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We present a characterization of short-term stability of Kauffman’s N-K (random) Boolean net-
works under arbitrary distributions of transfer functions. Given such a Boolean network where each
transfer function is drawn from the same distribution, we present a formula that determines whether
short-term chaos (damage spreading) will happen. Our main technical tool which enables the formal
proof of this formula is the Fourier analysis of Boolean functions, which describes such functions
as multilinear polynomials over the inputs. Numerical simulations on mixtures of threshold func-
tions and nested canalyzing functions demonstrate the formula’s correctness. To the best of our
knowledge, previous formal characterizations only worked for special cases of “balanced” families.

I. INTRODUCTION

Living systems composed of a wide variety of cells,
genes, or organs operate with uncanny synchrony and
stability, as do numerous engineered and social sys-
tems. In a series of seminal papers, Kauffman introduced
Boolean networks to study systems composed of inter-
dependent components that function as one unit. This
abstraction involves a network representing connectivity,
and a family of Boolean functions determining states of
network nodes to model dynamic behavior [1, 2]. Boolean
networks have been used to model numerous dynamical
systems, including genetic regulatory networks [1] and
political systems [3], and have received much theoretical
attention [4–12].

A Boolean network has a set of n nodes linked to
each other by a directed graph G. Each node i has a
Boolean state in {−1,+1}, an in-degree K, and an as-
sociated Boolean function fi : {−1,+1}K → {−1,+1},
termed transfer function. If the state of node i at
time t is xi(t), its state at time t + 1 is described by
xi(t + 1) = fi(xi1 (t), . . . , xiK (t)). For the sake of anal-
ysis, it is common to study a randomized ensemble of
Boolean networks. The graph G is a directed Kauffman
N-K network, where each each vertex i chooses K in-
neighbors uniformly at random. There is an underlying
distribution (or family) of Boolean transfer functions F .
Each vertex i independently chooses the transfer function
fi from F .

A key parameter of interest is the short-term sta-
bility of the Boolean network. Specifically, if a single
node has its state flipped, does the effect of this pertur-
bation die out (quiescence), exponentially cascade over
time (chaos), or is the system right in between (critical-
ity)? There have been numerous empirical and math-
ematical observations about the characteristics of criti-
cal transition points in classes of Boolean networks [4–
9, 11, 12, 15–17], These results require F to have specific
properties, for example, that each truth table entry is
i.i.d., or that functions are balanced (number of +1 and
−1 outcomes is the same) on average.

Various natural classes of functions do not satisfy this
condition. For example, Kauffman proposed a family of
canalyzing functions, which tries to model real genetic
regulatory systems [2, 4, 8, 18]. A canalyzing function
has at least one input, and one value of that input, that
fully determines the output of the function. Previous for-
mal analyses do not yield characterizations of short-term
stability for such families. Threshold functions is an-
other important class of transfer function families, which
are often used in modeling processes such as influence
cascades on social and biological networks [19–25]. A
threshold function is of the form f(x1, x2, . . . , xK) =
sign(

∑
i cixi −Θ), where cis and Θ are constants. Com-

monly, there is a bias towards a particular state (for ex-
ample, representing inertia or non-activation), and previ-
ous characterizations fail to predict the critical threshold
in such imbalanced families of threshold functions [11].
Previous work on the asymmetry between the on/off
states also emphasizes how this bias is a significant aspect
of the dynamics [14], but only studies a special subclass
of threshold functions with Θ = 0 and binary weights ci.

Our main insight is to use the Fourier decomposition
of the transfer functions to give an exact formula for pre-
dicting the short-term dynamics of Boolean networks, for
any fixed distribution of transfer functions. The Fourier
decomposition represents a Boolean function (which is a
discrete object) as a multilinear polynomial over its in-
puts. This method was first used in [26] to analyze the E.
Coli regulatory network. They argue that the Mutual In-
formation of a subset of nodes relates to their importance
in determining the states of other nodes. Our analysis,
however, is significantly broader and more powerful.

We represent the asymmetry between states as a tech-
nical quantity called the “imbalance”, and prove that it
evolves as a polynomial recurrence. Using this recur-
rence, our main result gives a formula that determines
if a single-bit perturbation spreads through the Boolean
network. We assume that the topology of the network is
fixed (after it is drawn). All we need from the topology
is a local tree-structure (as first shown in [27], and ex-
tensively used in later results), which is guaranteed with
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high probability for Kauffman N-K random graph distri-
butions. We assume that each node receives a transfer
function from a fixed distribution. Using this formula, we
can compute critical points for families of distributions
by solving degree K polynomials (thus, it is independent
of n).
While no previous result provides such a formula, our

work is closely related to the following. Mozeika and
Saad [10, 16, 17] give a powerful generating function
framework for analysis of Boolean networks, but do not
characterize short-term stability. Kahn et al. [28] in-
troduced the notion of influence I(F) on Boolean func-
tions; an analogous notion was proposed by Shmulevich
and Kaufmann [5] in the context of Boolean networks.
Seshadhri et al. [11] show that the influence character-
izes the short-term behavior for a highly restricted class
of balanced families F : on average, functions in F are
equally likely to output +1 and −1. Interestingly, they
give examples where the influence does not characterize
stability/chaos, thereby showing the limitation of influ-
ence for this purpose.
Squires et al. [13] study the correlations between topol-

ogy and transfer function and give a computational ap-
proach to study short-term dynamics. In contrast to al-
most all previous work (including this result), they allow
the transfer function to depend on the node. This is
much richer and arguably more realistic, but previous
techniques fail to work for this setting. In our result, by
assuming the same distribution F for all nodes, we have
uncorrelated topology from the transfer functions.

II. PRELIMINARIES

We are interested in the sensitivity of a Boolean net-
work state x(t) = {x1(t) . . . , xn(t)} to a small initial per-
turbation. Formally, consider the following experiment.
Suppose that a Boolean network starts from state x, and
after t steps reaches a state Ft(x). Now, consider an-
other initial state, x(i) which only differs from x in the
ith bit. Let Ht be the expected Hamming distance be-
tween Ft(x) and Ft(x

(i)), where x is drawn from some
specified (typically uniform) distribution. If Ht can be
expressed as eλt, then λ is the Lyapunov exponent. If
λ < 0, the Boolean network is quiescent; if λ > 0, the
network is chaotic.
We use tools from harmonic analysis of Boolean func-

tions, pioneered by Kahn, Kalai, and Linial [28]. The
convention in this field is that −1 denotes TRUE and +1
is FALSE (so multiplication in {−1,+1}maps to XOR of
{0, 1} bits). Consider f : {−1,+1}K → {−1,+1}, where
we think of f as one of the transfer functions. The stan-
dard representation is as a truth table, with 2K entries
in {−1,+1}. An alternative representation is as a linear
combination of basis functions. In the following, we use
y ∈ {−1,+1}K to denote an input to the transfer func-
tion. We use [K] for set {1, 2, . . . ,K}, which denotes
the input coordinates. Refer to [29] for details on the
following.

• Biased distributions: We use Dρ to denote the
distribution over {−1,+1} where the probability of 1 is
(1+ ρ)/2. We choose this notation because the expected
value is exactly ρ, the bias. Abusing notation, for y ∈
{−1,+1}K, we say y ∼ Dρ when each coordinate of y is
chosen i.i.d. from Dρ.
• Imbalance: The imbalance of the Boolean network

at time t, denoted by δt, is
∑n

i=1 xi(t)/n. Informally, this
measures the difference between the +1s and −1s in the
network. Observe that if the starting state x(0) is chosen
from Dρ, then δ0 = ρ.

• Parity functions: For any subset S of coordinates
in [K],

∏
i∈S yi is the parity on S. (For S = ∅, we set the

parity to be 1.)
• Fourier representation: Any Boolean function

f can be expressed as f(y) =
∑

S⊆[K] f̂(S)
∏

i∈S yi,

where f̂(S) are called Fourier coefficients. This ex-
pansion represents f as a multilinear polynomial over
the Boolean variables y1, . . . , yK . It can be shown that

f̂(S) = 2−K
∑

y f(y)
∏

i∈S yi, the correlation between f

and the parity on S. (The Fourier coefficients are the
Walsh-Hadamard transform of the truth table.) There
are exactly 2K Fourier coefficients, one for each subset
of the K inputs. For example, consider K = 2, and
the AND function. A calculation yields AND(y1, y2) =
1/2 + y1/2 + y2/2− y1y2/2.
• Level sets of coefficients, σr: Of special interest

is σr(f) =
∑

C:|C|=r f̂(C), where 0 ≤ r ≤ K. This is

simply the sum of coefficients corresponding to sets of

size r. Note that σ0(f) = f̂(∅) =
∑

y f(y). This is
exactly the imbalance in the truth table of f .
• Influence: For any function f , the influence of the

ith variable is denoted Infi(f) = Pry[f(y) 6= f(y(i))]
(where the probability is over the uniform distribution
and y(i) is obtained by flipping y at the ith bit), and the
total influence is I(f) =

∑
i Infi(f). We will define a bi-

ased version of this quantity, Infi(f ; ρ) = Pry∈Dρ
[f(y) 6=

f(y(i))], and analogously I(f ; ρ) =
∑

i Infi(f ; ρ).

When taking expectations E[. . .], we usually provide
a subscript clarifying the randomness over which expec-
tations are taken. Thus, Ey∼D[. . .] means we are taking
expectations over y distributed according to D.
We prove a standard proposition relating the influence

to the Fourier coefficients.

Proposition 1 The value of Infi(f ; ρ) is equal to the fol-
lowing two expressions.

• (1/4)Ey∼Dρ
[(f(y)− f(y(i)))2]

• Ey∼Dρ

[(∑
S∋i f̂(S)

∏
j∈S\i(yj)

)2]

Proof: Since the probability distribution is always Dρ,
we drop the subscript y ∼ Dρ. We have Infi(f ; ρ) =

Pr[f(y) 6= f(y(i))]. Observe that (f(y)− f(y(i)))2 = 4 if
f(y) 6= f(y(i)) and zero otherwise. Hence, 4 · Infi(f ; ρ) =
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E[(f(y)− f(y(i)))2]. We expand this expression:

4 · Infi(f ; ρ) = E[(f(y)− f(y(i)))2]

= E



(∑

S

f̂(S)(
∏

j∈S

yj −
∏

j∈S

y
(i)
j )

)2




= E



(∑

S∋i

f̂(S)(yi − y
(i)
i )

∏

j∈S\i

yj

)2




= 4E



(∑

S∋i

f̂(S)
∏

j∈S\i

yj

)2


 ,

where the penultimate step follows since for j 6= i, yj =

y
(i)
j , and the final step is because |yi − y

(i)
i | = 2.

III. MATHEMATICAL RESULTS

We can derive closed form expressions for the evolution
of δt (the expected imbalance at time t) and Ht (the
expected Hamming distance at time t after a single bit
perturbation).
The evolution of δt (t > 0) is determined by the level

sets of coefficients of the transfer functions. We use
σr(F) = Ef∼F [σr(f)] and I(F ; δ) = Ef∼F [I(f ; δ)].

Theorem 2 Let the initial state x(0) be chosen from Dρ

(so δ0 = ρ). Then δt evolves according to the polynomial
recurrence δt+1 =

∑
r≥0 σr(F)δrt .

An equivalent formulation of this recurrence has been
derived by the generating function method in Mozeika
and Saad [10], though their approach is completely dif-
ferent (they do not show a connection to Fourier coeffi-
cients). Our approach offers a clean description of this
recurrence, since σr(F) can be easily computed from F .
Our main theorem shows how the damage caused by a

bit perturbation spreads.

Theorem 3 Let δ0, δ1, . . . be as given by Theorem 2. For
t ≤ (logn)/K, Ht =

∏
0≤h<t I(F ; δh).

In many situations, δt converges to some δ∗. By
Theorem2, this convergence is independent of n, the size
of the Boolean network. Thus we can apply Theorem3,
deriving Ht ≈ [I(F ; δ∗)]t. The Lyapunov exponent is
log I(F ; δ∗), so we get a critical point at I(F ; δ∗) = 1.
Our formula gives a provable characterization of short-
term stability, for any transfer function family F .
Balanced families: We derive previous results that

only held for balanced families F . In such families, the
expected difference (over F) between +1’s and −1’s in
the transfer functions is exactly zero. This contains the
classic random families of Kauffman. For such a family,
σ0(F) = Ef∼F [σ0(f)] = 0. The starting distribution

is given by D0, so δ0 = 0. Regardless of the values of
σr(F) (for r > 0), by Theorem2, δt = 0 for all t. Hence,
Ht = [I(F ; 0)]t, and I(F ; 0) = 1 is the critical threshold.
This is exactly the main result of [11].
We provide formal proofs for our theorems in the next

section.

A. How Harmonic Analysis Helps

The Boolean network problem is fundamentally dis-
crete, and the questions are about iterating the discrete
function that the Boolean network represents. Harmonic
analysis allows us to represent the discrete transfer func-
tions as multilinear polynomials over the inputs (which
are still discrete). To understand the evolution of im-
balance, we take expectations over the distribution of
inputs. An application of the linearity of expectation
implies that the imbalance evolves as an iterated poly-
nomial. This is the gist of the proof of Theorem2. We
stress that the polynomial representation of the transfer
functions is crucial for this insight.
Additionally, damage spreading is related to changes

in the function represented by the Boolean network on
flipping some bits. The Fourier representation essentially
represents the function in terms of how it changes when
specific subsets of its inputs change. Thus, it helps in rig-
orous analysis of damage spreading in Boolean networks.
For Theorem3, we use the standard observation that

the local neighborhood of a Kauffman N-K network is a
tree. For a timescale of less than logn, we can imagine
that the Boolean network (from the perspective of a sin-
gle node) is just a tree. This allows for the calculations to
be performed independently over subtrees. Since we rep-
resent transfer functions as polynomials, we can express
the state of a node as a polynomial over the states of the
leaves. We can then perform an analysis of perturbations
to prove Theorem3.

IV. PROOFS

Recall that for ρ ∈ [−1, 1], we define a biased distribu-
tion Dρ on {−1,+1} as follows. The probability of +1 is
(1+ρ)/2 and that of −1 is (1−ρ)/2. Note that expecta-
tion is exactly ρ. We sometimes abuse notation and use
Dρ to denote the product distribution over n bits. The
uniform distribution is given by D0.
For a Boolean network N , we use ft(x) to denote

the total state after t steps starting with an initial
state x. We use fv,t(x) to denote the (Boolean) state
at the vertex v. Our aim is to understand Ht =
(1/n)

∑n
i=1 Ex∼Dρ

[ft(x)−ft(x
(i))]. That is, we calculate

the expected Hamming distance over the starting state
x for a random bit flip. As proven in previous work, this
is the same as 1

n

∑
1≤u,v≤n Infu(fv,t; ρ). This is the aver-

age value (over all vertices v) of
∑

u Infu(fv,t; ρ). Since
the construction of Boolean networks is random where all
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vertices are symmetric, in expectation, all these influence
sums are the same. Hence, we will fix a single vertex and
focus on this sum.

Fix a vertex v. Let us consider the function fv,t for
small t ≪ logn. Previous work tells us that we can as-
sume (asymptotically) this is a rooted tree [27]. Note
that this assumption also holds for sparse configuration
models, such as Erdős-Rényi random graphs, but we fo-
cus on models where the degree, K, is fixed. We define a
distribution Bt on Boolean networks that runs for t steps
on rooted trees with height t. We take a K-ary directed
tree rooted at v of depth t , with edges pointing towards
the root v. For every internal node u, we choose a trans-
fer function φu distributed according to F . The leaves
of the tree are the input nodes, collectively denoted as x.
We will set the state at leaf nodes from the distribution
Dρ. So δ0 = ρ is the initial imbalance.

The Boolean network runs for t steps to yield the state
at the root. We will use v1, v2, . . . to denote the children
of v. The Fourier expansion yields the following proposi-
tion.

Proposition 4 fv,t =
∑

A⊆[K] φ̂v(A)
∏

i∈A fvi,t−1

Proof: Suppose the state at vi is yi. The state at v is
determined by applying the transfer function φv on the
states (y1, y2, . . . , yK). Using the Fourier expansion of

φv, we get the state at v is
∑

A⊆[K] φ̂v(A)
∏

i∈A yi. The

state yi is given by the function fvi,t−1, and the state at
v is fv,t. �

We take expectations of the formula in Prop. 4, not-
ing that δt = EBt

[Ex∼Dρ
[fv,t(y)]]. (Verbal explanation

follows.)

δt = Ex,Bt
[fv,t(y)] = Ex,Bt

[
∑

A⊆[K]

φ̂v(A)
∏

i∈A

fvi,t−1(y)]

=
∑

A⊆[K]

Ex,Bt

[
φ̂v(A)

∏

i∈A

fvi,t−1(y)
]

=
∑

A⊆[K]

EF [φ̂(A)]
∏

i∈A

Ex,Bt−1
[fvi,t−1(y)]

The second line is just linearity of expectation. The fi-
nal line is obtained through independence. Note that φv

is independent of the Boolean networks rooted at the
vis. These Boolean networks are also independent of
each other. Hence, the expectation of the product is the
product of expectations. The function φv is a random
function φ chosen from F . Because of the recursive con-
struction, the distribution of Bt rooted at v induces the
distribution of Bt−1 rooted at the vis. Now, observe that
Ex,Bt−1

[fvi,t−1(y)] = δt−1.

Plugging this in and collecting all terms corre-
sponding to sets of the same size (recall σr =

Eφ∼F [
∑

C:|C|=r φ̂(C)]),

δt =
∑

A⊆[K]

δ
|A|
t−1EF [φ̂(A)]

=
∑

r≥0

δrt−1

∑

A:|A|=r

EF [φ̂(A)] =
∑

r≥0

σrδ
r
t−1 (1)

This proves Theorem2.
For the spreading of perturbations, we focus on It(ρ0).

This is the expected average (over all nodes) influence of
a node at t-steps, when the initial distribution is Dρ0

. We
can express It(ρ0) as follows. By the tree approximation,
Ht = EBt

[
∑

ℓ Infℓ(fv,t); ρ] (where ℓ is over all leaves). In
words, we look at the ρ-biased influence summed over
all leaves. For convenience, we will drop the time/height
subscript and simply write fu instead of fu,h.
Partition the leaves into subsets S1, S2, . . . , SK , where

Si contains all leaves that are descendants of vi. Focus
on a leaf ℓ ∈ S1. The first equality below is a technical
statement proven earlier as Prop. 1. Applying Prop. 4,

EBt
[Infℓ(fv; ρ)]

= (1/4)EBt,x∼Dρ
[(fv(y)− fv(y

(ℓ)))2]

= (1/4)EBt,x∼Dρ

[{∑

A

φ̂v(A)(
∏

i∈A

fvi(y)−
∏

i∈A

fvi(y
(ℓ)))

}2
]

Observe that for i 6= 1, fvi(y) = fvi(y
(ℓ)). (This is be-

cause ℓ is not in the subtree of vi.) In the summation
above, only the terms corresponding to A ∋ 1 are non-
zero. Expanding further,

{∑

A∋1

φ̂v(A)(
∏

i∈A

fvi(y)−
∏

i∈A

fvi(y
(ℓ)))

}2

=




∑

A∋1

φ̂v(A)
( ∏

i∈A
i6=1

fvi(y)
)
(fv1(y)− fv1(y

(ℓ)))





2

=
(
fv1(y)− fv1(y

(ℓ))
)2




∑

A∋1

φ̂v(A)
∏

i∈A
i6=1

fvi(y)





2

(2)

Each fvi is defined over disjoint parts of the underlying
tree with disjoint inputs. Hence, when we take the ex-
pectation EBt,x over the product, we get the product of
expectations. Thus,

EBt
[Infℓ(fv; ρ)]

= (1/4)EBt,x∼Dρ
[
(
fv1(y)− fv1(y

(ℓ))
)2
]×

EBt,x∼Dρ



{∑

A∋1

φ̂v(A)
∏

i∈A
i6=1

fvi(y)
}2


 (3)

The first term, (1/4)EBt,x∼Dρ
[
(
fv1(y)− fv1(y

(ℓ))
)2
], is

exactly EBt−1
[Infℓ(fv1 ; ρ)].
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We deal with the second term. The random variable
fvi(x) is in {−1,+1} and EBt−1,x∼Dρ

[fvi(y)] = δt−1.
Hence, it is distributed as Dδt−1

. Taking expectations
over Bt−1, x, setting yi = fvi(y) and Prop. 1,

EBt,x∼Dρ



{∑

A∋1

φ̂v(A)
∏

i∈A
i6=1

fvi(y)
}2




= Eφ∼F ,y∼Dδt−1


{∑

A∋1

φ̂v(A)
∏

i∈A\1

yi
}2




= Eφ∼F [Inf1(φ; δt−1)] (4)

The final equality uses Prop. 1 to show that that the
term in the expectation above is exactly Inf1(φ; δt−1).)
Thus, for ℓ ∈ Si, we get EBt

[Infℓ(fv; ρ)] =
EF [Infi(φ; δt−1)]EBt−1

[Infℓ(fvi ; ρ)]. We combine all our
observations.

Ht =
∑

ℓ

EBt
[Infℓ(fv,t; ρ)]

=

K∑

i=1

∑

ℓ∈Si

EBt
[Infℓ(fv,t)]

=

K∑

i=1

EF [Infi(φ; δt−1)]
∑

ℓ∈Si

EBt−1
[Infℓ(fvi ; ρ)]

=

K∑

i=1

EF [Infi(φ; δt−1)]EBt−1
[
∑

ℓ∈Si

Infℓ(fvi ; ρ)]

= Ht−1

K∑

i=1

EF [Infi(φ; δt−1)]

= Ht−1 · I(F ; δt−1) (5)

Uncoiling the recurrence yields the Theorem3.

V. APPLICATIONS

A. Mixtures of threshold function families:

convergence of opinion

Threshold functions are commonly used to understand
the spread of new ideas/viral propogations in social net-
works, inspired by pioneering work in sociology [19–
21]. Consider two types of people (vertices) in a net-
work. Some simply side with the majority of their neigh-
bors. Others are more resistant to change, and only
take up a new belief if all their neighbors believe it.
We will first demonstrate our theorem on a synthetic
distribution inspired by this application. For simplic-
ity of analysis, set K = 3. The majority function,
MAJ, is M(y) = sign(

∑
i yi) and the AND function

Λ(y) = sign(
∑

i yi + 2.5) (this is −1 iff all inputs are
−1). Our distribution F picks MAJ with probability β
and AND with probability 1 − β. We can use our har-
monic analysis method to characterize how much of the

initial network needs to have a new belief for it to prop-
agate through the network, and how sensitive this belief
is to perturbations in the initial state. Formally, we cal-
culate the dynamics for the initial distribution Dρ. Note
that a vertex state is −1 (TRUE) if that vertex currently
believes the new idea.
We start with the Fourier expansions of MAJ and

AND.

M(y) =
∑

i

yi/2− y1y2y3/2

Λ(y) = 3/4 +
∑

i

yi/4−
∑

i6=j

yiyj/4 + y1y2y3/4

We compute σ0(F) = 3(1− β)/4, σ1(F) = 3β/2 + 3(1−
β)/4 = 3(1 + β)/4, σ2(F) = 3(β − 1)/4, and σ3(F) =
−β/2 + (1− β)/4 = (1− 3β)/4. From Theorem2,

δt+1 = (1− 3β)δ3t /4 + 3(β − 1)δ2t /4

+ 3(1 + β)δt/4 + 3(1− β)/4 (6)

Any fixed point is a root of the following polynomial
p(δ). Note that when p(δt) > 0, then δt+1 > δt (and vice
versa).

p(δ) = [(1− 3β)δ3 + 3(β − 1)δ2 + (3β − 1)δ + 3(1− β)]/4

= (δ − 1)(δ + 1)[(1− 3β)δ − 3(1− β)]/4 (7)

This characterizes the limits of δt as t → ∞ (assuming
convergence). The first two are trivial roots, since the
all −1s and all +1s states are fixed points imbalances for
the Boolean network. The third root 3(1−β)/(1−3β) is
a new valid imbalance (in the range (−1, 1)) only when
β > 2/3.
Now, we can explain the dynamics. (We ignore the

trivial cases ρ = −1,+1.)
• β ≤ 2/3: The polynomial p(z) > 0 for any z ∈

(−1, 1). Hence, for any non-trivial starting distribution
Dρ, the Boolean network converges to the all +1s state.
So the new belief will always die out.
• β > 2/3: There exists a new unstable fixed point

for the imbalance at δ∗ = 3(1 − β)/(1 − 3β). We have
p(z) > 0 if z > δ∗ and p(z) < 0 if z < δ∗. If ρ > δ∗, the
eventual state is all +1s. If ρ < δ∗, the eventual state is
all −1s.
To understand the sensitivity to bit flips, it is quite

natural that for situations where δt converges to −1 or
+1, the network is insensitive to perturbations. Calcu-
lations yield that Inf(F ;−1) and Inf(F ; +1) are < 1.
By Theorem3, the networks are quiescent. At ρ = δ∗,
I(F ; δ∗) = 3β(1 − (δ∗)2)/2 + 3(1 − β)(1 − δ∗)2/4. By
some elementary algebra, I(F ; δ∗) > 1 when β > 2/3.
Hence, for ρ = δ∗, the dynamics are chaotic (again, this
is expected).
We performed simulations on Boolean networks with

104 nodes. For a given β, we vary the starting distri-
bution ρ and measure the imbalances at t = 100. We
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FIG. 1: Experimental results (color online). (Left figure (a)) This is for the threshold function distribution. Each
line plots (for a fixed β; β increases from left to right within the plot) the limiting imbalance as a function of the
initial input imbalance ρ. We observe a sharp threshold in each case coinciding with the prediction shown as a

dotted line. (Right figure (b)) This is for the nested canalyzing distribution. Each line plots the imbalance over time
for different input imbalances ρ (where the value of ρ increases from bottom to top within the plot). Observe it

always converges to the same value.

average over 1000 runs for each experiment, sampling
network configuration and initial condition ,from the dis-
tributions specified, for each instance. The results are in
Figure 1a, where each line denotes a different choice of
β, increasing from left to right. The predicted transition
of δ∗ = 3(1− β)/(1 − 3β) is denoted by the dashed line,
coinciding nicely with the numerical transition point. As
expected, we see some fluctuations (due to chaotic be-
havior at δ∗) at the transition point.

B. Mixtures of threshold functions: examples of

criticality

In the previous section, we considered settings where
the entire network eventually converges to the same
state. We now consider two functions that have op-
posing actions: namely, the negated majority (NMAJ)
and the AND function. The NMAJ, denoted by N , is
just the negation of the MAJ function, and thus, this
gives the opposite state of the majority of its neigh-
borhood. The Fourier expansion is given by N(y) =
−
∑

i yi/2 + y1y2y3/2.

The distribution Fβ is obtained by choosing NMAJ
with probability β and AND with probability 1− β. We
compute σ0(F) = 3(1 − β)/4, σ1(F) = −3β/2 + 3(1 −
β)/4 = 3(1 − 3β)/4, σ2(F) = 3(β − 1)/4, and σ3(F) =
β/2 + (1− β)/4 = (1 + β)/4. From Theorem2,

δt+1 = (1 + β)δ3t /4 + 3(β − 1)δ2t /4

+3(1− 3β)δt/4 + 3(1− β)/4 (8)

pβ(δ) =
[
(1 + β)δ3 + 3(β − 1)δ2

−(1 + 9β)δ + 3(1− β)
]
/4 (9)

As before, roots of p(δ) in [−1, 1] are fixed points.
When β = 0 (all AND), there is a stable fixed point at
δ = 1, corresponding all nodes at +1. When β = 1 (all
NMAJ), the stable fixed point is at δ = 0, corresponding
to half the nodes at +1. By varying β, we can move the
stable fixed point in the range [0, 1]. Let us denote this
root by δ∗β , which is the limit of the imbalance for the
distribution Fβ .
The expressions for I(Λ; δ) and I(N ; δ) are polynomials

in δ. (These are obtained by looking at which bit flips
change values of AND and NMAJ respectively.)

I(Λ; δ) = 3δ2/4− 3δ/2 + 3/4 (10)

I(N ; δ) = −3ρ2/2 + 3/2 (11)

Thus, I(Fβ ; δ) = β · I(N ; δ) + (1− β) · I(Λ; δ).

I(Fβ ; δ) = (−9β/4+3/4)δ2+(3β/2−3/2)δ+(3β/4+3/4)
(12)

To understand the short-term dynamics for any β, as per
Theorem3, we compute I(Fβ ; δ

∗
β). We plot this quantity

as a function of β in Figure 2a. The horizontal dashed
line corresponds to I(Fβ ; δ

∗
β) = 1. By Theorem3, the ver-

tical dashed line shows the critical point. This reveals an
interesting phase transition in the short term dynamics.
When I(Fβ; δ

∗
β) is less than 1, the dynamics is quiescent

(bit flips die out). When it is greater than 1, the dy-
namics is chaotic. The critical point is at β = 0.5552 . . .,
when the limiting influence is exactly 1.
This is validated by our empirical simulations, shown

in Figure 2b. We begin with a value of β. We generate
a random Boolean network with 104 nodes with transfer
functions drawn from Fβ , and run it from a uniform ran-
dom input (so δ0 = 0) for 20 timesteps. We then flip a
random bit in the same input, run it again, and track the
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Hamming distances between the states at each timestep.
We repeat this entire process 103 times, and plot the av-
erage Hamming distance as a function of the timestep.
As shown in Figure 2b, we perform this simulation for
β = 0.4, 0.5 (below the critical point), β = 0.5552 . . . (the
critical point, denoted as β∗), and β = 0.6, 0.7 (above the
critical point). Note that the average Hamming distance
is in logscale, so we expect the plots to be roughly lin-
ear (except when the distance is comparable to 104), by
Theorem3. In accordance with the analysis presented
above, the Hamming distance drops below 1 for β < β∗,
and increases exponentially for β > β∗.

C. Nested canalyzing functions

For another application, we consider the nested can-
alyzing functions of [18]. Fix positive integer α and
a series of canalyzing input values c1, c2, . . . , cK and
d1, d2, . . . , dK , ddef (where each of these is in {−1,+1}).
The function is defined as follows:

f(x) =





d1 if y1 = c1
d2 if y1 6= c1and y2 = c2
...

sdK if y1 6= c1, . . . , yK−1 6= cK−1and yK = ck
ddef otherwise

For any parameter α > 0, the distribution is given
by Pr[ci = −1] = Pr[di = −1] = exp(−α/2i)/(1 +
exp(−α/2i)). Kauffman et al [18] suggest that α = 7
is reflective of real biological networks, and correspond-
ing Boolean networks are quiescent.
We can use our theorems to validate the quiescence.

Let us the consider the polynomial δt+1 − δt. For ex-
ample at K = 5, a technical calculation yields p(δ) =
−0.001δ4 +0.016δ3 − 0.11δ2 − 0.69δ+0.71. For K = 10,
p(δ) = −0.007δ4+0.012δ2− 0.099δ2− 0.7δ+0.71. These
polynomials have a single stable root δ∗ ≈ 0.9 in [−1,+1].
Even as K varies, the root is quite stable, so that fixed
point imbalance is at least 0.9 when K ≥ 2.
We perform experiments for varying degree distribu-

tions with 104 nodes, and varying starting state distribu-
tions Dρ. (We show only the results for K = 5 for space
reasons.) In Figure 1b, we plot the imbalance as a func-
tion of time for varying ρ, with ρ increasing from bottom
to top. Observe that the imbalance always rapidly con-
verges to around 0.9. This means that roughly 90% of the
nodes converge to the +1 (FALSE) state. The influence
I(F ; δ∗) is roughly 0.3, so the network is quiescent. In
our experiments, we observe that the Hamming distance
rapidly decays to 0, validating our influence calculation.
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FIG. 2: Experimental results (color online): (Left figure (a)) This plots the value of I(F ; δ∗β) as a function of β.

(Right figure (b)) This plots the average Hamming distance as a function of time for different values of β, with β
increasing from bottom to top within the plot. The middle line (influence equal to 1.0) shows the critical point. The

dotted lines are above the critical point, and show chaotic behavior.
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