
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Isostable reduction with applications to time-dependent
partial differential equations

Dan Wilson and Jeff Moehlis
Phys. Rev. E 94, 012211 — Published 11 July 2016

DOI: 10.1103/PhysRevE.94.012211

http://dx.doi.org/10.1103/PhysRevE.94.012211


Isostable Reduction with Applications to Partial Differential Equations

Dan Wilson and Jeff Moehlis
Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106

Isostables and isostable reduction, analogous to isochrons and phase reduction for oscillatory sys-
tems, are useful in the study of nonlinear equations which asymptotically approach a stationary
solution. In this work, we present a general method for isostable reduction of partial differential
equations, with the potential power to reduce the dimensionality of a nonlinear system from infinity
to one. We illustrate the utility of this reduction by applying it to two different models with biolog-
ical relevance. In the first example, isostable reduction of the Fokker-Planck equation provides the
necessary framework to design a simple control strategy to desynchronize a population of pathologi-
cally synchronized oscillatory neurons, as might be relevant to Parkinson’s disease. Another example
analyzes a nonlinear reaction-diffusion equation with relevance to action potential propagation in a
cardiac system.

PACS numbers: 02.30.Jr, 87.19.lj, 87.19.Hh, 87.19.lr

I. INTRODUCTION

For more than half a century, phase reduction techniques have been a remarkably powerful tool to aid
in the understanding of oscillatory nonlinear dynamical systems, with a wide array of examples spanning
the biological, physical, and chemical sciences [1], [2], [3], [4], [5], [6], [7], [8]. Phase reduction provides a
convenient means of changing variables in the neighborhood of a stable limit cycle, distilling the essence of
a nonlinear system into a phase in relation to the location on the limit cycle, and a phase response curve
which describes the effect of an external input on the phase. In recent years, phase reduction has been used
to understand phase locking among groups of oscillators, [3], [8], [9], and has been applied in control schemes
to break pathological synchronization [7], and to control oscillatory timing [10].

While phase reduction has been exceedingly useful, it can only be applied to dynamical systems with
periodic orbits, excluding a large number of nonlinear systems with dynamics that approach an equilibrium
solution. For such systems, the notion of isostables, which are sets of initial conditions that share the same
asymptotic convergence towards a fixed point [11] (similar to the notion of stable foliations of an attracting
manifold, which can also be used when the system dynamics do not approach a fixed point [12], [13]), provides
an analogous set of coordinates from which the intrinsic dynamics of the system can be more conveniently
understood.

For example, [14] (c.f. [15]) develops the necessary framework for an isostable reduction (analogous to a
phase reduction) for finite dimensional ordinary differential equations (ODEs) with dynamics that approach
a fixed point. Here, we extend this framework to systems described by time dependent partial differential
equations (PDEs) with dynamics that approach stationary solutions by deriving a methodology to calculate
isostable response curves, which allows for the understanding of the effect of a perturbation on a system’s
approach to the stationary solution. Using this reduction strategy allows us to understand a complicated
nonlinear PDE in terms of its isostables, reducing the dimensionality of the system from infinity to one and
making complicated problems in nonlinear science more computationally and analytically tractable.

Because the isostable reduction proposed in this paper is valid near a single trajectory that approaches
a stationary solution, it is perhaps most similar to PDE reduction methods that involve the use of inertial
manifolds [16], [17], [18], [19], which represent exponentially attracting, finite dimensional manifolds that can
be used to understand an infinite dimensional PDE. However, inertial manifolds can be difficult to identify,
and further analysis must be performed in order to understand the response to an external perturbation.
Also, isostable reduction does not explicitly require the dynamics to collapse to a lower dimensional manifold,
as multiple trajectories can display similar reduced dynamics.

This isostable reduction methodology looks to be a promising tool for the understanding and control
of both linear and fully nonlinear PDEs, particularly when the rate and timing of the system’s approach
to a stationary solution are of interest. We showcase its utility in two different systems with biological
applications. The first is in the reduction of a Fokker-Planck equation with the goal of desynchronizing a
large population of pathologically synchronized neurons, as might be relevant in the treatment of Parkinson’s
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disease. The second is in the reduction of a reaction-diffusion equation with relevance to action potential
propagation in cardiac systems.

II. ISOSTABLE REDUCTION AND NUMERICAL CALCULATION OF INFINITESIMAL
ISOSTABLE RESPONSE CURVES IN INFINITE DIMENSIONS

In this section we detail a method for calculating infinitesimal isostable response curves (iIRCs) in time
dependent partial differential equations which asymptotically approach a stationary solution. To begin,
consider a weakly perturbed system on the domain Ω

∂

∂t
X(r, t) = F(X(r, t), r) + G(X(r, t)) + p(r, t). (1)

Here, X(r, t) ∈ Rm represents the local state in the medium at point r and time t, F(X(r, t), r) describes
the local dynamics at point r, G(X(r, t)) represents spatial coupling throughout the medium (we allow
G to also be a function of derivatives of X, e.g. advection or diffusion), and p(r, t) represents a weak
spatiotemporal perturbation. For given boundary conditions, we assume that both J and J† exist, where
J ≡ ∇[F(X(r, t), r) + G(X(r, t))] with ∇ ≡ ∂/∂X and † denotes the adjoint associated with 〈·, ·〉, the L2

inner product. For a given initial condition, in the absence of perturbation (i.e. p(r, t) = 0), suppose that
the system follows a known trajectory γ towards a stationary solution Xo(r) which satisfies F(Xo(r), r) +
G(Xo(r)) = 0.

ψ1

ψ2

ψ3

γ

FIG. 1. A qualitative illustration of isostables for a PDE which approaches a stationary solution. Surfaces of constant
isostable are represented by colored lines ψ1, ψ2, and ψ3. Black dots represent snapshots of the PDE solution in time.
Initial conditions along the same isostable surface approach the fixed point with the same asymptotic convergence as
defined by (3). Initial conditions along the same isostable cross successive isostables at the same time. Here, γ is some
trajectory for which we wish to characterize the change in isostables in response to spatiotemporal perturbations.

Intuitively, isostables of (1) represent sets of states with the same asymptotic convergence towards the
stationary solution [11]. These can be precisely defined using the linearized solution of (1) near the stationary
solution. Let φj be the eigenfunctions of the linearized system, ordered so that φ1 is associated with the
eigenvalue λ1 whose real part has smallest magnitude. In the analysis to follow, we will assume that all
eigenvalues have negative real part and that the largest (least negative) eigenvalue is bounded away from
both the imaginary axis and the continuous part of the spectrum if it exists. In the simplest case λ1 is real
and unique. If we set p(r, t) = 0, near the stationary solution functions of constant isostable, Iτ , are given
by

Iτ =

X(r)|X(r) = Xo(r) +±eλ1τφ1 +

∞∑
j=2

αjφj , ∀ αj ∈ R

 . (2)
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Here, the amplitude multiplying φ1 determines the isostable, as the amplitudes multiplying the other eigen-
functions decay much faster. Per (2), any linear combination of eigenfunctions φj for j ≥ 2 can be added to
the current state of the system and will not affect the isostable coordinate of the system.

Equation (2) can only be applied in a close neighborhood of the stationary solution. A fully nonlinear
isostable field ψ = Ψ{X(r)} can be defined by considering the infinite time approach of X(r, t) with X(r, 0) =
X(r) to the stationary solution and computing, for example, [11], [14]

ψ = Ψ{X(r)} =
1

λ1
log

(
lim
t→∞

[
e−λ1t

∫
Ω

QT (r) (X(r, t)−Xo) dΩ

])
. (3)

Here, the isostable functional Ψ{X(r)} maps the state X(r) ∈ U to a scalar isostable (here U is the basin of
attraction of Xo), Q(r) ∈ Rm is a system observable which can be chosen as necessary so that the resulting
isostable field gives meaningful information about the system, and T indicates the transpose. See Section
II B for an example of how the choice of Q(r) can influence the isostable field. One can verify that dψ/dt = 1
(c.f. equation 2.3 of [14]) so that in the limit as X(r, t) approaches Xo, Ψ{X(r, t)} approaches ∞. Figure
1 presents an intuitive sketch of isostables in a nonlinear PDE. Three initial conditions which start at the
same isostable coordinate will reach successive isostables at the same time and will have the same asymptotic
approach to the stationary solution.

While (3) is useful to precisely define the notion of an isostable, direct calculation of an isostable field
using (3) is of limited practical utility. Each state of interest requires direct simulation of (1) to estimate
its infinite time approach to the stationary solution which is prohibitively computationally intensive. In
practice, however, it can be useful to define an isostable field in a more constructive manner with respect
to a single trajectory, γ, by integrating an initial condition forward in time with p(r, t) = 0 and choosing
ψ(X(r, t)) = t.

As we will show, when p(r, t) 6= 0, in the limit of weak forcing isostable coordinates provide a convenient
means of understanding a system described by a nonlinear PDE in terms of a single ODE through means
of an isostable reduction. Following the adjoint method for calculating infinitesimal phase response curves
(iPRCs) as used in [20],[14], [8], our goal is to simplify (1) to a one-dimensional equation using scalar isostable
coordinates.

To begin, near a known trajectory γ, we take the gradient of the isostable field so that changing to isostable
coordinates using the chain rule we find

dψ(X)

dt
=
〈
∇ψ(X), ∂X/∂t

〉
=
〈
∇ψ(X),F(X(r, t), r) + G(X(r, t)) + p(r, t)

〉
= 1 +

〈
∇ψ(X),p(r, t)

〉
. (4)

We simplify (4) in the second line using the fact that dψ/dt = 1 when p(r, t) = 0, thereby implying〈
∇ψ(X),F(X(r, t), r) + G(X(r, t))

〉
= 1 (5)

for all X. Evaluating the vector field at Xγ(ψ), which we define as the intersection of the trajectory γ and
the ψ(X) level set (i.e. isostable), we have

dψ(X)

dt
= 1 +

〈
∇ψ(Xγ(ψ)),p(r, t)

〉
. (6)

To proceed, we assume that p(r, t) ≡ 0 for t > 0. Consider a small perturbation ∆X at time t = 0 to the
trajectory X(r, t) ∈ γ. Letting Xε(r, t) = Xγ(r, t) + ∆X(r, t) be the perturbed initial condition, we have

∂∆X(r, t)

∂t
= J(X(r, t)) ·∆X(r, t) +O(||∆X(r, t)||2), (7)

where J is the Jacobian and (Y ·X)(r, t) ≡ YT (r, t)X(r, t) for any X and Y in Ω. We define the isostable
shift associated with the perturbation ∆X(r, t) as ∆ψ = ψ(Xε(r, t))− ψ(X(r, t)) and can also write

∆ψ =
〈
∇X(r,t)ψ,∆X(r, t)

〉
+O(||∆X(r, t)||2), (8)
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where ∇X(r,t)ψ is the gradient of ψ evaluated at X(r, t). Both Equations (7) and (8) are accurate to leading
order in ∆X(r, t). After the initial perturbation at t = 0, ∆ψ is independent of time. Taking the time
derivative of (8) yields〈

∂∇X(r,t)ψ

∂t
,∆X(r, t)

〉
= −

〈
∇X(r,t)ψ,

∂∆X(r, t)

∂t

〉
= −

〈
∇X(r,t)ψ, J(X(r, t)) ·∆X(r, t)

〉
= −

〈
J(X(r, t))†∇X(r,t)ψ,∆X(r, t)

〉
. (9)

Here, J(X(r, t))† is the adjoint of the real-valued operator J(X(r, t)). Equation (9) holds for arbitrary
perturbations ∆X(r, t), which gives the relation

∂∇X(r,t)ψ

∂t
= −J(X(r, t))†∇X(r,t)ψ. (10)

In practice when J† is difficult to derive analytically, and it can be estimated numerically by first discretiz-
ing (1) and solving for the adjoint of the resulting system of ODEs with appropriate boundary conditions
[21]. In this case, the Hermitian transpose of the Jacobian of the discretized ODE system provides an es-
timate of the adjoint. In order to use (10) one must have knowledge of ∇X(r,t)ψ (i.e. the iIRC) at some
initial time, which is usually possible by studying the system near the stationary solution, as we illustrate
in Section II A.

While isostables and the associated iIRC describe the infinite time approach towards the stationary so-
lution, in practice, most engineering applications can only consider finite time. Therefore, for the one
dimensional reduction (4) to be of practical use, |λ1| − |λ2| multiplied by the time scale of interest must
be large enough so that higher order modes become negligible. If the time scales are too short for a one
dimensional reduction to be effective, one can also use (10) to calculate response curves which characterize
the infinite time decay of higher order modes in response to the perturbation p(r, t). This strategy gives a
multi-dimensional reduction with details given in Section II B.

A. Isostable Fields Near a Stationary Solution

In order to solve (10) in the calculation of iIRCs we must know ∇X(r,t)ψ at some initial time. This can be
accomplished by linearizing around the stable stationary solution, Xo where in many cases we can determine
the isostable field exactly for the linearized equation. We emphasize that the linearization is only required
to determine an initial condition for the solution to (10). Upon solving (10), the isostable response curve is
valid for the reduction of the full nonlinear equations.

Consider a linearization of (1) near a stationary solution Xo:

∂

∂t
X = J(Xo)(X−Xo) +O

(
(X−Xo)2

)
. (11)

Neglecting higher order terms, we can write its solution as an infinite sum of eigenfunctions:

X−Xo =

∞∑
j=1

sj(X(0))φje
λjt. (12)

Here, φj corresponds to an eigenfunction of J with the associated eigenvalue λj , and sj(X) gives the
coordinates of function X in the basis of eigenfunctions {φj , j = 1, . . . ,∞}. Furthermore, we sort the
associated eigenvalues {λj , j = 1, . . . ,∞} so that |Re(λj)| ≤ |Re(λj+1)|.

In the simplest case, λ1 is real and unique, then the magnitude of s1(X) will determine the infinite
time approach to the stationary solution (c.f. [11]). Using this perspective, a set of isostables, i.e. Ψτ ≡
{X|Ψ{X} = τ}, can be uniquely determined by finding the magnitude of s1(X). In other words, sets
of constant isostables are spanned by the faster eigenfunctions φ2,φ3,φ4, . . . , and any perturbations to
sj(X(0)) for j ≥ 2 will not have any effect on the infinite time approach to the origin. Therefore,

〈∇X(r,t)ψ, φj〉 = 0 ∀j ≥ 2. (13)
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In the case that λ1 and λ2 = λ1 are a complex conjugate pair (with corresponding eigenfunctions φ1

and φ2 = φ1, equation (10) is still valid, but the strategy for finding the initial condition changes slightly.
Consider an infinite time approach to the linearized stationary solution, given in (12). Assuming that
Re(λ1) > Re(λ3), as time becomes large, the solution is dominated by the complex eigenfunction pair

X−Xo = s1φ1e
λ1t + s1φ1e

λ1t +O(eλ3t). (14)

Using Euler’s formula and algebraic manipulation, equation (14) can be rewritten as

X−Xo = AeRe(λ1)t [cos(θo + Im(λ1)t)Re(φ1)− sin(θo + Im(λ1)t)Im(φ1)] +O(eλ3t), (15)

where A and θo are constants which can be determined from s1 and s1. Therefore, near the stationary
solution, functions of constant isostable can be defined as follows (c.f. [11]):

Iτ =

X(r) ∈ Rm|X(r) = eRe(λ1)τ [cos(θ)Re(φ1)− sin(θ)Im(φ1)] +

∞∑
j=3

αjφj , ∀ αj ∈ R, ∀ θ ∈ [0, 2π)

 .

(16)
Thus, similar to (13),

〈∇X(r,t)ψ, φj〉 = 0, ∀j ≥ 3 and

〈∇X(r,t)ψ,w(t)〉 = 0 (17)

where w(t) = ∂
∂t [cos(θo + Im(λ1)t)Re(φ1)− sin(θo + Im(λ1)t)Im(φ1)]. The second orthogonality condition

in (17) comes from the fact that the isostable response curve must be orthogonal to Iτ near the stationary
solution. A perturbation in the direction w(t) will simply speed up or slow down oscillations about the
stationary solution, but will not affect their magnitude (and hence will not affect the isostable).

When λ1 is real and unique (resp. part of a complex conjugate pair) equation (13) (resp. (17)) defines a
unique shape of the isostable response curve near the stationary solution, and the magnitude can be obtained
from (5). Thus, in order to determine an initial condition for (10), we can choose a point X1 along γ, close
enough to the stationary solution so that the O

(
(X−Xo)2

)
terms in equation (11) are negligible. With this

initial condition, (10) can be solved by integrating backwards in time to determine ∇ψ for the full nonlinear
equations at all points close to γ. The resulting iIRC may vary depending on the specific trajectory γ
which must be chosen appropriately for a given application. If the underlying system has fast-slow dynamics
that quickly converges to, for instance, an inertial manifold [16], [17], this manifold could be taken to be γ.
However, fast convergence to a known trajectory is not required.

B. Higher Dimensional Reductions

Assume that we have a general PDE (1) with a solution that asymptotically approaches a stationary
solution, Xo. We also assume that near Xo, we may write the solution as an infinite sum of eigenfunctions,
φj and associated eigenvalues λj in the same form as (12). Isostables provide a useful means for characterizing
a solution’s infinite time approach to Xo (i.e. the infinite time decay of the eigenfunction φ1 associated with
the eigenvalue of smallest magnitude), but it could be of practical interest to track the infinite time decay
decay along additional eigenfunctions. Here, we illustrate a reduction to N dimensions for the simplest case
where |λ1| < |λ2| < · · · < |λN | and λ1, . . . , λN are real and negative, but situations with repeated or complex
eigenvalues could be considered.

For the PDE (1) on the domain Ω with given boundary conditions, isostables describe the asymptotic
convergence of a solution, X(r, t) to Xo. We can define an isostable field in terms of a functional Ψ1 that
maps the state X(r, 0) to a scalar isostable (c.f. [14], [11])

Ψ1{X(r, 0)} ≡ lim
t→∞

e−λ1t

∫
Ω

∣∣X(r, t)−Xo

∣∣dΩ. (18)

Here
∫

Ω
· dΩ denotes integration over the entire domain Ω. In infinite time, projections of the solution

X(r, t) −Xo onto the eigenfunctions φ2, φ3, . . . become infinitesimally small compared to the projection of
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X(r, t)−Xo onto φ1, so that we can give an equivalent definition of (18)

Ψ1{X(r, 0)} = lim
t→∞

e−λ1t

∫
Ω

∣∣w1(X(r, t)−Xo)
∣∣dΩ, (19)

where w1 gives the projection of X(r, t)−Xo onto φ1. We can characterize the asymptotic behavior of the
projection onto any other eigenfunction φj , by defining additional functionals

Ψj{X(r, 0)} = lim
t→∞

e−λjt
∫

Ω

∣∣wj(X(r, t)−Xo)
∣∣dΩ, (20)

where wj gives the projection of X(r, t) −Xo onto φj . Because wj(X(r, t) −Xo) ∝ φje
λjt as t → ∞, one

can verify (c.f. equation (2.3) from [14]) that functionals (19) and (20) are defined so that ψj ≡ log(Ψj)/λj
defines fields for which 〈

∇ψj(X),F(X(r), r) + G(X)
〉

= 1. (21)

The analysis from Section II can be applied to any of these fields so that for a given trajectory γ, an
infinitesimal response curve ∇X(r,t)ψj , the gradient of ψj evaluated at X(r, t), can be calculated using (10).
Near the stationary solution, any perturbation in the direction φk for k 6= j will not affect the infinite time
behavior of the projection of X(r, t)−Xo onto the eigenfunction φj . Therefore, near the stationary solution
∇X(r,t)ψj satisfies

〈∇X(r,t)ψj , φk〉 = 0 for k = 1, 2, . . . , j − 1, j + 1, j + 2 . . . . (22)

Equations (21) and (22) determine an initial condition for each response curve, and (10) can be used to
calculate N response curves for the N eigenfunctions of interest. Even though eigenfunctions do not carry
any meaning for the fully nonlinear equations, these response curves still describe how a perturbation will
affect the infinite time approach to the stationary solution when the perturbation is applied in the nonlinear
regime. This yields the N -dimensional reduction:

dψj
dt

= 1 +
〈
∇ψj(Xγ(ψj)),p(r, t)

〉
, j = 1, . . . , N. (23)

For N = 1, (23) is equivalent to the one-dimensional isostable reduction considered in Section II. When N >
1, the reduction characterizes the decay of the projection of the solution X(r, t)−Xo onto the eigenfunctions
φ1, . . . , φN and ignores the higher order modes. Thus, for an N -dimensional reduction we require |λ1|− |λN |
multiplied by the time scale of interest to be large enough so that the truncated modes become negligible. This
is in direct contrast to inertial manifold reductions, which require the gap between consecutive eigenvalues
to be large [17], [22].

III. APPLICATION TO PARKINSON’S DISEASE AND NEURAL NETWORKS

We consider a model of pathological neural synchronization, thought to contribute to the motor symptoms
associated with Parkinson’s disease [23], [24], [25]. For patients whose symptoms are drug resistant, Deep
Brain Stimulation (DBS) offers an alternative treatment to mitigate these motor symptoms through the
injection of a high-frequency, pulsatile input into an appropriate brain region. It has been hypothesized
that the functional mechanism of DBS is the desynchronization of these pathologically synchronized brain
regions [26], [27]. In recent years, researchers have developed alternative desynchronization strategies [28],
[29], [30] that could make DBS more efficient in order to prolong battery life of the implantable device as
well as to mitigate potential side effects of DBS [31]. In previous work [7], we developed a methodology for
chaotically desynchronizing a population of synchronized oscillators which only required knowledge of the
neurons’ phase response curves (PRCs). However, this strategy only guarantees desynchronization when the
neurons are close in phase, and as a consequence cannot guarantee that a population of will be driven to a
splay, or completely desynchronized, state.

Using isostable reduction techniques derived in Section II, we can design an external stimulus to desyn-
chronize a population of neurons by driving them towards the splay state. To begin, we assume that each
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FIG. 2. Illustration of isostables in the advection-diffusion equation. Panel A shows an initial distribution in black
and several associated Fourier modes as dashed lines. After some time passes, panel B shows that all other modes
except for the first have decayed substantially. Panel C shows the same initial distribution with the first mode
shown in red for reference, to which we add one of three perturbations given in panel D. After 4T has elapsed, the
distribution resulting from the blue, green, and red perturbation is shown as a solid line in panels E, F, and G,
respectively, with the unperturbed distribution after 4T has elapsed shown as a dashed line. The perturbed and
unperturbed distributions are indistinguishable in panel G.

individual neuron from the larger population can be represented as a noisy limit cycle oscillator:

θ̇j = ω + Z(θj)

(
u(t) +

1

N

N∑
i=1

σ(V (θi)− V (θj)) +
√

2Sηj(t)

)
, j = 1, . . . , N. (24)

Equation (24) is an example of a phase reduction, a strategy that has been immensely useful in the under-
standing of many physical, chemical, and biological systems [1], [5], [4]. Here, θj ∈ [0, 2π) is the 2π-periodic
phase of the jth neuron with θ = 0 corresponding to the neuron firing an action potential, ω = 2π/T
represents the neuron’s baseline frequency and is determined from its natural period T , Z(θ) is the phase
response curve, which gives the change in phase due to an infinitesimal impulsive current, σ is the coupling
strength in an all-to-all network,

√
2Sηj(t) is i.i.d. zero mean white noise with intensity 2S, u(t) = I(t)/C

with I(t) being a common external current control input and C = 1µF/cm2 the constant neural membrane
capacitance, N is the total number or neurons, and V (θ) gives the transmembrane voltage as a function
of the phase. We assume S is small enough that higher order noise terms are negligible (c.f. [32]). Also,
we assume that the coupling in this network is electrotonic, but this could be generalized to include, for
example, chemical synaptic coupling. Assuming that the population is large and noise perturbations are
small, with stochastic averaging [33] we can approximate (24) according to its probability density ρ(θ, t)
with the Fokker-Planck equation in one dimension [34]

∂ρ(θ, t)

∂t
= − ∂

∂θ
[(ω + Z(θ)(u(t) + σ(V − V (θ)))ρ(θ, t)] +

1

2

∂2

∂θ2
[B2ρ(θ, t)]

= −ωρθ +
B2

2
ρθθ −[Z(θ)ρθ + Z ′(θ)ρ]u(t)︸ ︷︷ ︸

external input

− ∂

∂θ
[Z(θ)σ(V − V (θ))ρ]︸ ︷︷ ︸
intrinsic coupling

, (25)

where V =
∫ 2π

0
V (θ)ρ(θ)dθ and B2 = 2S

2π

∫ 2π

0
Z2(θ)dθ represent averaged transmembrane voltage and noise,

respectively. For the moment, we will consider (25) in the absence of external input and intrinsic coupling.
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Without these terms, we have a linear advection-diffusion equation on a ring, whose eigenfunctions are
related to the Fourier modes of the distribution. Panel A of Figure 2 shows an example distribution in black
along with several corresponding Fourier modes, shown as dashed lines. After some time passes, all but the
first mode has significantly decayed, as shown in panel B. The behavior of this system can be understood
from the perspective of isostables, which as outlined in [11] are sets of initial conditions which share the same
asymptotic convergence towards a stationary solution, in this case the uniform distribution ρ = 1/(2π). As
shown for this advective-diffusive system in Appendix A, the magnitude of the first mode determines the
isostable, and thereby the asymptotic approach of the system to the stationary solution, because all other
modes die out at a faster rate in the presence of noise.

Solutions to (25) exist in infinite dimensional space, and for this reason it can be difficult to work with for
control purposes. To reduce the complexity of this equation, one can instead track the change in isostables
in response to an external perturbation, with examples given in panels C-G of Figure 2. Panel C shows
the probability distribution along with the first mode, for reference, to which we add one of the three
perturbations shown in panel D. Panels E, F, and G show the resulting distribution after 4T elapses. We
find that adding the blue perturbation, which is antiphase to the first mode, results in a faster approach to
the stationary solution, as shown in panel E. Adding a perturbation orthogonal to the first mode (shown in
green) does not affect the isostable, but shifts the distribution to the right slightly, shown in panel F. Adding
a perturbation corresponding to a higher order mode (shown in red) does not effect the system’s approach
to the stationary solution, shown in panel G.

Using the intuition gleaned from Figure 2, one can understand the essence of the following isostable
reduction: in isostable coordinates, (25) becomes

ψ̇ = 1 +

〈
I(θ, ψ),−[Z(θ)ρθ + Z ′(θ)ρ]u(t)− ∂

∂θ
[Z(θ)σ(V − V (θ))ρ]

〉
,

I(θ, ψ) =
−2

A∗1B
2π

cos (θ − ϕ∗1 − ωψ) e
B2ψ

2 . (26)

Here, ψ is the isostable of the system with ψ ≡ 0 corresponding to an arbitrary time t∗, I(θ, ψ) is the
infinitesimal isostable response curve (iIRC), which represents the gradient of the isostable field, 〈·, ·〉 is the
L2 inner product, and A∗1 cos(θ−ϕ∗1) is the first Fourier mode of ρ(θ, t∗). Complete details of the derivation
of this reduction are given in Appendix A. The iIRC for this system is shown in panel B of Figure 3. The
magnitude of the iIRC grows exponentially with increasing ψ so that it requires smaller perturbations to
influence the isostable of the system as it approaches the stationary solution (c.f. [14]).

Equation (26) is a one dimensional ODE, and is much easier to work with than the infinite dimensional
PDE from (25), yet still retains essential characteristics of original equation. Equation (26) can be understood
as follows: if the inner product is zero, noise will be responsible for driving the system to larger isostables,
which are closer to the stationary, desynchronized distribution. However, the term responsible for internal
coupling, − ∂

∂θ [Z(θ)σ(V − V (θ))ρ], can counteract the effects of noise, maintaining some level of synchrony
in the network. Therefore, we can use the term associated with the external control, −[Z(θ)ρθ +Z ′(θ)ρ]u(t),
to reverse the effects of internal coupling, driving the distribution closer to the stationary solution, thereby
desynchronizing the network. Viewing the network from this perspective leads to a novel control strategy,
which would not be apparent from the full equations (25). Assuming each neuron receives the same input
u(t), and assuming that the maximum and minimum input that can be applied is umax ≥ 0 and umin ≤ 0,
respectively, which may be relevant for hardware or tissue limitations, we can apply the control

u(t) =

{
umax if 〈I(θ, ϕ1(ρ)),−[Z(θ)ρθ + Z ′(θ)ρ]〉 > 0,

umin otherwise.
(27)

When this strategy is implemented, the external control serves to maximize the right hand side of (26),
driving the system towards higher values of ψ, which correspond to less synchronous population distributions.

We apply the control strategy to a population of neurons, each with intrinsic dynamics characterized
by a two dimensional reduction of the Hodgkin-Huxley (HH) equations [35] that reproduces the essential
characteristics of the neuron’s dynamical behavior, [36], c.f. [37]:

V̇j = fV (Vj , nj) + I +
σ

N

N∑
i=1

(Vi − Vj) + u(t) + ηj(t),

ṅj = fn(Vj , nj). (28)
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FIG. 3. Isostable reduction applied to the Fokker-Planck equation. Panel A shows Z(θ), used in the desynchronizing
control strategy. Panel B shows the iIRC, I(θ, ψ)/β where β ≡ 2/A∗

1B
2π. Panels C-H show the result of applying the

control strategy to the PDE (25). The control input (in µA/µF) in D drives the first mode of the distribution from
0.5 to 0.05. Panel C gives the amplitude of this mode as a function of time for the equations with control applied
as well as the system without control, shown as a solid and dashed-dot line, respectively. Panel E gives the location
of the maximum of the distribution, θmax, as a function of time. Panels F-H show a comparison of the controlled
distribution to the uncontrolled distribution at t = 7.4, 41.8 and 75.8 ms. The horizontal dashed line shows the ideal,
uniform distribution.

Here, fV and fn are functions which describe the intrinsic neural dynamics, with all terms and parameters
given in [37], I = 10 µA/cm2 is a baseline current given so that each neuron is in a periodically spiking regime,
j = 1, . . . , N where N is the total number of neurons, and Vj and nj are the transmembrane voltage and
gating variable for neuron j, respectively. Note that (24) can be obtained from (28) through phase reduction.
The phase response curve, Z(θ), which gives the change in phase due to an infinitesimal impulsive current
stimulus is calculated using the software XPP [38] and is shown in panel A of Figure 3. To test our control
strategy (27), we take the coupling strength σ to be 0.06 and a white noise intensity 2S = 2, (with the
resulting value B2 = 0.0251), and umax = −umin = 0.7µA/µF. The specific values of umax and umin can
be changed without reducing the effectiveness of the control strategy provided they are large enough to
overcome the synchronizing effects of intercellular coupling, but small enough that the phase reduction (24)
is valid [5].

In the absence of external control, the internal coupling will cause a large population of neurons to approach
a distribution that is periodic in time, shown at a particular snapshot in panel F of Figure 3. Starting with
this distribution, we simulate the reduced PDE (25) with our control strategy. The resulting control is
shown in panel D of Figure 3. Panels F-H show snapshots of the controlled distribution as solid lines with
the uncontrolled distribution shown as a dot-dashed line for reference. We find that the applied control drives
the system close to a uniform distribution with a stimulus that is close to periodic. This is useful because
the control strategy (27) requires knowledge of the underlying distribution, which is generally unavailable
when simulating the full neural network (28). Instead we can make the following observations about the
desynchronizing control to design a simple closed loop control strategy: 1) The average voltage of the system
achieves a maximum value approximately when θmax = 2π. 2) Each time θmax = 2π, the external control
is at umin. 3) The control transitions from umin to umax at approximately 6.1 ms after θmax = 2π. 4) The
control remains at umax for approximately 3.7 ms before transitioning back to umin. Figure 4 gives a direct
comparison of the dynamics of the full PDE system (25) and the isostable reduced dynamics (26) under
the application of the desynchronizing control (27). The isostable field is appropriately shifted so that the
state ρ(θ, 0) corresponds to ψ = 0. The desynchronizing control strategy is applied between 15 and 70 ms.
Recall that the magnitude of the iIRC grows as the isostable increases (see panel B of Figure 3), so that the
growth rate of ψ appears exponential, even though the magnitude of the applied control remains unchanged.
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Without control, the coupling maintains an isostable value near zero (not shown).

FIG. 4. The top and bottom panels shows the state of the full equations (25) and the reduced equations (26) with
control (27). Larger isostable values correspond to more desynchronized states.

These observations allow for the design of the following control strategy for use in the full neural equations.

Monitor the average voltage, V =
∑N
j=1 Vj , of the system. Let tspike denote the most recent time V reaches

a local maximum which is above -50 mV, denoting that θmax ≈ 2π, and apply the control

u =


umax if 3.7 < t− tspike < 9.8,

0 if t− tspike > 15,

umin otherwise.

(29)

Notice that if the average voltage remains low enough, the controller is simply turned off. We can apply this
control when the average voltage spikes above -50 mV, and turn the controller off until the population has
resynchronized.

We apply (29) to a population of N = 300 neurons, shown in the top panel of Figure 5 where the black
lines give individual neural traces for 30 representative neurons from the population, and the red line gives
the average voltage for the system. We find that the applied control (middle panel), quickly desynchronizes
the system, as can be seen from the Kuramoto order parameter [5], shown in the bottom panel (for the
splay state, R = 0). Turning off the controller allows the neurons to resynchronize, at which point the
controller can be turned on again to desynchronize the system. We note that the control strategy which
produces chaotic desynchronization from [7] cannot desynchronize the population with this parameter set.
This happens because individual cells tend to break off from the synchronized population, quickly travel
around the limit cycle, and rejoin the synchronized population before it can desynchronize.
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FIG. 5. The top panel shows the approximated control strategy (29) applied to a population of Hodgkin-Huxley
neurons, with the middle and bottom panels showing the applied control and the Kuramoto order parameter, R, for
the network, respectively.

IV. APPLICATION TO A NONLINEAR PDE

Consider a one dimensional reaction-diffusion system of length L, which might be used to model action
potential propagation in an excitable system such as the heart [39], [40]:

∂

∂t
u(r, t) = D

∂2

∂r2
u(r, t) + Iint(r, t) + Iext(r, t). (30)

Here u is a voltage-like variable which might represent transmembrane potential, r represents the spatial
location, D = 2 is the diffusion constant, Iext(r, t) represents an external perturbation to V (r, t), and Iint(r)
is determined by local dynamics. We take no-flux boundary conditions and use a modified FitzHugh-Nagumo
model of exitable dynamics (c.f. [41]) so that

Iint(r, t) = c1u(r, t)(u(r, t)− a)(1− u(r, t))− c2v(r, t)u(r, t),

∂

∂t
v(r, t) = b(u(r, t)− dv(r, t)), (31)

Here, v might represent a gating variable of an excitable cell membrane. We take constants a = 0.1,
b = 0.005, c1 = 1, c2 = 1, d = 2.5, and L = 500. In the absence of external perturbations, the model
dynamics eventually settle to the stationary solution at u(r) = 0, v(r) = 0. When the system is at the
stationary solution, a large enough positive external perturbation to the u variable will create a pulse which
cascades throughout the system and dies out at the boundaries. Using isostable reduction, we can understand
how perturbations will affect the wave speed and can use this information to predict behavior in models with
higher spatial dimension. For convenience, we will choose ψ = 0 to correspond to the moment the traveling
wave is initiated in the medium.

Starting from the stationary solution, we set u(r, 0) = 1 for r ≤ 4 to initiate a traveling wave in the
medium. The resulting initial conditions are used to integrate (30) forward in time for 1400 units of time
with Iext ≡ 0, and the resulting trajectory is taken to be γ. Figure 6 provides three snapshots of the state
at three different isostables. The wave travels from left to right before being absorbed by the boundary,
at which point the voltage-like variable v quickly approaches zero and the variable u approaches zero more
slowly. Equation (30) is a nonlinear PDE, and unlike in the previous example from Section III, an isostable
response curve will be calculated numerically using (10). To write (30) in the form of equation (1) in order
to calculate an iIRC, let X(r, t) = [u(r, t), v(r, t)]T and F (X) = [c1u(u− a)(1−u)− c2vu, b(u− dv)]T . Also,
let G(X(r, t)) be diffusive coupling in the variable u, leaving p(r, t) = [Iext, 0]T . The corresponding isostable
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FIG. 6. At ψ = 0 a perturbation to u creates a traveling wave in the excitable system. The wave is absorbed by the
right boundary. The variable v approaches the stationary solution slowly relative to u.

reduction for this system is

ψ̇ = 1 + 〈Iu(r, ψ), Iext(r, ψ)〉+ 〈Iv(r, ψ), 0〉. (32)

For completeness, we explicitly acknowledge Iv(r, ψ) even though we cannot directly perturb the variable v.
At t = 1400, the traveling wave has died out and the state of the system is close enough to the stationary

solution so that it can be approximated by the linearization about the stationary solution:

∂

∂t
u(r, t) = D

∂2

∂r2
u(r, t) + Iint(r, t), (33)

Iint(r, t) = −c1au(r, t), (34)

∂

∂t
v(r, t) = bu(r, t)− bdv(r, t). (35)

In the linearized equations, v(r) is only present in (35), and one can verify that any function of the form
[u(r) = 0, v(r)]T is an eigenfunction of the linearized system with associated eigenvalue λ1 = −bd. Numeri-
cally, using a central space discretization [42] of the diffusive term in (33), we find that the eigenvalues of the
remaining eigenfunctions are real and larger in magnitude than |λ1|. Therefore, there are an infinite num-
ber of eigenfunctions corresponding to the slowest direction of the stable manifold which span the function
space v(r). This is similar to the situation described in Section II B, and an isostable response curve could
be defined for each of these eigenfunctions. However, we will only be interested in a single eigenfunction:
φ = [u(r), v(r)]T with u(r) = 0 and v(r) = 1 if r = L and v(r) = 0 otherwise. Here φ describes the approach
of v(L) to zero. The associated iIRC describes the effect of an external perturbation on the wave speed (i.e. a
perturbation which speeds up the wave will ultimately cause the system to decay to the steady state solution
more quickly). Recall from (22) that for a given eigenfunction associated with a real eigenvalue, near the
stationary solution the iIRC is orthogonal to the remaining eigenfunctions, with magnitude normalized so
that it satisfies (5). Using this information, the iIRC is approximated near the stationary solution with the
eigenvectors of a discretized system [21], and then the iIRC is calculated by solving (10) backwards in time.
The resulting iIRC is valid for the fully nonlinear equation (30).

Figure 7 shows the numerically calculated iIRC for this system at ψ = 200 (200 time units after the
creation of the traveling wave). The top-left and top-right panels show the iIRC for perturbations to the
variable u and v, respectively. The dashed line shows u(r) at ψ = 200 for reference. At other values of ψ
for which the traveling wave is sufficiently far from the boundaries the iIRCs do not change magnitude or
shape, but rather, are translated at the wave speed, numerically calculated to be 0.77 units of distance per
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unit of time. In order to verify Iu(r), direct perturbations of the form

u(r, t+) =

{
u(r, t−) +A if |ζ − r| ≤ 2,

u(r, t−) otherwise,
(36)

are given at time t where A = 0.003 denotes the magnitude of the perturbation and ζ denotes the location
where u(r) takes its maximum (which from Figure 7 is close to the point at which Iu(r) is maximized.
Resulting changes in isostables are measured through direct numerical simulation by comparing the time at
which the pulse reaches the boundary with and without perturbation. Individual datapoints are shown as
red crosses and agree well with theoretical predictions based on the iIRCs. Direct perturbations to v(r) of
the same form as (36) but with A = 0.01 are given and results are shown in the bottom-right panel of Figure
7.

With these results in mind, we consider the behavior of a two dimensional excitable system

∂

∂t
u(s, t) = ∇ · σ∇u(s, t) + Iint(r) + Iext(s, t), (37)

with no-flux boundary conditions and local dynamics that follow (31). Here, s = [x, y] and the diagonal
matrix σ = diag([Dx, Dy]) is a conductivity tensor allowing for anisotropy in the medium, a common feature
when modeling cardiac action potential propagation [43]. Here we will take the domain to be rectangular
with Lx and Ly representing the lengths in the x and y directions, respectively. In the following analysis,
we will find that the long term behavior of traveling waves in this system can be understood using isostable
reduction. Particularly, when one spatial direction is much smaller than the other, the wave front will self-
align so that it is perpendicular to the longer direction. To begin, we discretize (37) in the x spatial direction
only into a system of N coupled PDEs

∂

∂t
u1(y, t) = Dy

∂2

∂y2
u1(y, t) + I1

int(y) +
Dx

∆x2
(u2(y, t)− u1(y, t)),

∂

∂t
ui(y, t) = Dy

∂2

∂y2
ui(y, t) + Iiint(y)

+
Dx

∆x2

[
(ui+1(y, t)− ui(y, t)) + (ui−1(y, t)− ui(y, t))

]
, i = 2, . . . , N − 1,

∂

∂t
uN (y, t) = Dy

∂2

∂y2
uN (y, t) + INint(y) +

Dx

∆x2
(uN−1(y, t)− uN (y, t)), (38)
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with ∆x = Lx/(N−1). With this particular discretization, notice that each PDE is of the same form as (30)
if we define, for instance, Iiext ≡ Dx

∆x2

[
(ui+1(y, t)− ui(y, t)) + (ui−1(y, t)− ui(y, t))

]
for i = 2, . . . , N − 1. For

these identical coupled PDEs, we can define a trajectory γ common to each PDE which will be used to define
an isostable reduction. We assume that external perturbations are small enough so that each cell remains
close to γ and that to leading order ε there is a 1-to-1 relationship between ψi and the state variables ui(r)
and vi(r). The system of PDEs (30) can then be reduced to isostable coordinates as follows

ψ̇1 = 1 +
Dx

∆x2

〈
Iu(y, ψ1), u(y, ψ2)− u(y, ψ1)

〉
,

ψ̇i = 1 +
Dx

∆x2

〈
Iu(y, ψi), u(y, ψi+1)− u(y, ψi) + u(y, ψi−1)− u(y, ψi)

〉
, i = 2, . . . , N − 1,

ψ̇N = 1 +
Dx

∆x2

〈
Iu(y, ψN ), u(y, ψN−1)− u(y, ψN )

〉
. (39)

Notice that (39) is a function of each isostable in the system. Furthermore, we find through direct numer-
ical evaluation, when the wave is sufficiently far from the boundaries of the one dimensional subsystems,
〈Iu(y, ψ1), (u(y, ψ2) − u(y, ψ1))〉 can be reduced to a function of the form f(ϕi) where ϕi ≡ ψi+1 − ψi,
shown as a black line in panel A of Figure 8, calculated using Ly = 1000 units and Dy = 2. Using this new
definition, we can rewrite (39) in terms of the evolution of the phase differences

ϕ̇1 =
Dx

∆x2

(
2f(ϕ1)− f(ϕ2)

)
,

ϕ̇i =
Dx

∆x2

(
−f(ϕi−1) + 2f(ϕi)− f(ϕi+1)

)
, i = 1, . . . , N − 2

ϕ̇N−1 =
Dx

∆x2

(
2f(ϕN−1)− f(ϕN−2)

)
. (40)

Because f(0) = 0, equation (40) has a fixed point at [ϕ1, . . . , ϕN−1] = [0, . . . , 0]. Linearizing about this fixed
point and letting k = df/dϕ|ϕ=0, we arrive at

ϕ̇1 =
kDx

∆x2

(
2kϕ1 − kϕ2

)
,

ϕ̇i =
kDx

∆x2

(
−kϕi−1 + 2kϕi − kϕi+1

)
, i = 1, . . . , N − 2,

ϕ̇N−1 =
kDx

∆x2

(
2kϕN−1 − kϕN−2

)
. (41)

In the limit as ∆x approaches 0, [ϕ1, ϕ2, . . . , ϕN−1] can be approximated by the continuous function Φ(x, t)

where, for example,
∫ k∆x

0
Φ(s, t)ds ≈ ϕ1 + · · ·+ϕk = ψk+1 −ψ1. In this limit, (41) is well approximated by

∂

∂t
Φ(x, t) = −kDx

∂2

∂x2
Φ(x, t), (42)

with x ∈ [0, Lx], Φ(0, t) = Φ(Lx, t) = 0. The solution to (42) is given by [44]

Φ(x, t) =

∞∑
i=1

Bn sin

(
nπx

Lx

)
exp

(
kDxn

2π2

L2
x

)
, (43)

with the coefficients Bn defined according to initial conditions. The results of this analysis indicate when the
isostable values are nearly identical so that the phase difference coupling f(ϕ) is small enough, the Fourier
modes of Φ(x, t) decay exponentially at a rate determined by kDx. Panels B-E of Figure 8 show a simulation
of (37) with Dx, Dy, Lx, and Ly = 0.1, 2.0, 50, and 1000, respectively. For this choice of parameters, k
is numerically determined to be -1.036. A wave is initiated at the top of the domain with an external
perturbation to u at x = Lx/2. Two snapshots are shown in Panel B at t = 400 and t = 1200, denoted by a
♦ and ∗, respectively. Panel C gives the difference in isostables as a function of x at these two times. Here
ψ is the average isostable of the system at a given time. Solid lines in Panels D and E show the maximum
isostable difference as a function of time. Panel E highlights the behavior near the end of the simulation.
The dashed red line denotes the expected behavior, based on (43) and the red dot denotes the point at which
the theoretical comparison begins. As the isostables converge, the theoretical predictions agree well with
numerical observations.
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FIG. 8. Panel A shows the numerically calculated isostable difference coupling from (40). The red dashed line gives
f(ϕ) linearized about ϕ = 0, as used in (41). Panel B shows snapshots of a traveling wave at two points in time in
the 2D system (37). The isostable difference as a function of x (the shorter dimension) is plotted in panel C for the
snapshots from panel B. Black lines from panels D and E show the numerically calculated maximum difference in
isostables as a function of time. The dashed red line in panel E is calculated from (43) using numerically determined
isostable data at t = 700 as an initial condition.

V. DISCUSSION

State reduction can be a powerful strategy for both understanding and controlling systems with compli-
cated and high dimensional dynamics. Here, we have developed a methodology of state reduction for PDEs
which tracks the time it takes for an initial condition to reach a stable stationary solution in the presence of
external inputs. To illustrate both the power and flexibility of this method, we have applied it to problems
from two different fields of study.

In the first application, isostable reduction allows us to design an input to desynchronize a large population
of phase oscillators. This control strategy could have potential applications to Parkinson’s disease, where
excessive synchrony in a network of neurons is thought to contribute to the motor symptoms of the disease.
While this control strategy represents a significant improvement over previous ones, it will certainly need
to be developed further before it can be applied in vivo. For instance, the control strategy (27) requires
simultaneous monitoring and stimulation of the network dynamics, an issue that will need to be addressed
in practice. While increased synchronization is not the only pathological change associated with Parkinson’s
disease, and desynchronization may not alleviate all symptoms, control strategies based on mitigating the
excessive synchrony associated with Parkinson’s disease have shown promise in both human and primate
studies [45], [46].

In a second application, we analyze a nonlinear PDE with relevance to wave propagation in reaction-
diffusion systems. In this case, isostable reduction allows us to reduce the long term behavior of a nonlinear
system with two spatial dimensions to a simple diffusive process in one spatial dimension. The isostable
reduction methodology naturally extends to more complicated models of excitable dynamics and may be
useful in the design of electrical therapies for cardiac arrhythmias such as alternans [14], [47], [40] or in the
study of waves of spreading depression associated with migraines [48], [49].

Isostable reduction is not the only reduction strategy that can be applied to PDEs. This method of isostable
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reduction is perhaps most similar to reduction through the use of inertial manifolds [16], [17], [18], [19] which
attract solutions of PDEs exponentially quickly. While inertial manifolds are an important analytial tool for
analyzing high dimensional systems, they can be difficult to approximate, and it is not guaranteed that a
resulting inertial manifold would be low dimensional. Furthermore, once an inertial manifold is found, further
analysis would need to be performed in order to understand how small perturbations affect the dynamics.
The isostable reduction strategy described in this work does not explicitly require the state dynamics to
collapse to a one-dimensional manifold.

Future work could address strategies for reducing PDEs for which the least negative eigenvalue of the
linearized system is part of a continuous spectrum. In this work, we explicitly exclude this possibility so
that viewing the dynamics in terms of a finite set of isostable coordinates would be sufficient to characterize
the long term behavior of a given PDE. If the least negative eigenvalue belongs to a continuous spectrum,
one would most likely need to consider an infinite set of isostable coordinates associated with a continuous
subset of the spectrum to ensure that the truncated isostable dynamics accurately characterize the long term
dynamics of the full PDE. Another application of interest would be to investigate the convergence of a PDE
to a periodic orbit [8], [40], [50]. In this case, the methodology presented in this manuscript would need to
be adapted for use when the dynamics approach a stable periodic orbit rather than a stationary solution.

Phase reduction has played an important role in the understanding of nonlinear oscillatory dynamics in
the past half century, and we imagine that isostable reduction could play a similarly important role in the
understanding of nonlinear PDEs by allowing for the study of complicated systems in a more useful coordinate
system. Isostable reduction allowed us to make progress on a problem with applications to neuroscience,
and we imagine that it could be a useful reduction strategy in other contexts, especially when the rate and
timing of a system’s approach towards a stationary solution are of interest.

Support for this work by National Science Foundation Grant NSF-1363243 and NSF-1264535 is gratefully
acknowledged.

Appendix A ISOSTABLE REDUCTION OF THE FOKKER-PLANCK EQUATION

Using isostable reduction techniques, we can design an external stimulus to desynchronize a population
of neurons by bringing them closer to the splay state. To begin, we assume that the population can be
represented as a set of noisy limit cycle oscillators

θ̇j = ω + Z(θj)

(
u(t) +

1

N

N∑
i=1

σ(V (θi)− V (θj)) +
√

2Sηj(t)

)
, j = 1, . . . , N. (A1)

Here, θ ∈ [0, 2π) is the 2π-periodic phase of the neuron, ω = 2π/T represents the neuron’s baseline frequency

and is determined from its natural period T ,
√

2Sηj(t) is i.i.d zero mean white noise with intensity 2S,
u(t) = I(t)/C with I(t) being a common external current control input and C = 1µF/cm2 the constant
neural membrane capacitance, and V (θ) gives the transmembrane voltage as a function of the phase. We
assume S is small enough that higher order noise terms are negligible [32]. Also, we assume that the
coupling in this network is electrotonic, but this could be generalized to include, for example, chemical
synaptic coupling in the network. The coupling is all-to-all with a strength determined by σ. For a large
population, it is useful to track the probability density of neurons with phase θ at a given time, ρ(θ, t). In

this case, the coupling in (A1) can be written as σ(V − V (θj)), where V =
∫ 2π

0
V (θ)ρ(θ, t)dθ, rather than

as a finite sum. In the limit that noise perturbations are small, through stochastic averaging, [33], we can
approximate (A1) as

θ̇j = ω + Z(θj)(u(t) + σ(V − V (θj))) +Bηj(t), (A2)

where B2 = 2S
2π

∫ 2π

0
Z2(θ)dθ. For a population of neurons described by (A2), and each receiving an identical

input u(t), the probability density evolves according to [34]:

∂ρ(θ, t)

∂t
= − ∂

∂θ
[(ω + Z(θ)(u(t) + σ(V − V (θ)))ρ(θ, t)] +

1

2

∂2

∂θ2
[B2ρ(θ, t)]

= −ωρθ +
B2

2
ρθθ −[Z(θ)ρθ + Z ′(θ)ρ]u(t)︸ ︷︷ ︸

external input

− ∂

∂θ
[Z(θ)σ(V − V (θ))ρ]︸ ︷︷ ︸
intrinsic coupling

. (A3)
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For the moment, we will analyze (A3) in the absence of external input or intrinsic coupling in order to
perform an isostable reduction on the system, where the stable stationary solution is ρ(θ) = 1/(2π) = ρ.
Without these terms, we have a linear advection-diffusion equation on a ring:

ρt = Mρ, (A4)

where M ≡ −ω ∂
∂θ + B2

2
∂2

∂θ2 . The eigenfunctions and eigenvalues of (A4) are

φ2n−1,2n = e±inθ, λ2n−1,2n = −B
2n2

2
∓ ωni. (A5)

The infinite time approach to the origin will be governed by the eigenfunctions associated with eigenvalues
with the smallest magnitude real part,

ρ(θ, t)− ρ̄ =

∞∑
n=1

[
s2n−1e

inθe(−B2n2

2 −ωni)t + s2ne
−inθe(−B2n2

2 +ωni)t
]
, (A6)

where the constants {s1, s2, . . . } are determined by the initial distribution ρ(θ, 0). Equation (A6) can be
rewritten using Euler’s formula and the knowledge that the solution is strictly real as

ρ(θ, t)− ρ̄ =

∞∑
n=1

[
(an sin(n(θ − ωt)) + bn cos(n(θ − ωt)))e−B

2n2

2 t
]

=

∞∑
n=1

[
An cos(n(θ − ωt)− ϕn)e−

B2n2

2 t
]
, (A7)

where an and bn ∈ R, tan(ϕn) = an/bn and An =
√
a2
n + b2n, and the second line of (A7) is obtained through

trigonometric identities. Equation (A7) mandates that the infinite time approach to the stationary solution
will be governed by the magnitude of the first mode of the Fourier expansion of the initial distribution ρ(θ, 0).
Here, because λ1 is complex, the infinite time approach to the stationary solution is governed by two linearly
independent eigenfunctions, sin(θ) and cos(θ) which spiral towards the stationary solution. A perturbation
in the direction − sin(θ − ωt − ϕ1) perturbs in the direction of the spiral and will not change the isostable
on which the function lies. Conversely, perturbations in the orthogonal direction, cos(θ−ωt−ϕ1), represent
the gradient of the isostable field. Examples of the effect of these types of perturbations are shown in Panels
C-G of Figure 2 from the main text. With this information and using equation (5), by arbitrarily defining
ψ = 0 to correspond to time t∗, we have the initial condition

I(θ, 0) = − 2

A∗1B
2π

cos(θ − ϕ∗1), (A8)

where I(θ, ψ) ≡ ∇ψ is the isostable response curve and A∗1 cos(θ − ϕ∗1) is the first Fourier mode of the
distribution ρ(θ, t∗). The Jacobian is identical to the operator M for the linear system. Therefore, according
to (10), the isostable response curve along an unperturbed trajectory, γ, will change in time according to

dI
dt

= −M†I = −ωIθ −
B2

2
Iθθ, (A9)

where M† = ω ∂
∂θ + B

2
∂2

∂θ2 is the adjoint of the operator M . Using (A9) and (A8) we can explicitly solve for
the iIRC

I(θ, ψ) =
−2

A∗1B
2π

cos (θ − ϕ∗1 − ωψ) e
B2ψ

2 . (A10)

Equation (A10) is valid provided that an external input is small enough so that it does not drive the
distribution far from γ, the expected trajectory towards the stationary solution, which in this example is
given by equation (A7). If the input does drive the system far from γ, the isostable response curve at a given
time can be found from the distribution ρ(θ, t) subject to (A8).
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Using the isostable response curve, we can write an isostable reduction of (A3) as

ψ̇ = 1 +

〈
I(θ, ψ),−[Z(θ)ρθ + Z ′(θ)ρ]u(t)− ∂

∂θ
[Z(θ)σ(V − V (θ))ρ]

〉
. (A11)
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[11] A. Mauroy, I. Mezić, and J. Moehlis. Isostables, isochrons, and Koopman spectrum for the action–angle repre-

sentation of stable fixed point dynamics. Physica D: Nonlinear Phenomena, 261:19–30, 2013.
[12] N. Fenichel. Asymptotic stability with rate conditions. Indiana Univ. Math. J, 23(1109-1137):74, 1973.
[13] S. Wiggins. Normally Hyperbolic Invariant Manifolds in Dynamical Systems. Number 105. Springer, New York,

1994.
[14] D. Wilson and J. Moehlis. Extending phase reduction to excitable media: Theory and applications. SIAM

Review, 57(2):201–222, 2015.
[15] A. J. Roberts. Appropriate initial conditions for asymptotic descriptions of the long term evolution of dynamical

systems. The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 31(01):48–75,
1989.

[16] P. Constantin, C. Foias, B. Nicolaenko, and R. Temam. Integral Manifolds and Inertial Manifolds for Dissipative
Partial Differential Equations, volume 70. Springer, New York, 1989.

[17] C. Foias, G. R. Sell, and R. Temam. Inertial manifolds for nonlinear evolutionary equations. Journal of Differ-
ential Equations, 73(2):309–353, 1988.

[18] C. Foias, M. S. Jolly, I. G. Kevrekidis, G. R. Sell, and E. S. Titi. On the computation of inertial manifolds.
Physics Letters A, 131(7):433–436, 1988.

[19] M. S. Jolly, I. G. Kevrekidis, and E. S. Titi. Approximate inertial manifolds for the Kuramoto-Sivashinsky
equation: analysis and computations. Physica D: Nonlinear Phenomena, 44(1):38–60, 1990.

[20] E. Brown, J. Moehlis, and P. Holmes. On the phase reduction and response dynamics of neural oscillator
populations. Neural Computation, 16(4):673–715, 2004.

[21] J. P. Keener. Principles of Applied Mathematics. Addison-Wesley, Redwood City, California, 1988.
[22] J. Mallet-Paret and G. R. Sell. Inertial manifolds for reaction diffusion equations in higher space dimensions.

Journal of the American Mathematical Society, 1(4):805–866, 1988.
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