1116 (NUR)
66 1373 (PAT) 1416 (PAT) 1535 (ADM) 1416 (PAT)
67 1525 (ADM) 1613 (NUR) 1525 (ADM) 1377 (PAT)
68 1246 (NUR) 1305 (PAT) 1246 (NUR) 1399 (PAT)
69 1238 (NUR) 1246 (NUR) 1238 (NUR) 1305 (PAT)
70 1116 (NUR) 1784 (PAT) 1377 (PAT) 1784 (PAT)
71 1399 (PAT) 1373 (PAT) 1116 (NUR) 1323 (PAT)
72 1377 (PAT) 1238 (NUR) 1399 (PAT) 1373 (PAT)
73 1305 (PAT) 1535 (ADM) 1305 (PAT) 1535 (ADM)
74 1323 (PAT) 1332 (PAT) 1323 (PAT) 1332 (PAT)
75 1332 (PAT) 1525 (ADM) 1332 (PAT) 1525 (ADM)
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B. Enron email broadcast rank

Rank None Time-shuffled Target-shuffled Time and Target
1 tana.jones (???) tana.jones (???) tana.jones (???) tana.jones (???)
2 mark.taylor (EMP) sara.shackleton (???) sara.shackleton (???) jeff.dasovich (EMP)
3 sara.shackleton (???) mark.taylor (EMP) jeff.dasovich (EMP) sara.shackleton (???)
4 carol.clair (LAW) carol.clair (LAW) mark.taylor (EMP) bill.williams (???)
5 jeff.dasovich (EMP) marie.heard (???) chris.germany (EMP) mike.grigsby (MAN)
6 eric.bass (TRA) jeff.dasovich (EMP) eric.bass (TRA) chris.germany (EMP)
7 steven.kean (VP) mark.haedicke (MD) carol.clair (LAW) mark.taylor (EMP)
8 mark.haedicke (MD) d..steffes (VP) susan.scott (???) eric.bass (TRA)
9 elizabeth.sager (EMP) elizabeth.sager (EMP) scott.neal (VP) john.arnold (VP)
10 mary.hain (LAW) eric.bass (TRA) drew.fossum (VP) scott.neal (VP)
11 richard.sanders (VP) steven.kean (VP) mike.grigsby (MAN) phillip.love (???)
12 phillip.allen (???) louise.kitchen (PRE) david.delainey (CEO) phillip.allen (???)
13 susan.scott (???) richard.sanders (VP) phillip.allen (???) susan.scott (???)
14 bill.williams (???) bill.williams (???) sally.beck (EMP) debra.perlingiere (???)
15 chris.germany (EMP) mike.grigsby (MAN) debra.perlingiere (???) kimberly.watson (???)
16 mike.grigsby (MAN) mary.hain (LAW) john.arnold (VP) steven.kean (VP)
17 sally.beck (EMP) kim.ward (???) bill.williams (???) louise.kitchen (PRE)
18 drew.fossum (VP) phillip.love (???) elizabeth.sager (EMP) sally.beck (EMP)
19 david.delainey (CEO) chris.germany (EMP) richard.sanders (VP) david.delainey (CEO)
20 matthew.lenhart (EMP) gerald.nemec (???) gerald.nemec (???) carol.clair (LAW)
21 gerald.nemec (???) phillip.allen (???) mark.haedicke (MD) mary.hain (LAW)
22 phillip.love (???) matthew.lenhart (EMP) matthew.lenhart (EMP) drew.fossum (VP)
23 scott.neal (VP) kay.mann (EMP) phillip.love (???) d..steffes (VP)
24 d..steffes (VP) sally.beck (EMP) steven.kean (VP) gerald.nemec (???)
25 kay.mann (EMP) john.arnold (VP) mary.hain (LAW) matthew.lenhart (EMP)
26 debra.perlingiere (???) david.delainey (CEO) darron.giron (EMP) darron.giron (EMP)
27 john.arnold (VP) susan.scott (???) mike.mcconnell (???) john.lavorato (CEO)
28 darron.giron (EMP) debra.perlingiere (???) kay.mann (EMP) kay.mann (EMP)
29 jane.tholt (VP) scott.neal (VP) kate.symes (EMP) richard.sanders (VP)
30 mike.mcconnell (???) drew.fossum (VP) john.lavorato (CEO) marie.heard (???)
31 john.lavorato (CEO) darron.giron (EMP) dan.hyvl (EMP) kate.symes (EMP)
32 kimberly.watson (???) barry.tycholiz (VP) jane.tholt (VP) elizabeth.sager (EMP)
33 lynn.blair (???) kimberly.watson (???) kimberly.watson (???) lynn.blair (???)
34 louise.kitchen (PRE) john.lavorato (CEO) d..steffes (VP) mark.haedicke (MD)
35 dan.hyvl (EMP) jane.tholt (VP) jeffrey.shankman (PRE) errol.mclaughlin (EMP)
36 kim.ward (???) dan.hyvl (EMP) errol.mclaughlin (EMP) mike.mcconnell (???)
37 errol.mclaughlin (EMP) mike.mcconnell (???) louise.kitchen (PRE) kevin.presto (VP)
38 marie.heard (???) kevin.presto (VP) hunter.shively (VP) kim.ward (???)
39 jeffrey.shankman (PRE) errol.mclaughlin (EMP) marie.heard (???) dan.hyvl (EMP)
40 kate.symes (EMP) lynn.blair (???) lynn.blair (???) michelle.lokay (EMP)
41 barry.tycholiz (VP) michelle.cash (???) michelle.lokay (EMP) rod.hayslett (VP)
42 kevin.presto (VP) kam.keiser (EMP) kim.ward (???) jane.tholt (VP)
43 tracy.geaccone (EMP) rod.hayslett (VP) rob.gay (???) tracy.geaccone (EMP)
44 hunter.shively (VP) stacy.dickson (EMP) kevin.presto (VP) barry.tycholiz (VP)
45 darrell.schoolcraft (???) michelle.lokay (EMP) chris.dorland (EMP) mark.whitt (???)
46 michelle.lokay (EMP) kenneth.lay (CEO) fletcher.sturm (VP) john.forney (MAN)
47 rod.hayslett (VP) tracy.geaccone (EMP) robin.rodrigue (???) chris.dorland (EMP)
48 rob.gay (???) jeffrey.shankman (PRE) tracy.geaccone (EMP) jeffrey.shankman (PRE)
49 robin.rodrigue (???) fletcher.sturm (VP) rod.hayslett (VP) darrell.schoolcraft (???)
50 robert.badeer (DIR) kate.symes (EMP) andrea.ring (???) kam.keiser (EMP)
51 tori.kuykendall (TRA) susan.bailey (???) barry.tycholiz (VP) hunter.shively (VP)
52 greg.whalley (VP) mark.whitt (???) greg.whalley (VP) kenneth.lay (CEO)
53 kenneth.lay (CEO) tori.kuykendall (TRA) tori.kuykendall (TRA) bill.rapp (???)
54 fletcher.sturm (VP) hunter.shively (VP) john.forney (MAN) lindy.donoho (EMP)
55 chris.dorland (EMP) martin.cuilla (MAN) michelle.cash (???) fletcher.sturm (VP)
56 peter.keavey (EMP) james.derrick (LAW) peter.keavey (EMP) shelley.corman (VP)
57 bill.rapp (???) jeffrey.hodge (MD) mark.guzman (TRA) martin.cuilla (MAN)
58 michelle.cash (???) jeff.skilling (CEO) darrell.schoolcraft (???) tori.kuykendall (TRA)
59 daren.farmer (MAN) andy.zipper (VP) kenneth.lay (CEO) kevin.hyatt (DIR)
60 lindy.donoho (EMP) darrell.schoolcraft (???) larry.may (DIR) andrea.ring (???)
61 mark.whitt (???) chris.dorland (EMP) daren.farmer (MAN) rob.gay (???)
62 larry.may (DIR) bill.rapp (???) martin.cuilla (MAN) andy.zipper (VP)
63 benjamin.rogers (???) greg.whalley (VP) mark.whitt (???) greg.whalley (VP)
64 john.forney (MAN) dutch.quigley (???) jeff.skilling (CEO) dutch.quigley (???)
65 martin.cuilla (MAN) lindy.donoho (EMP) rick.buy (MAN) jeff.skilling (CEO)
66 andy.zipper (VP) shelley.corman (VP) james.derrick (LAW) rick.buy (MAN)
67 shelley.corman (VP) patrice.mims (???) patrice.mims (???) t..lucci (EMP)
68 jeff.skilling (CEO) monique.sanchez (???) dutch.quigley (???) robin.rodrigue (???)
69 monique.sanchez (???) peter.keavey (EMP) shelley.corman (VP) james.derrick (LAW)
70 kam.keiser (EMP) rick.buy (MAN) benjamin.rogers (???) jonathan.mckay (DIR)
71 dutch.quigley (???) rob.gay (???) lindy.donoho (EMP) jim.schwieger (TRA)
72 mark.guzman (TRA) robin.rodrigue (???) bill.rapp (???) larry.may (DIR)
73 rick.buy (MAN) thomas.martin (VP) kam.keiser (EMP) monique.sanchez (???)
74 kevin.hyatt (DIR) kevin.hyatt (DIR) mike.carson (EMP) michelle.cash (???)
75 james.derrick (LAW) larry.may (DIR) dana.davis (???) mark.guzman (TRA)
76 andrea.ring (???) joe.parks (???) andy.zipper (VP) thomas.martin (VP)
77 stacy.dickson (EMP) john.forney (MAN) monique.sanchez (???) teb.lokey (MAN)
78 patrice.mims (???) jim.schwieger (TRA) kevin.ruscitti (TRA) patrice.mims (???)
79 jim.schwieger (TRA) john.zufferli (EMP) judy.hernandez (???) diana.scholtes (TRA)
80 jonathan.mckay (DIR) daren.farmer (MAN) jim.schwieger (TRA) peter.keavey (EMP)
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Rank None Time-shuffled Target-shuffled Time and Target
81 kevin.ruscitti (TRA) t..lucci (EMP) stacy.dickson (EMP) john.zufferli (EMP)
82 t..lucci (EMP) jonathan.mckay (DIR) larry.campbell (???) daren.farmer (MAN)
83 sandra.brawner (DIR) richard.ring (EMP) kevin.hyatt (DIR) stacy.dickson (EMP)
84 geir.solberg (EMP) andrea.ring (???) t..lucci (EMP) sandra.brawner (DIR)
85 jeffrey.hodge (MD) judy.townsend (EMP) jonathan.mckay (DIR) matt.smith (???)
86 geoff.storey (DIR) robert.badeer (DIR) thomas.martin (VP) danny.mccarty (VP)
87 thomas.martin (VP) teb.lokey (MAN) sandra.brawner (DIR) cara.semperger (EMP)
88 teb.lokey (MAN) mark.guzman (TRA) jeffrey.hodge (MD) larry.campbell (???)
89 matt.smith (???) doug.gilbert-smith (MAN) judy.townsend (EMP) dana.davis (???)
90 john.zufferli (EMP) diana.scholtes (TRA) matt.smith (???) benjamin.rogers (???)
91 judy.townsend (EMP) geoff.storey (DIR) john.zufferli (EMP) jeffrey.hodge (MD)
92 danny.mccarty (VP) danny.mccarty (VP) jason.williams (???) ryan.slinger (TRA)
93 diana.scholtes (TRA) sandra.brawner (DIR) diana.scholtes (TRA) joe.parks (???)
94 jay.reitmeyer (EMP) jay.reitmeyer (EMP) teb.lokey (MAN) sean.crandall (DIR)
95 holden.salisbury (EMP) charles.weldon (???) sean.crandall (DIR) jason.williams (???)
96 frank.ermis (DIR) matt.smith (???) paul.thomas (???) paul.thomas (???)
97 ryan.slinger (TRA) benjamin.rogers (???) charles.weldon (???) jay.reitmeyer (EMP)
98 larry.campbell (???) ryan.slinger (TRA) danny.mccarty (VP) geoff.storey (DIR)
99 joe.parks (???) cara.semperger (EMP) ryan.slinger (TRA) mike.carson (EMP)
100 dana.davis (???) geir.solberg (EMP) geir.solberg (EMP) geir.solberg (EMP)
101 sean.crandall (DIR) sean.crandall (DIR) geoff.storey (DIR) kevin.ruscitti (TRA)
102 cara.semperger (EMP) kevin.ruscitti (TRA) susan.pereira (EMP) judy.hernandez (???)
103 mike.carson (EMP) jason.wolfe (???) frank.ermis (DIR) charles.weldon (???)
104 paul.y’barbo (???) scott.hendrickson (???) robert.badeer (DIR) judy.townsend (EMP)
105 andrew.lewis (DIR) holden.salisbury (EMP) joe.parks (???) holden.salisbury (EMP)
106 charles.weldon (???) keith.holst (DIR) jay.reitmeyer (EMP) theresa.staab (EMP)
107 jason.williams (???) susan.pereira (EMP) cara.semperger (EMP) paul.y’barbo (???)
108 paul.thomas (???) frank.ermis (DIR) holden.salisbury (EMP) vladi.pimenov (???)
109 jason.wolfe (???) albert.meyers (EMP) jeff.king (MAN) don.baughman (TRA)
110 susan.pereira (EMP) dana.davis (???) paul.y’barbo (???) jeff.king (MAN)
111 mike.swerzbin (TRA) paul.y’barbo (???) theresa.staab (EMP) susan.pereira (EMP)
112 judy.hernandez (???) larry.campbell (???) andrew.lewis (DIR) doug.gilbert-smith (MAN)
113 theresa.staab (EMP) mike.swerzbin (TRA) scott.hendrickson (???) jason.wolfe (???)
114 scott.hendrickson (???) theresa.staab (EMP) jason.wolfe (???) harry.arora (VP)
115 mike.maggi (DIR) mike.carson (EMP) vince.kaminski (MAN) frank.ermis (DIR)
116 keith.holst (DIR) don.baughman (TRA) don.baughman (TRA) john.griffith (MD)
117 jeff.king (MAN) jason.williams (???) tom.donohoe (???) eric.saibi (TRA)
118 vladi.pimenov (???) john.griffith (MD) vladi.pimenov (???) mike.swerzbin (TRA)
119 don.baughman (TRA) paul.thomas (???) mike.maggi (DIR) scott.hendrickson (???)
120 richard.shapiro (VP) vladi.pimenov (???) mike.swerzbin (TRA) keith.holst (DIR)
121 vince.kaminski (MAN) judy.hernandez (???) harry.arora (VP) richard.ring (EMP)
122 harry.arora (VP) mike.maggi (DIR) eric.saibi (TRA) vince.kaminski (MAN)
123 susan.bailey (???) pam.butler (???) john.griffith (MD) susan.bailey (???)
124 doug.gilbert-smith (MAN) jeff.king (MAN) keith.holst (DIR) mike.maggi (DIR)
125 john.griffith (MD) andrew.lewis (DIR) doug.gilbert-smith (MAN) robert.badeer (DIR)
126 eric.saibi (TRA) vince.kaminski (MAN) susan.bailey (???) tom.donohoe (???)
127 richard.ring (EMP) harry.arora (VP) cooper.richey (MAN) albert.meyers (EMP)
128 tom.donohoe (???) eric.saibi (TRA) richard.ring (EMP) clint.dean (TRA)
129 clint.dean (TRA) richard.shapiro (VP) joe.stepenovitch (VP) andrew.lewis (DIR)
130 albert.meyers (EMP) tom.donohoe (???) clint.dean (TRA) cooper.richey (MAN)
131 cooper.richey (MAN) clint.dean (TRA) joe.quenet (TRA) joe.stepenovitch (VP)
132 pam.butler (???) cooper.richey (MAN) albert.meyers (EMP) pam.butler (???)
133 joe.stepenovitch (VP) joe.stepenovitch (VP) pam.butler (???) steven.merris (???)
134 joe.quenet (TRA) stephanie.panus (EMP) richard.shapiro (VP) richard.shapiro (VP)
135 stephanie.panus (EMP) joe.quenet (TRA) steven.merris (???) monika.causholli (EMP)
136 stanley.horton (PRE) brad.mckay (EMP) phillip.platter (EMP) mark.fisher (???)
137 steven.merris (???) stanley.horton (PRE) stanley.horton (PRE) phillip.platter (EMP)
138 brad.mckay (EMP) phillip.platter (EMP) mark.fisher (???) stephanie.panus (EMP)
139 phillip.platter (EMP) steven.merris (???) monika.causholli (EMP) stanley.horton (PRE)
140 monika.causholli (EMP) monika.causholli (EMP) brad.mckay (EMP) joe.quenet (TRA)
141 mark.fisher (???) mark.fisher (???) stephanie.panus (EMP) brad.mckay (EMP)


