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The ground state of an elastic interface in a disordered medium undergoes collective jumps upon
variation of external parameters. These mesoscopic jumps are called shocks, or static avalanches.
Submitting the interface to a parabolic potential centered at w, we study the avalanches which
occur as w is varied. We are interested in the correlations between the avalanche sizes S1 and S2

occurring at positions w1 and w2. Using the Functional Renormalization Group (FRG), we show that
correlations exist for realistic interface models below their upper critical dimension. Notably, the
connected moment 〈S1S2〉

c is up to a prefactor exactly the renormalized disorder correlator, itself a
function of |w2−w1|. The latter is the universal function at the center of the FRG; hence correlations
between shocks are universal as well. All moments and the full joint probability distribution are
computed to first non-trivial order in an ǫ-expansion below the upper critical dimension. To quantify
the local nature of the coupling between avalanches, we calculate the correlations of their local jumps.
We finally test our predictions against simulations of a particle in random-bond and random-force
disorder, with surprisingly good agreement.

PACS numbers: 05.40.-a, 05.10.Cc, 64.60.av

I. INTRODUCTION

The model of an elastic interface in a disordered
medium has been put forward as a relevant description
for a large number of systems [1–4]. Examples include do-
main walls in soft magnets [5, 6], fluid contact lines on a
rough surface [7, 8], strike-slip faults in geophysics [9, 10],
fracture in brittle materials [11–13] or imbibition fronts
[14]. An important common property of these systems
is that their response to an applied field is not smooth
but rather proceeds via jumps extending over a broad
range of space and time scales. As a consequence, under-
standing the properties and the universality of avalanche
processes has received a lot of attention in the past years
[15–17].
A problem of outstanding interest is to quantify the

correlations between successive avalanches. In the con-
text of earthquakes those are linked to the notion of af-
tershocks, whose statistics is characterized through phe-
nomenological laws such as the Omori law [18]. Several
mechanisms have been advanced to explain these strong
correlations, all involving an additional dynamical vari-
able [19, 20]. For elastic interfaces, correlations between
avalanches were yet only studied as a result of such ad-
ditional degrees of freedom in the interface dynamics, as
relaxation processes [21, 22] or memory effects [23]. In
this work, we show that even in the absence of such mech-
anisms, avalanches in elastic interfaces are generically

correlated below their upper critical dimension. These
correlations are universal.
Let us emphasize that the goal of this paper is not

to understand or explain the aftershock statistics ob-
served in earthquakes, for which additional mechanisms
such as those discussed above are necessary. Rather, it is
to emphasize that for disordered elastic systems, except
for mean-field models, correlations between avalanches

always exist. A precise quantitative understanding of
these correlations is necessary to correctly quantify cor-
relations induced by additional mechanisms. In systems
where the description by the standard elastic-interface
model is accurate (without additional mechanisms) our
results quantify the correlations between avalanches. To
our knowledge, these correlations have up to now been
ignored in theoretical or experimental work. It would
thus be interesting to quantify them better, in order to
access universality, or lack thereof, in various avalanche
processes.

In this article we study the correlations between the
sizes and locations of shocks in the ground state (also
called “static avalanches”) of elastic interfaces in disor-
dered media. These static avalanches are close cousins of
the (dynamic) avalanches observed in the interface dy-
namics at depinning. As we discuss below, we expect
most of our results to hold for both classes. Our study is
conducted using the Functional Renormalization Group
(FRG). Originally introduced as a powerful tool to study
the universal properties of the statics and dynamics (at
the depinning transition) of elastic interfaces in disor-
dered media [24–30], the FRG has been recently adapted
to the study of avalanches [31–36]. It has notably led to
a rigorous identification of the relevant mean-field the-
ory for the statistics of single avalanches: the Brownian-
Force Model (BFM), a multidimensional generalization
of the celebrated Alessandro-Beatrice-Bertotti-Montorsi
(ABBM) model [37, 38]. Interestingly, the FRG allows
to go beyond mean-field theory and to compute in a
controlled way avalanche observables in an expansion in
ǫ = duc − d where d is the interface dimension, and duc
the upper critical dimension of the problem. The lat-
ter depends on the range of the elastic interactions, with
duc = 4 for short-ranged (SR) elasticity and duc = 2 for
the usual long-ranged (LR) elasticity.
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The outline of this article is as follows: In section II
we summarize our results, preceded by a definition of
the relevant observables. In Section III we introduce the
model and the observables we are interested in. Section
IV contains the derivation of the main results presented
above. Section V gives an analysis of the correlations
between the local shock sizes. Section VI presents the
results of our numerical analysis of these correlations for
a toy model with a single degree of freedom, i.e. d = 0.
Finally, a series of appendices contains technical deriva-
tions.

II. MAIN RESULTS

Let us now state our main results for interfaces with
a short-ranged elastic kernel (a more general case will be
treated in the manuscript, with little changes to the for-
mulas). To this aim, we parameterize the position of the
interface by the (real, one-component) displacement field
u(x), where x ∈ R

d is the internal coordinate of the in-
terface. For notational convenience we denote u(x) ≡ ux.
The interface is submitted to a quenched random poten-
tial V (ux, x), and to an external parabolic confining field
m2

2 (ux − w)2 centered at w. In a given disorder realiza-
tion V , upon variation of the external fiel w, the ground
state (i.e. lowest-energy) configuration of the interface,
denoted ux(w), changes discontinuously at a set of dis-
crete locations wi, according to

ux(w
−
i ) → ux(w

+
i ) = ux(w

−
i ) + S(i)

x . (1)

The event (wi, S
(i)
x ) is the ith shock of the interface, wi

is the location of the shock, S
(i)
x is its local size at x and

S(i) =
∫

ddxS
(i)
x its total size. The statistical properties

associated to one shock were thoroughly analyzed using
FRG in [31, 32]. Such properties are encoded in the shock
density ρ0, defined as

ρ0 :=
∑

i

δ(w − wi) , (2)

and in the avalanche-size density

ρ(S) :=
∑

i

δ(w − wi)δ(S − S(i)) . (3)

The shock-size density ρ(S) is linked to ρ0 through ρ0 =
∫

dS ρ(S). Note that these quantities do not depend on
w due to the statistical translational invariance (STS)
of the disorder. Considering two points w < w′ and

sizes S1 < S2,
∫ w′

w
dw̃
∫ S2

S1
dSρ(S) is the mean number of

shocks occurring between w and w′ with size S ∈ [S1, S2],
while (w′−w)ρ0 is the mean number of shocks (irrespec-
tive of their size). Note that throughout the rest of this
section we will discuss our results in terms of densities
but they can be translated into results for normalized
probabilities as we discuss in Sec. III E.

These observables alone do not determine the statis-
tical properties of the sequence {(wi, S(i))}i∈Z of shocks
experienced by the interface in a given environment. In
particular, they do not contain any information about
the correlations between the shocks. For a given distance
W > 0, let us therefore introduce the two-shock density

at distance W,

ρ2(W ) :=
∑

i6=j

δ(w − wi)δ(w +W − wj) . (4)

This observable scales as the square of a density. Thus
∫ w′

1

w1
dw
∫ w′

2

w2
dw′ρ2(w

′ − w) counts the mean number of

pairs of shocks such that the first shock occurs between
w1 and w′

1, and the second one between w2 and w′
2.

Equivalently, ρ̃2(W ) := ρ2(W )
ρ0

is the density of shocks

at a distance W from a given shock. These observ-
ables contain information about the correlations between
shocks. Indeed an uncorrelated sequence of shocks im-
plies ρ2(W ) = ρ20 (and thus ρ̃2(W ) = ρ0). A central
question addressed in this work is whether the presence
of a shock at a given point decreases (ρ2(W ) < ρ20) or in-
creases (ρ2(W ) > ρ20) the density of shocks at a distance
W .
To measure the correlations between the size of the

shocks (and not only their positions) we introduce the
two-shock size density at distance W ,

ρW (S1, S2) := (5)
∑

i6=j

δ(w − wi)δ(S1 − S(i))δ(w +W − wj)δ(S2 − S(j)) .

It is linked to ρ2(W ) via

ρ2(W ) =

∫

dS1 dS2 ρW (S1, S2) . (6)

Here
∫ w′

1

w1
dw
∫ w′

2

w2
dw′

∫ S′

1

S1
dS
∫ S′

2

S2
dS′ρw′−w(S, S

′) counts
the mean number of pairs of shocks such that the first
shock occurred between w1 and w′

1, and the second be-
tween w2 and w′

2, with sizes between S1 and S′
1, resp. S2

and S′
2. For this observable, an absence of correlations in

the sequence of shocks implies ρW (S1, S2) = ρ(S1)ρ(S2).
To investigate the presence of correlations we thus study
the connected two-shock size density ρcW (S1, S2), defined
as

ρcW (S1, S2) := ρW (S1, S2)− ρ(S1)ρ(S2) . (7)

At the level of mean-field theory, i.e. in the BFM model,
it is known [32, 35] that the shocks are independent and
the process w → ux(w) is a Levy jump process. As a
consequence, ρcW (S1, S2) = 0. On the other hand, for re-
alistic interface models below their upper critical dimen-
sion, the shocks are correlated, demanding to go beyond
the BFM. This can be seen from the second moment for
which we show below the exact relation

〈S1S2〉ρc
W

[〈S〉ρ]2
= −∆′′(W )

Ldm4
. (8)
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On the left-hand-side, 〈...〉ρc
W

denotes the average with
respect to ρcW as defined in Eq. (7). On the right-hand-
side, L is the lateral extension of the system, and m2 the
curvature of the confining potential, which sets the cor-
relation length Lm := 1/m for avalanches in the lateral
direction. Finally, ∆(W ) is the renormalized disorder-
force correlator, the central object in the FRG treatment
of disordered elastic systems: Denoting u(w) the center-
of-mass position of the interface, given well-position w,
the correlator ∆(W ) is defined as the connected corre-
lation function of the center-of-mass fluctuations of the
interface position [39],

∆(W ) := Ldm4[u(w)− w] [u(w +W )− (w +W )]
c
.
(9)

Up to a universal scaling factor and a single non-universal
scale, the function ∆(W ) only depends on the universal-
ity class of the problem. It was computed up to two-
loop accuracy in Ref. [30] and measured numerically in
Ref. [40]. For our purpose it is important that the func-
tion ∆(W ) is uniformly of order ǫ, and that its sec-
ond derivative is non-zero. Thus the correlations (8) in-
crease when going away from the upper critical dimen-
sion, where mean-field theory, or equivalently the BFM is
relevant. Indeed, for the BFM ∆′′(W ) = 0, and the effec-
tive disorder force is distributed as a Brownian motion.
Beyond mean-field theory, the sequence of shocks is corre-
lated, thus the effective disorder force at large scales has
a different statistics than Brownian motion. The sign of
these correlations depends on the sign of ∆′′(W ), which,
in turn, depends on the universality class of the prob-
lem. As detailed in Sec. III C, our results predict qualita-
tively different correlations depending on the universality

class. The most important static universality classes of
non-periodic, short-ranged disorder are the random-bond
(RB) universality class, which at the microscopic level
has short-ranged potential-potential correlations, and the
random-field (RF) universality class, for which the force-
force correlations, but not the potential-potential corre-
lations, are short-ranged at the microscopic level. As is
summarized in Fig. 1, for RF-disorder ∆′′(W ) > 0, and
thus avalanches are always anti-correlated. On the other
hand, for RB-disorder, avalanches are anti-correlated at
short distances W , but positively correlated at larger
ones.
To obtain results for higher avalanche-size moments,

we use the FRG and the ǫ = (duc− d) expansion to show
that, to lowest non-trivial order in the expansion,

ρcW (S1, S2) = −∆′′(W )

Ldm4

S1S2

4S2
m

ρ(S1)ρ(S2) +O(ǫ2) . (10)

Here

Sm :=
〈S2〉ρ
2〈S〉ρ

, (11)

where 〈...〉ρ denotes the average with respect to ρ as de-
fined in Eq. (3), is the characteristic size of avalanches,

Negative 

Correlations

W

Positive

Correlations

Negative

Correlations

W

FIG. 1: Cartoons of the typical shape of the renormalized
disorder correlator ∆(W ) (black-dashed line) and of its second
order derivative ∆′′(W ) (red line) for the Random-Field (left)
and Random-Bond (right) universality classes (not to scale).
Our results predict that the shock sizes are always negatively
correlated in the Random-Field universality class, whereas the
Random-Bond universality class exhibits a richer structure
with negatively (resp. positively) correlated shock sizes at
small (resp. large) distances.

which acts as a large-scale cutoff for the avalanche-size
density ρ(S), and ∆′′(W ) introduced above is O(ǫ). In-
tegrating Eq. (10) times S1S2 over S1 and S2, we recover
Eq. (8). Contrary to the latter equation which is exact,
relation (10) is correct only to order ǫ.

As a consquence of Eq. (10), and its generalizations
to higher order, the correlations between avalanches are
universal. To make this more transparent, we rewrite Eq.
(10) as

ρcW (S1, S2) =
1

(Lm)d
L2d

S4
m

Fd
( W

Wm
,
S1

Sm
,
S2

Sm

)

. (12)

The function Fd is universal and apart from its three
arguments depends only on the spatial dimension. To
first order in d = duc − ǫ, and in the limit of large L and
small m, it is given by

F(w, s1, s2) ≃
Ad∆̃

∗′′(w)

16π
√
s1s2

e−(s1+s2)/4 +O(ǫ2) . (13)

Here Ad is an explicit constant, with Ad=4 = 8π2 for
SR elasticity; the scale Wm ∼ m−ζ , with ζ the rough-
ness exponent contains a non-universal amplitude. The
range of validity of this result is discussed in the main
text. The presence of the factor of 1/(Lm)d highlights
the fact that the correlations between shocks are local
(indeed N := (Lm)d counts the number of elastically in-
dependent regions of the interface). We will analyze this
local structure by studying the correlations between the
local sizes of the shocks.

To summarize, let us emphasize again our main mes-
sage namely that for realistic models (beyond mean-field)
the sequence of shocks is always correlated.
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III. MODEL, SHOCK OBSERVABLES AND
METHOD

A. Model

Consider the Hamiltonian for a d−dimensional elastic
interface with position u(x) ≡ ux ∈ R (x ∈ R

d), elastic
kernel g−1

xx′ , subjected to a harmonic well centered at w,
and to a disorder potential V (u, x):

H[u;w] =
1

2

∫

xx′

g−1
xx′(ux − w)(ux′ − w) +

∫

x

V (ux, x) .

(14)
Here

∫

x =
∫

ddx and we assume everywhere that the sys-
tem is confined in a box of length L with e.g. periodic
boundary conditions (the boundary conditions will not
play a role in the following). We also assume the exis-
tence of a short-scale length cutoff a. The elastic kernel
is translationally invariant (g−1

xx′ = g−1
x−x′) and defines a

convex elastic-energy functional (i.e. g−1
xx′ > 0 for x 6= x′).

We denote g−1
q = 1/gq its Fourier transform defined as

g−1
q =

∫

q
eiqxg−1

x , where
∫

q
=
∫

ddq
(2π)d

. A possible choice

is the standard short-ranged elasticity defined by

g−1
xx′ = δxx′(−∇2

x′ +m2) , g−1
q = q2 +m2 . (15)

Here δxx′ is the Dirac δ distribution, and the elastic co-
efficient has been set to one using an appropriate choice
of units. Another kernel we consider is

g−1
q = (q2 + µ2)

γ
2 , (16)

where γ = 2 corresponds to the previous case, and γ = 1
is relevant for long-ranged elasticity, as encountered in
fracture and contact-line experiments. For a kernel of
the form (16) we define the mass term as

m2 := g−1
q=0 = µγ . (17)

It is the strength of the harmonic well. For short-ranged
elasticity we have

Hel[u;w] :=
1

2

∫

xx′

g−1
xx′(ux − w)(u′x − w)

=
1

2

∫

x

(∇xux)
2 +m2(ux − w)2. (18)

Thus Lm := m−1 defines a length scale beyond which
different parts of the interface are elastically indepen-
dent. It also provides a large-scale cutoff in loop inte-
grals encountered in the field theory. For more general
kernels (16) this length scale is Lµ := µ−1, and we sup-
pose Lµ ≪ L, ensuring that boundary conditions do not
play a role. The number of elastically independent parts
of the interface is N = (L/Lµ)

d. The disordered po-
tential V (u, x) is assumed to be short-ranged in internal
space x, and statistically translationally invariant, with
a second cumulant

V (u, x)V (u′, x′)
c
= δxx′R0(u− u′) . (19)

The overline (...) denotes the average over the disorder,
and superscript c stands for connected averages. The de-
tailed form of R0 is, apart from global features that deter-
mine the universality class of the problem (see Sec. III C),
unimportant. We also consider the force-force cumu-

lant ∆0(u) = −R′′
0 (u) such that ∂uV (u, x)∂u′V (u′, x′)

c
=

δxx′∆0(u−u′). Introducing a (finite) temperature T , dis-
order and thermal averages in this model can efficiently
be computed using a replicated field theory. Introducing
n replicated fields uax, a = 1, . . . , n, the replicated action
reads

S[u] =
1

2T

∑

a

∫

xx′

g−1
xx′(uax − w)(uax′ − w)

− 1

2T 2

∑

a,b

∫

x

R0(uax − ubx) + · · · (20)

where · · · indicates eventual higher cumulants of the dis-
order.

B. The ground state and the scaling limit

As discussed in the introduction, we are interested in
the minimal energy configuration of the interface for a
given parabolic well position w and disorder realization
V (i.e. the T = 0 problem). It is defined as the configu-
ration ux(w), which minimises the energy,

ux(w) := argmin
ux

H[u;w] . (21)

We denote

u(w) :=
1

Ld

∫

x

ux(w), (22)

the center of mass of the ground-state of the interface.
The statistical properties of ux(w) have been extensively
studied in the literature. In particular it is known that
the interface is self-affine with a (static) roughness ex-

ponent ζ, defined by [ux(w)− ux′(w)]2 ∼ |x − x′|2ζ .
This scaling form generally holds in the scaling regime
Lc ≪ |x − x′| ≪ Lµ where Lc is the Larkin length. The
scaling limit is thus obtained for Lµ → ∞ or equiva-
lently for µ → 0, also equivalent to m → 0 (see (17)),
a regime which is implicit throughout this work. In the
FRG treatment of this problem, the ground state statis-
tics is studied using the replicated field theory (20). The
mass term m (or µ = m2/γ) can be conveniently used
as a control parameter to study the flow of the effective
action. As m → 0 and through a proper rescaling, the
effective action approaches a RG fixed point. This fixed
point is perturbative in ǫ = duc − d > 0 where duc is the
upper critical dimension of the model (for kernels of the
form (16) it is given by duc = 2γ, thus duc = 4 for short-
ranged elasticity and duc = 2 for long-ranged elasticity).
The central object of the theory is the effective disorder
correlator R(u), a renormalized version of R0(u). It ap-
pears in the effective action of the theory Γ[u], as R0(u)
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appears in the bare action S[u] of Eq. (20) (see the action
(57) below). Remarkably, as shown in Ref. [41], it is re-
lated to a physical observable, the renormalized disorder
force-force correlator ∆(u) defined as

∆(w − w′) := Ldm4[u(w) − w][u(w′)− w′]
c
, (23)

through the relation ∆′′(u) = −R(u). This is the func-
tion that appears in the results (8) and (10) of the intro-
duction. The RG flow can be equivalently studied on R
or ∆. For m → ∞, the correlator ∆(w) is equal to the
bare force-force correlator: ∆(w) →m→∞ ∆0(w). In the
limit m→ 0 it admits a scaling form

∆(w) = Adµ
ǫ−2ζ∆̃(µζw) (24)

where Ad is a dimensionless constant, and we recall µ =
m2/γ . For kernels of the form (16), a convenient choice
is to take Ad as Ad = 1

ǫĨ2
with the dimensionless loop

integral Ĩ2 :=
∫

q
1

(1+q2)γ . Note that the combination ǫĨ2
stays finite as ǫ→ 0. In general

A−1
d = ǫĨ2 =

2

(2
√
π)d

Γ(γ + 1− d/2)

Γ(γ)
, (25)

and for example ǫĨ2 =γ=2;d=4 1/(8π2) and ǫĨ2 =γ=1;d=2

1/(2π). As m → 0, the rescaled disorder correlator ∆̃
converges to the fixed point of the FRG flow equation
∆̃∗(u), which depends only on the universality class.
Let us now recall some important properties of these

fixed-point functions.

C. Properties of ∆̃∗(u) and static universality
classes

Depending on the properties of the bare disorder cor-
relator R0(u), the FRG predicts that ∆̃(u) converges
as m → 0 to one of the fixed point of the FRG equa-
tion. A property of the (zero-temperature) FRG equa-

tion is that, for non-periodic disorder, if ∆̃∗(u) is a

fixed point, κ2∆̃∗(u/κ) also is a fixed point. Hence the
fixed point towards which the system flows contains one
non-universal scale whose value depends on microscopic
properties of the disorder. The known fixed points can
be regrouped into four main classes1. Analytic proper-
ties of these fixed-point functions are known up to two-
loop order, i.e. O(ǫ2), see Ref. [30] to which we refer
the reader for quantitative results. An important prop-
erty is that all fixed points exhibit a cusp around 0,
∆(u) ≃ ∆(0) + ∆′(0+)|u| + O(u2), related to the pres-
ence of avalanches [31, 33]. For our analys the sign of
(∆∗)′′(u) is crucial as it determines the sign of the cor-
relations. From the exact result (8) (shown below) we

1 There are other classes with different long-range correlations, but
we will not study them.

see that for (∆̃∗)′′(W ) > 0 shock sizes at distance W

are anti-correlated, whereas for (∆̃∗)′′(W ) < 0) they are
positively correlated.

Random-bond: This class has a bare disorder poten-
tial V (x, u) distributed with short-ranged correlations in
the u direction: The bare disorder correlator R0(u) de-
cays quickly to 0 as u → ∞. The most important prop-
erty for our analysis of the fixed-point function ∆̃∗

RB(u)
(its typical form is plotted on the right of Fig. 1) is that

(∆̃∗
RB)

′′(u) > 0 at small u and (∆̃∗
RB)

′′(u) < 0 at large u.

Random field: This class has the bare disorder force
F (x, u) = −∂uV (x, u) distributed with short-ranged cor-
relations. Then the bare force-force correlator ∆0(u) is
short-ranged and R0(u) ≃u≫1 −σ|u| where σ is called
the amplitude of the random field. The most impor-
tant property for our analysis of the fixed point function
∆̃∗

RF(u) (its typical form is plotted on the left of Fig. 1)

is that (∆̃∗
RF)

′′(u) > 0 for all x.

Random periodic: This class corresponds to periodic
disorder V (u + 1) = V (u). As a consequence, ∆̃∗(u) is

also periodic and (∆̃∗)′′(u) = (∆̃∗)′′(0) > 0 is constant.
Though our analysis still applies to this universality class
and our results are correct to O(ǫ), we will not discuss
it here. As the shock process is periodic in any dimen-
sion, correlations naturally arise from this periodicity (in
particular in d = 0 in the m → 0 limit only one shock
survives per interval).

The Brownian-Force-Model universality class: Fi-
nally, the Brownian-Force-Model defined as ∆0(u) =
−σ|u| is also a fixed point of the FRG flow equation and
attracts all bare disorder such that ∆0(u) ≃ −σ′|u| at
large u. It models avalanches at the mean-field level. (It
resums tree diagrams). In this model shocks are uncor-
related.

Hence, from the perspective of practical applications,
the qualitative behavior of the correlations between
shocks as a function of the distance strongly depends on
the universality class of the model (see Fig. 1).

D. Shocks observables: Densities

As recalled in the introduction, it is well known that
in the limit of small m the (rescaled) ground state ux(w)
is piecewise constant as a function of w. In terms of the

sequence of shocks {(wi, S(i)
x )}i∈Z one can write ux(w)

and u(w) as

ux(w) =
∑

i

θ(w − wi)S
(i)
x ,

u(w) =
1

Ld

∑

i

θ(w − wi)S
(i) , (26)
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where θ(x) is the Heaviside theta function. We recall the
definition of the one and two-shock size-density:

ρ(S) =
∑

i

δ(w − wi)δ(S − S(i)) , (27)

ρW (S1, S2) =
∑

i6=j

δ(w − wi)δ(S1 − S(i))δ(w +W − wj)δ(S2 − S(j))) .

(28)

These distributions possess a large-scale cutoff which we
denote Sm; the latter diverges form to 0 as Sm ∼ m−d−ζ.
Additionally, we suppose that they have a small-scale
cutoff S0. In the scaling regime, ρ(S) behaves as a power
law with a characteristic exponent τ : ρ(S) ∼ S−τ for
S0 ≪ S ≪ Sm. We us also define the connected density

ρcW (S1, S2) = ρW (S1, S2)− ρ(S1)ρ(S2) . (29)

In the first part of this work our goal is to compute
ρcW (S1, S2) up to first order in ǫ using the FRG.

E. Shocks observables: Probabilities

One can normalize the above densities to define proper
probability distributions as follows:

ρ0 :=

∫

ρ(S) dS , (30)

ρ2(W ) :=

∫

ρW (S1, S2) dS1 dS2 , (31)

P (S) :=
ρ(S)

ρ0
, (32)

PW (S1, S2) :=
ρW (S1, S2)

ρ2(W )
. (33)

With this definition, ρ0dw is the mean number
of avalanches occurring in an interval dw and
∫ w2

w1
dw
∫ w4

w3
dw′ρ2(w

′ − w) counts the number of pairs of

shocks where the first one occurs between w1 and w2 and
the second between w3 and w4, irrespective of their sizes.
Given these definitions, P (S) and PW (S) are normalized

probability distribution functions (PDF).
∫ S′

S dS̃ P (S̃) is
the probability, given that a shock has occurred, that

its size is between S and S′.
∫ S′

1

S1
dS
∫ S′

2

S2
dS′PW (S, S′)

is the probability, given that two shocks occurred at
a distance W , that their sizes are between S1 and
S′
1, and S2 and S′

2. Note that a priori the marginal
distribution

∫

dS1PW (S1, S2) is different from P (S2) since
it contains the additional information that a shock oc-
curred at a distance W . At the level of these PDFs,
the absence of correlations would imply PW (S1, S2) =
P (S1, S2) and, though in the remaining of the text we
will favor the use of densities, our results can be trans-
lated to probabilities using Eq. (33). As discussed in

Ref. [31], for an avalanche-size distribution ρ(S) with ex-
ponent τ > 1 (which is relevant here), the value of ρ0
is dominated by the small-scale cutoff S0 for avalanche
sizes, and diverges as S0 → 0,

ρ0 =

∫ ∞

S0

ρ(S)dS ∼S0→0 S
1−τ
0 . (34)

Hence, ρ0 is non-universal. In the same way ρ2(W ) is
non-universal, even though its relation with ρ0 has some
universal features as we will show below. We denote by
〈...〉ρ, 〈...〉ρW , 〈...〉ρc

W
, 〈...〉P and 〈...〉PW

the averages with
respect to ρ, ρW , ρcW , P and PW .

F. Relation between avalanche-size moments and
renormalized force cumulants: First moment

The nth cumulant of the renormalized pinning force is
defined as

m2n[u(w1)− w1] . . . [u(wn)− wn]
c
=

(−1)nL−(n−1)dĈ(n)(w1, . . . , wn) . (35)

By definition Ĉ(2)(w1, w2) = ∆(w1 − w2) as intro-
duced above. By parity invariance of the disorder
m2[u(w)− w] = 0, and thus Ĉ(1)(w) = 0.
First cumulant: One immediately gets by inserting

Eq. (26) into m2[u(w)− w] = 0 the exact relation

〈S〉ρ = ρ0〈S〉P = Ld . (36)

Second cumulant: Differentiating with respect to
w1 and w2 the definition L−d∆(w1 − w2) =

m4[u(w1)− w1][u(w2)− w2] with Eq. (26) inserted, one
obtains the relation (33) of [31] (with a corrected misprint
1 → −1). It can be written in the form

−∆′′(w1 − w2)

Ldm4
=L−2d〈S2〉ρδ(w1 − w2)

+ L−2d〈S1S2〉ρw2−w1
− 1 . (37)

Hence, as pointed out in Ref. [31], the singular part of the
second derivative of ∆′′(w1 − w2) around w2 = w1 gives
an exact relation between the cusp in the renormalized
disorder correlator

σ := −∆′(0+) = R′′′(0+) , (38)

and the second avalanche-size moment,

Sm :=
〈S2〉ρ
2〈S〉ρ

=
〈S2〉P
2〈S〉P

=
σ

m4
. (39)

The avalanche size Sm plays the role of a large-scale cutoff
for ρ(S). On the other hand, the regular part of Eq. (37)
gives the exact relation

L−2d〈S1S2〉ρW = 1− ∆′′(W )

Ldm4
. (40)
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For uncorrelated shocks we would have obtained
L−2d〈S1S2〉ρW = 1. The correlations thus come from
the non-zero value of ∆′′(W ) 6= 0, a property which is
generally expected from the FRG. It is a simple signa-
ture of the fact that the effective disordered force felt by
the interface at large scale is not Brownian. Note that in
terms of the moments of the connected density, the exact
relation (40) reads

L−2d〈S1S2〉ρc
W

= −∆′′(W )

Ldm4
. (41)

Let us also write the exact relation (40) in terms of the
probabilities defined in Sec. III E:

ρ2(W )

ρ20

〈S1S2〉PW

(〈S〉P )2
= 1− ∆′′(W )

Ldm4
. (42)

G. Generating functions

We now introduce the generating functions which en-
code all the moments of the density ρW (S1, S2). Let us
first recall the generating functions used in the one-shock
case:

Z(λ) = L−d〈eλS − 1〉ρ ,
Ẑ(λ) = L−d〈eλS − λS − 1〉ρ = Z(λ)− λ. (43)

They are related to observables associated with the po-
sition as

Z(λ) = L−d lim
δ→0+

∂δeL
d[u(w+δ)−u(w)] ,

Ẑ(λ) = L−d lim
δ→0+

∂δeL
d[û(w+δ)−û(w)] , (44)

where û(w) := u(w) − w is the translated position field.
Note that due to STS they are independent of w. These
relations were proven in Ref. [32]. For two shocks we
introduce

ZW (λ1, λ2) := L−2d〈(eλ1S1 − 1)(eλ2S2 − 1)〉ρW . (45)

We show in Appendix A that it can be computed as

ZW (λ1, λ2)

= ẐW (λ1, λ2) + λ2Ẑ(λ1) + λ1Ẑ(λ2) + λ1λ2

= ẐW (λ1, λ2) + λ2Z(λ1) + λ1Z(λ2)− λ1λ2 . (46)

We used the definition

Ẑw2−w1
(λ1, λ2) := L−2d × (47)

lim
δ1,δ2→0+

∂δ1,δ2e
Ldλ1[û(w1+δ1)−û(w1)]eLdλ2[û(w2+δ2)−û(w2)]

In the following we compute ẐW (λ1, λ2) using the FRG
through formula (47). Let us also define the connected
generating functions

ZcW (λ1, λ2) := L−2d〈(eλ1S1 − 1)(eλ2S2 − 1)〉ρc
W

= ZW (λ1, λ2)− Z(λ1)Z(λ2)

ẐcW (λ1, λ2) := ẐW (λ1, λ2)− Ẑ(λ1)Ẑ(λ2) (48)

These functions are actually equal: ZcW (λ1, λ2) =

ẐcW (λ1, λ2) as is easily seen using (46).

H. Relation between avalanche-size moments and
renormalized force cumulants: Kolmogorov

cumulants and chain rule

Using Eq. (47) and the fact that û(w) = 0, the gener-

ating function ẐW (λ1, λ2) can be written as

ẐW (λ1, λ2) =
∞
∑

n,m=1

λn1λ
m
2

n!m!
lim

δ1,δ2→0+
(49)

L(n+m−2)d

δ1δ2
[û(δ1)− û(0)]n[û(W + δ2)− û(W )]m .

In the limit of δi → 0 we encounter for each (n,m) two
types of terms:

[û(δ1)− û(0)]n[û(W + δ2)− û(W )]m =

[û(δ1)− û(0)]n
c × [û(W + δ2)− û(W )]m

c
(50)

+[û(δ1)− û(0)]n[û(W + δ2)− û(W )]m
c
+O(δ3i ) .

The term in the second line of Eq. (50) produces the
disconnected part of the avalanche moment 〈Sn1 〉〈Sm2 〉
and thus the disconnected part of the generating func-
tion ẐW (λ1, λ2), that is Ẑ(λ1)Ẑ(λ2). The last term on
the other hand contributes to 〈Sn1 Sm2 〉ρc

W
and to the con-

nected part of the generating function, ẐcW (λ1, λ2) =
ZcW (λ1, λ2) which is the true unknown. Introducing the
Kolmogorov cumulants

K
(n,m)
W (δ1, δ2) := (51)

L(n+m−2)d[û(δ1)− û(0)]n[û(W + δ2)− û(0)]m
c
,

we can write

ZcW (λ1, λ2) =

∞
∑

n,m=1

λn1λ
m
2

n!m!
lim

δ1,δ2→0+

1

δ1δ2
K

(n,m)
W (δ1, δ2) ,

(52)
or, equivalently,

〈Sn1 Sm2 〉ρc
W

= lim
δ1,δ2→0+

1

δ1δ2
K

(n,m)
W (δ1, δ2) . (53)

The Kolmogorov cumulants (51) can be generally ex-
tracted from the renormalized force cumulants (35), as
we now explain. Let us introduce2

C(n,m)(w1, . . . , wn, wn+1, . . . , wn+m) = (54)

L(n+m−2)dû(w1) . . . û(wn)û(wn+1) . . . û(wn+m)
c
.

2 Note that those differ from C introduced in [31] by an additional
factor of L−d.
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They are trivially linked to the renormalized force cu-
mulants (35): C(n,m)(w1, . . . , wn, wn+1, . . . , wn+m) =
1
Ld (−1/m2)n+mĈ(n+m)(w1, . . . wn+m). Explicit expres-
sions for the lowest cumulants with n +m ≤ 4 are dis-
played in Ref. [31], see e.g. Eq. (61) there. In the notation
for C(n,m), though the expression is symmetric in wi, we
have highlighted the facts that in the end the n first wi
will be taken around w = 0, whereas the last m will be

aroundW . Indeed, to obtainK
(n,m)
W (δ1, δ2) from the mo-

ments C(n,m), we must successively evaluate C(n,m) with
wi → δ1 minus C(n,m) with wi → 0 for each i = 1, . . . , n,
then set wi → W + δ2 minus C(n,m) with wi → W for
each i = n + 1, . . . , n +m. Ambiguities associated with
the possible presence of terms such as ∆′(0±), are lifted
by taking the limit of coinciding points with a given spe-
cific ordering of the wi. Consistency requires that the end
result does not depend on the chosen ordering, a prop-
erty linked to the assumption that all singularities of the
field û(w) can be modeled by a finite density of dilute

shocks (which guarantees e.g. the continuity of Ĉ). This
iterative procedure was called the K operation in [31].

I. Strategy of the calculation and validity of the
results

In order to compute ẐW (λ1, λ2), we must be able to
perform disorder averages of moments of the position
field at various positions wi for i = 1, . . . , r. For ex-
ample r = 4 is sufficient in the formulation (47) and used
in Appendix D. In the main part of this work we report a
calculation of ẐW (λ1, λ2) from the study of the moments
(54) and we thus need to keep r arbitrary. We therefore
consider the theory for r position fields uix coupled to
different parabolic wells centered at positions wi in the
same disordered environment. The Hamiltonian of the
problem is

H[{u}, {w}] =
r
∑

i=1

Hel[u
i, wi] +

r
∑

i=1

∫

x

V (uix, x) . (55)

This leads to a replicated action of the form

S[u] =
1

2T

∑

a,i

∫

xx′

g−1
xx′(u

i
ax − wi)(u

i
ax′ − wi)

− 1

2T 2

∑

a,i;b,j

∫

x

R0(u
i
ax − ujbx) + · · · (56)

The effective action of the theory is [31, 32, 41]

Γ[u] =
1

2T

∑

a,i

∫

xx′

g−1
xx′(u

i
ax − wi)(u

i
ax′ − wi)

− 1

2T 2

∑

a,i;b,j

∫

x

R(uiax − ujbx) +O(ǫ2) . (57)

Here R(u) = O(ǫ) is the renormalized disorder corre-
lator already introduced in the previous section, while

the neglected terms are higher-order terms in ǫ that can
be expressed as loop integrals with higher powers of R.
The calculation of observables using the effective action
(57) has been called the improved tree approximation

[31, 32]. Here we did not specify the number of replicas
a = 1, . . . , nr. As is usual in replica calculations, the
nr → 0 limit will be implicit in the following. Since (57)
is the effective action, observables will be computed using
a saddle-point calculation, or equivalently in a diagram-
matic language, by resuming all tree diagrams generated
by the action (57). This calculation allows to get the low-
est order in ǫ for any observable. Let us recall the known
results at the improved tree level for ρ(S) and Z(λ) as
obtained in Refs. [31, 32]:

ρ(S) =
Ld

2
√
πS

3
2 (Sm)

1
2

e−
S

4Sm , (58)

Z(λ) = λ+ SmZ(λ)
2 =

1

2Sm
(1 −

√

1− 4λSm) . (59)

J. Connected versus non-connected averages and
the ǫ-expansion

Before going further, let us now mention a subtle
point. As will become clear in the following, the im-
proved tree calculation leads to a result of order O(ǫ)
for ρcW , in contrast to ρ(S) for which it leads to a result
of order O(1) 3. Hence if one computes ρW (S1, S2) =
ρ(S1)ρ(S2) + ρcW (S1, S2) to O(ǫ) one must pay attention
to the fact that ρcW (S1, S2) can be computed using the
improved-tree theory, but ρ(S) has then to be computed
to one-loop accuracy. In the same way, the connected
generating function

ZcW (λ1, λ2) = ZW (λ1, λ2)− Z(λ1)Z(λ2) (60)

can be computed exactly up to order O(ǫ) using the
improved tree theory, but to compute ZW (λ1, λ2) up
to order ǫ one must add one-loop corrections to Z(λ).
The same remark holds for the moments 〈Sn1

1 Sn2

2 〉ρc
W

=
〈Sn1

1 Sn2

2 〉ρW − 〈Sn1

1 〉ρ〈Sn2

2 〉ρ.

3 To be rigorous, this is only true of the dimensionless density
ρ̃(S̃) = S2

mρ(SmS̃) since Sm = O(ǫ), we neglect this subtlety in
the following.
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IV. CORRELATIONS BETWEEN TOTAL
SHOCK SIZES

A. Reminder of the diagrammatic rules and
extraction of shock moments

Let us now explain how the moments

C(n,m)(w1, . . . , wn, wn+1, . . . , wn+m) (61)

= L(n+m−2)dû(w1) . . . û(wn)û(wn+1) . . . û(wn+m)

= L−2d

∫

y1...yn+m

ûy1(w1) . . . ûyn+m
(wn+m)

are obtained using the diagrammatic rules developed in
Ref. [31] which can also be read off from the action (57).
In the calculation of the correlator (54), the terms of the
form Ldû(wi) =

∫

yi
ûyi(wi) are diagrammatically repre-

sented as external legs at the top of the diagrams. Fields
at different position wi and wj can be contracted through
an interaction vertex

∫

z
1
T 2R(ûz(wi)− ûz(wj)+wi−wj),

represented as a dashed-line (each contraction bringing
an additional derivative to R with the appropriate sign).
The propagators are represented as plain lines. When
forming tree diagrams, one produces n +m − 1 interac-
tion vertices 1

T 2R, and 2(n+m− 1) propagators, which
each carries a factor of T . For trees, all factors of T
cancel, and the diagrams survive in the 0 temperature
limit. The factors of T can thus be omitted in the
diagrammatic rules. As for the integrals over the po-
sitions of the external legs yi, i = 1, . . . , n + m and
the disorder vertices zk, k = 1, . . . , n + m − 1, since
the interaction is local in space and

∫

x
gx = 1

m2 , all
2(n + m − 1) propagators can be taken as static prop-
agators and thus this integration produces an additional
factor of Ld. This procedure results in expressions for the
C(n,m)(w1, . . . , wn, wn+1, . . . , wn+m) as sums of products
of terms involving derivatives ∆(p)(wi − wj)

4. In calcu-

lating the Kolmogorov cumulants K(n,m)(δ1, δ2) to order
O(δ1δ2) one must use the even but non-analytic form of
∆(u) around the origin,

∆(u) = ∆(0) + ∆′(0+)|u|+ ∆′′(0)

2
u2 +O(u3) . (62)

We checked that if one takes all limits of coinciding points
with a fixed order of the wi in the calculation, one obtains

a non-ambiguous result, independent of the ordering.

B. Lowest moments

First moment: We fist consider the computation of
〈S1S2〉ρc

W
. To this aim we compute C(1,1)(w1, w2), which

is given by a single diagram:

C(1,1)(w1, w2) =

∆(w1 − w2)

1
m2

1
m2

w1 ≈ 0 w2 ≈W

=
1

Ldm4
∆(w1 − w2) . (63)

We have introduced a new diagrammatic notation: A
double-dashed line represents an interaction vertex be-
tween position fields at a finite distance ≈W ; we reserve
the single dashed line for interaction vertices between
nearby position fields. Hence,

K
(1,1)
W (δ1, δ2) =

1

Ldm4

[

∆(−δ1 +W + δ2)−∆(W + δ2)

−∆(−δ1 +W ) + ∆(W )
]

= −∆′′(W )

Ldm4
δ1δ2 +O(δ2i ) . (64)

Using (53) we conclude that

L−2d〈S1S2〉ρc
W

= −∆′′(W )

Ldm4
. (65)

This is the exact result (40), here retrieved diagrammat-
ically within the improved tree approximation. A priori
there could be higher-order correctionsO(ǫ2) on the r.h.s.
of (65), coming from loop diagrams. However, the def-
inition (23) of ∆(u) as a physical observable effectively
resums an infinite number of loop diagrams. The same
diagrams then arise on both sides of Eq. (65), and the
result (40) is exact.

Second moment: Let us now consider the com-
putation of 〈S2

1S2〉ρc
W
. We first need to compute

C(2,1)(w1, w2, w3). Diagramamtically it is given by

C(2,1)(w1, w2, w3)

= 2 Symw1↔w2





w2 ≈ 0 w1 ≈ 0 w3 ≈W

+

w3 ≈W w1 ≈ 0 w2 ≈ 0

+

w2 ≈ 0 w3 ≈W w1 ≈ 0




=
2

Ldm8
Symw1↔w2

[

∆(w1 − w2)∆
′(w1 − w3) + ∆(w1 − w3)∆

′(w1 − w2) + ∆(w3 − w2)∆
′(w3 − w1)

]

(66)



10

In doing the K operation to go from C(2,1) toK
(2,1)
W , these

diagrams are not equivalent. At order δ1δ2 that we are

interested in, the first term leads to 4∆′(0+)
m4

∆′′(W )
Ldm4 δ1δ2,

the second to 2∆′(0+)
m4

∆′′(W )
Ldm4 δ1δ2, whereas the third one is

of order O(δ21δ2) and does not contribute. Using Eq. (53)
we conclude that

L−2d〈S2
1S2〉ρc

W
= 6

∆′(0+)

m4

∆′′(W )

Ldm4
+O(ǫ2) . (67)

General rules for diagrams: The last example is
rather instructive for the three general rules:
(i) the only diagrams that contribute to the Kol-

mogorov cumulant K
(n,m)
W (δ1, δ2) at order δ1δ2 contain a

single double-dashed vertex (that is a single disorder in-
teraction vertex connecting the two disjoint sets of points
at w ≈ 0 and w ≈W );
(ii) this vertex becomes a ∆′′(W ) at order δ1δ2;
(iii) the other interaction vertices are between (almost)

coinciding points, and produce a factor of ∆′(0+) at order
δ1δ2. These rules are discussed in Appendix B. As a
result, diagrams contributing to the two-shock moments
consist of diagrams reminiscent of the one-shock case (i.e.
they contain only ∆′(0+) vertices) linked together by an

interaction vertex −∆′′(W )
Ldm4 .

C. Generating function for all moments

Let us now use the above rules and give a diagram-
matic computation of ZcW (λ1, λ2) = ẐcW (λ1, λ2) defined
in Eq. (48). To this aim, let us first introduce a diagram-
matic notation for Z(λ) defined in Eq. (43):

Z(λ) = . (68)

We have emphasized using dots that there is an arbi-
trary number of external legs at the top of the diagrams
summed in Eq. (68). Using the expansion (49) and fol-
lowing the rules explained in the previous section, the
diagrams entering in ẐcW (λ1, λ2) are made of two trees
linked by a single doubled dashed line. It is the sum
of all tree diagrams for avalanches at w = 0, times all
tree diagrams for avalanches at w = W , linked together

by a single −∆′′(W )
Ldm4 inserted between any pair of points

belonging to each tree. This can be represented as

ZcW (λ1, λ2) = ẐcW (λ1, λ2)

=

w ≈ 0 w ≈W

w ≈ 0 w ≈W

. (69)

The diagrams above the point of insertion of ∆′′(W ) on
the left are given by Z(λ1). The terms below are all the
diagrams in Z(λ1) with an arbitrary external leg selected,

that is dZ(λ1)
dλ1

. A similar contribution arises on the right-
hand side. Hence we arrive at the result

ZcW (λ1, λ2) = −∆′′(W )

Ldm4
Z(λ1)

dZ(λ1)

dλ1
Z(λ2)

dZ(λ2)

dλ2

+O(ǫ2) (70)

In terms of ZW (λ1, λ2) this result reads

ZW (λ1, λ2) = Z(λ1)Z(λ2) (71)

−∆′′(W )

Ldm4
Z(λ1)

dZ(λ1)

dλ1
Z(λ2)

dZ(λ2)

dλ2
.

It is correct to O(ǫ) if one takes into account the O(ǫ) cor-
rections to Z(λ). Expanding the result (70) one obtains
the moments 〈Sn1 Sm2 〉ρc

W
:

〈Sn1 Sm2 〉ρc
W

= −∆′′(W )

L3dm4
n!m! (72)

×
n−1
∑

p=0

m−1
∑

q=0

〈Sn−p〉ρ〈Sp+1〉ρ〈Sm−q〉ρ〈Sq+1〉ρ
(n− p)!p!(m− q)!q!

+O(ǫ2) .

The diagrammatic interpretation of this result is straight-
forward: to construct an arbitrary diagram contributing
to 〈Sn1 Sm2 〉ρc

W
, one must first choose p ≤ n − 1 external

legs on the left that will be below the point of insertion of

−∆′′(W )
Ldm4 (there must be at least one leg above this point

of insertion). In the K operation, all those points lead
to a term that contributes to 〈Sp〉ρ. The combinatorial
term accounts for the Cnp possible choices. Note that this
result was derived using the heuristic diagrammatic rules
developed in the preceding section. We observe that:
(i) It correctly reproduces the results for the small-

order moments (65) and (67). We checked that it

leads to 〈S3
1S2〉ρc

W
= −60∆′′(W )

Ldm4 S
2
m and 〈S2

1S
2
2〉ρcW =

−27∆′′(W )
Ldm4 S

2
m, which can also be derived from the expres-

sion for Ĉ(4)(w1, w2, w3, w4) given e.g. in formula (61) of
Ref. [31].
(ii) We give in Appendix C an alternative derivation of

Eq. (71) that uses the Carraro-Duchon formalism [32, 42].
(iii) We give in Appendix D a derivation using a saddle-

point calculation within the effective action (57). This
also yields the local structure of correlations studied in
Section V.

D. Results for the densities

To infer ρW from Eq. (71), we first note the iden-

tity Z(λ)dZ(λ)
dλ = 1

2Sm

d
dλ (Z(λ)− λ), derived from the

self-consistent equation (58) for Z(λ). Differentiating
L−d

∫

dS(eλS − 1)ρ(S) = Z(λ) with respect to λ and

using 〈S〉ρ = Ld yields

L−d

∫

dS(eλS − 1)Sρ(S) =
d

dλ
[Z(λ)− λ] . (73)



11

Finally, using Eqs. (45) and (71), we obtain

ρW (S1, S2) = ρ(S1)ρ(S2)

(

1− ∆′′(W )

Ldm4

S1S2

4S2
m

)

. (74)

This is our main result for the two-schock density, already
announced in Eq. (10) of the introduction. It can be used
to extract a variety of physical observables.
Mean number of pairs of shocks: Integrating over S1

and S2, we obtain two equivalent formulas for ρ2(W ):

ρ2(W ) = ρ20 −
∆′′(W )

Ldm4

L2d

4S2
m

(75)

= ρ20

[

1− ∆′′(W )

Ldm4

( 〈S〉P
2Sm

)2
]

.

Hence, although both ρ0 and ρ2(W ) are non-universal
and dominated by the non-universal small avalanche size
cutoff S0 discussed in Sec. III E, the connected density
ρ2(W )− ρ20 does not depend on S0 and is universal.
Normalized probability distribution: The above re-

sults allow us to express the probability distribution

PW (S1, S2) =
ρW (S1,S2)
ρ2(W ) to O(ǫ) accuracy as

PW (S1, S2) =

P (S1)P (S2)

[

1− ∆′′(W )

4S2
mL

dm4

(

S1S2 − 〈S〉2P
)

]

. (76)

Conditional probability distribution: Another PDF of
interest is the conditional probability to have a shock
with amplitude S2, given that there was a shock of am-
plitude S1 at a distance W before. To O(ǫ) accuracy

PW (S2|S1) =
PW (S1, S2)

∫

dS2PW (S1, S2)
(77)

= P (S2)

[

1− ∆′′(W )S1

4S2
mL

dm4

(

S2 − 〈S〉P
)

]

.

Its mean value, normalized by 〈S〉P , is

〈S2|S1〉
〈S〉P

= 1− ∆′′(W )S1

4S2
mL

dm4

(

2Sm − 〈S〉P
)

. (78)

Second shock marginal: The probability for the size
S2 of a second shock at W , given that there was a shock
at 0, is

PW (S2) =

∫

dS1PW (S1, S2)

= P (S2)

[

1− ∆′′(W )〈S〉P
4S2

mL
dm4

(

S2 − 〈S〉P
)

]

.

(79)

The normalized mean value of the second shock is

〈S2〉W
〈S〉P

= 1− ∆′′(W )〈S〉P
4S2

mL
dm4

(

2Sm − 〈S〉P
)

. (80)

E. Analysis of the results

Sign of the correlations: As discussed in Sec. III C,
the sign of the correlations (positively or negatively cor-
related shock sizes) solely depends on the sign of ∆′′(W ),
which depends on the distanceW and on the universality
class of the problem. The above results thus unveil a rich
phenomenology for the correlations as pictured in Fig. 1.
Range of validity: The result (70) was obtained in

the framework of the ǫ expansion. The results for the
connected part of the correlations are by definition the
first non-zero terms in this expansion, since they were
obtained within the improved tree approximation, and
they appear at O(ǫ). As a perturbative result, it is by
definition controlled for ǫ → 0. For finite ǫ, the pre-
dictions should be accurate as long as the corrections to
the mean-field behavior are small. This is worth empha-
sizing, since the moments 〈Sn1 Sm2 〉ρW predicted by the
formula (72) become negative for large (n,m), signaling
a breakdown of the improved tree approximation. This
is also the case of the two-shock density computed at
the improved tree level in Eq. (74) which becomes neg-
ative at large Si. There the approximation is not con-
trolled anymore since O(ǫ) corrections are larger than
the mean-field result. Let us see when this occurs: Using
the simple estimate ∆′′(W ) ≈ |∆′(0+)|/Wµ, where Wµ

is the length of order µ−ζ on which ∆(W ) decays, see
below, and |∆′(0+)| = m4Sm, the bound ρ(S1, S2) > 0 is
violated if

1 .
Sm

Wµµ−d
× 1

(µL)d
× S1S2

4S2
m

. (81)

The first factor is a dimensionless number of order O(ǫ)
near d = duc. The second vanishes in the thermodynamic
limit of L → ∞. Thus the bound can only be violated
if S1S2/S

2
m compensates this factor. This can only be

achieved if at least one of the avalanches is either system-
spanning, or far out in the tail of the distribution, i.e. the
bound is only violated for very unlikely events.
Note however that the exact result (40) is protected

from being negative since

L−2d〈S1S2〉ρW = 1− ∆′′(W )

Ldm4
= ∂wu(w)∂wu(W + w) ,

(82)
and ∂wu(w) is always positive since u(w) is monotonically
increasing as a function of w. The latter can be shown
rigorously using a stability argument: Writing that ux(w)
is a stable minimum of the Hamiltonian (14) implies for

all x two equations, namely δH[u,w]
δu(x) = 0, and δ2H[u,w]

δu(x)δu(y) ≥
0. Specifying the second equation to x = y, we obtain

m2[ux(w) − w] + ∂uV (ux(w), x) = 0 , (83)

m2 + ∂2uV (ux(w), x) ≥ 0. (84)

Taking a derivative of Eq. (83) w.r.t. w, solving for
∂wux(w), and using Eq. (84) implies

∂wux(w) =
1

1 +m−2∂2uV (ux(w), x)
≥ 0 . (85)
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Comparison with experiments and numerics: Though
our predictions rely on the analysis of the model (14),
they were obtained using FRG and thus we expect Eqs.
(70) and (72) to be valid for all models in the same uni-
versality class. All our results, namely Eq. (72) and Eqs.

(74)-(80), contain the combination ∆′′(W )
Ldm4 . On one hand

it can be used to give a result to order O(ǫ) in the form
of a universal function (see below). On the other hand
all quantities entering the r.h.s of these equations can
be measured directly in an experiment or in a numerical
simulation. Indeed we recall that

Sm :=
〈S2〉P
2〈S〉P

≡ 〈S2〉ρ
2〈S〉ρ

(86)

and the combination

∆′′(W )

Ldm4
= ∂2W [u(w)− w][u(w +W )− w −W ]

c
(87)

can both be measured and do not require to know the
mass m which might be hard to identify. The computa-
tion of this second derivative then gives a precise char-
acterization of the amplitude of the correlations through
the exact formula (41). The accuracy of the ǫ expansion
and universality can then be tested against the formulas
given in the previous section.
Universal function: Using rescaled quantities we can

rewrite our main result as (see Eq. (24) and Sec. III C)

ρcW (S1, S2) =
1

(Lµ)d
L2d

S4
m

Fd
( W

Wµ
,
S1

Sm
,
S2

Sm

)

(88)

where the function Fd is universal and depends only on
the space dimension. To first order in d = duc − ǫ, it is
given by

F(w, s1, s2) ≃
Ad∆

∗′′(w)

16π
√
s1s2

e−(s1+s2)/4 +O(ǫ2) (89)

in the limit of large L and small µ and Ad was given
in Eq. (25). Here ∆∗′′(w) is the universal fixed point of
the FRG equation, normalized to ∆∗(0) = ǫ. Indeed,
for small m the rescaled renormalized disorder correlator
of the system ∆̃(w), appearing in Eq. (24), is close to

one of the fixed points of the FRG equation: ∆̃(w) ≃
∆̃∗(w). For non-periodic disorder, the latter can be ex-

pressed using one constant κ as ∆̃∗(w) = κ2∆∗(w/κ)
(see Sec. III C). The parameter κ is thus the single non-
universal constant in our formula. The scales in Eq. (88)
are then given by

Wµ ≃ κµ−ζ , Sm ≃ Adκ∆
∗′(0+)µ−(d+ζ) (90)

for small µ. We remind that m = µγ/2. We have de-
fined all quantities such that their expressions are the
most simple ones, independent of γ. With the above
normalization, to order ǫ, ∆∗′(0+) =

√

ǫ(ǫ− 2ζ) and
∆∗′′(0) = 2ǫ

9 .

Locality: Note that in the result (88) the amplitude
of the correlation is inversely proportional to N = (Lµ)d,
the number of elastically independent degrees of freedom
of the interface. This is a signature of the local nature
of the correlations. For two shocks a distance W apart,
there is a probability of order 1/N that they occur in
the same region of space. To go further into this local-
ity property and to remove this bias we investigate in
the next section the correlations between the local shock
sizes.

V. LOCAL STRUCTURE OF CORRELATIONS

In this section we analyze the correlations between the
local shock sizes. We start by deriving a general formula
for the correlations between the local shock sizes mea-
sured on an arbitrary subset of the internal space of the
interface. To this aim we define

Sφ1

1 =

∫

x

S1xφ1x , Sφ2

2 =

∫

x

S2xφ2x , (91)

where φ1 and φ2 are two arbitrary test functions. Two

extreme cases are φ1x = 1: in this case Sφ1

1 = S1, and
the observable is the total size studied in the precedent
section. The other extreme is φ1x = δd(x−x1), for which
Sφ1

1 = S1x1
is the local size at x = x1.

A. Reminder: one-shock case

Here we briefly recall the essential definitions and re-
sults given in Refs. [31, 32] on the density and generating
function associated to the local one-shock size statistics.
For a general test function φ we introduce

ρφ(Sφ) :=
∑

i

δ(S(i),φ − Sφ)δ(wi − w) ,

Zφ(λ) :=
1

∫

x
φx

〈eλSφ − 1〉ρφ ,

Ẑφ(λ) := Zφ(λ)− λ , (92)

where 〈...〉ρφ denotes the average with respect to ρφ. Note

that Ẑφ has no linear term, since the first moment of ρφ

is due to STS

〈Sφ〉ρφ =

∫

x

φx . (93)

The generating function Ẑφ(λ) is obtained from the
replica field theory using the exact relation

Ẑφ(λ) =
1

∫

x
φx
∂δe

∫
x
φx[ux(w+δ)−ux(w)−δ]|δ=0+ . (94)

It was shown in Refs. [31, 32] that Zφ(λ) can be written
as

Zφ(λ) =

∫

x
Zφx (λ)
∫

x φx
, (95)
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where, at the improved-tree-theory level, Zφx (λ) satisfies
the following self-consistent equation

Zφx (λ) = λφx + σ

∫

yy′
gx−ygx−y′Z

φ
y (λ)Z

φ
y′(λ) . (96)

The quantity σ = −∆′(0+) was defined in Eq. (38).

B. Two-shock case: Notation and diagrammatic
result

Densities and generating functions: Consider

ρφ
1φ2

W (Sφ
1

1 , Sφ
2

2 ) :=
∑

i6=j

δ(w − wi)δ(S
φ1

1 − S(i),φ1)δ(w +W − wj)δ(S
φ2

2 − S(j),φ2) .

The generating functions are

Zφ
1φ2

W :=
1

∫

x φ
1
x

∫

x φ
2
x

〈(

eλ1S
φ1

1 − 1

)(

eλ2S
φ2

2 − 1

)〉

ρφ
1φ2

W

(97)

Ẑφ
1φ2

w2−w1
(λ1, λ2) :=

1
∫

x
φ1x
∫

x
φ2x

lim
δ1,δ2→0+

∂δ1,δ2e
∫
x
φ1
xλ1[ûx(w1+δ1)−ûx(w1)]e

∫
x
φ2
xλ2[ûx(w2+δ2)−ûx(w2)] , (98)

where 〈...〉
ρφ

1φ2

W

denotes the average with respect to ρφ
1φ2

W .

The following relation holds

Zφ
1φ2

W (λ1, λ2) = Ẑφ
1φ2

W (λ1, λ2) + Zφ
1

(λ1)λ2

+λ1Z
φ2

(λ2)− λ1λ2 . (99)

(These relations are a consequence of Appendix A). The
connected equivalents of the previous definitions are con-
structed as in the previous section for the correlations
between the total sizes; for example

ρc;φ
1φ2

W (Sφ
1

1 , Sφ
2

2 ) = ρφ
1φ2

W (Sφ
1

1 , Sφ
2

2 )− ρφ
1

(Sφ
1

1 )ρφ
2

(Sφ
2

2 ),
(100)

and we note 〈...〉
ρc;φ

1φ2

W

the average w.r.t. ρc;φ
1φ2

W .

Simplified notation for averages: In order that these
somewhat complicated notations do not obscure our re-
sults, we introduce simplified notations for averages. We
first note that

ρφ
1φ2

W (Sφ
1

1 , Sφ
2

2 ) = ρ2(W )P(Sφ
1

1 , Sφ
2

2 ), (101)

where ρ2(W ) is as before the density of a pair of shocks

and P(Sφ
1

1 , Sφ
2

2 ) denotes the probability, given that two
shocks occured at a distance W , that their local sizes

measured with respect to φ1 and φ2 are Sφ
1

1 and Sφ
2

2 .
We have dropped the dependence of P on φ1 and φ2 to
alleviate our notations. We also note arbitrary moments
as

〈〈(Sφ11 )n(Sφ
2

2 )m〉〉ρW := 〈(Sφ11 )n(Sφ
2

2 )m〉
ρφ

1φ2

W

(102)

〈〈(Sφ11 )n(Sφ
2

2 )m〉〉ρc
W

:= 〈(Sφ11 )n(Sφ
2

2 )m〉
ρc;φ

1φ2

W

. (103)

We indicate the dependence on the choice of φ1 and φ2

only inside the average, and not in the measure. A mo-

ment of the form 〈〈(Sφ11 )n(Sφ
2

2 )m〉〉ρW is thus equal to the

product of ρ2(W ) and of the mean value of (Sφ11 )n(Sφ
2

2 )m

for shocks at a distance W , given that two such shocks
occurred.

Diagrammatic result: In Appendix D we compute
these generating functions by a direct evaluation of
Eq. (97) using a saddle-point calculation on the effective
action (57). Alternatively, from a diagrammatic point of
view, the result can be adapted from the reasoning that
led to ZW (λ1, λ2) by keeping track of the space depen-

dence in the different vertices, propagators and sources

in the diagram (69). Following Eq. (68), we represent
Zφx (λ) as

Zφx (λ) =

φ

x

. (104)

The same diagram without the marked point x is also
used to represent

∫

x
Zφx (λ), itself equal to

∫

x
φx×Zφ(λ).

Then, as before, Ẑφ
1φ2

W (λ1, λ2) is the sum of a connected
and a disconnected part:

Ẑφ
1φ2

W (λ1, λ2) = Ẑφ
1

(λ1)Ẑ
φ2

(λ2) + Ẑc,φ
1φ2

W (λ1, λ2) .
(105)

The connected part Ẑc;φ
1φ2

W (λ1, λ2) is
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Ẑc;φ
1φ2

W (λ1, λ2)

=
1

∫

x φ
1
x

∫

x φ
2
x

×

φ1;w ≈ 0 φ2;w ≈W

φ1;w ≈ 0 φ2;w ≈W
x1 x2

z z

(106)

It can be written as

Ẑc,φ
1φ2

W (λ1, λ2) = − ∆′′(W )
∫

x
φ1x
∫

x
φ2x

∫

zx1x2y1y2

gzx1
Zφ

1

x1
(λ1)

δZφ
1

y1 (λ1)

λ1δφ1z
gzx2

Zφ
2

x2
(λ2)

δZφ
2

y2 (λ2)

λ2δφ2z

+O(ǫ2) . (107)

We note that it is possible to obtain a more explicit for-
mula for avalanches measured on parallel hyperplanes,
see Appendix D2. In the next section we focus on the
first moments which already contain valuable informa-
tion.

C. First moments: arbitrary sources and kernels

The first moments of ρc;φ
1φ2

W are obtained from the
combination of Eqs. (97), (99), (105) and (107). One
first needs the series expansion for Zφx (λ). It is obtained
from Eq. (96) at arbitrary order in λ; here we give it up
to order 3:

Zφx (λ) = λφx + λ2σ

∫

yy′
gx−ygx−y′φyφy′ (108)

+2λ3σ2

∫

yy′zz′
gx−ygx−y′gy−zgy−z′φzφz′φy′ +O(λ4)

Hence

δZφx
λδφu

= δ(x− u) + 2λσ

∫

y

gx−ygx−uφy

+2λ2σ2

(

2

∫

yy′z

gx−ygx−y′gy−zgy−uφzφy′

+

∫

yzz′
gx−ygx−ugy−zgy−z′φzφz′

)

+O(λ3) . (109)

We then obtain from Eq. (107) the local version of the
exact result (8), namely 5

〈〈Sφ
1

1 Sφ
2

2 〉〉ρc
W

∫

x φ
1
x

∫

x φ
2
x

= − ∆′′(W )
∫

x φ
1
x

∫

x φ
2
x

∫

zx1x2

gz−x1
gz−x2

φ1x1
φ2x2

+O(ǫ2) . (110)

Let us also give the result for the third-order moment,

〈〈(Sφ
1

1 )2Sφ
2

2 〉〉cρc
W

∫

x
φ1x
∫

x
φ2x

= − ∆′′(W )
∫

x
φ1x
∫

x
φ2x
σ×

(

4

∫

zx1x2y1t1

gz−x1
gz−x2

gy1−t1gy1−zφ
1
x1
φ1t1φ

2
x2

+2

∫

zx1x2t1t′1

gz−x1
gz−x2

gx1−t1gx1−t′1
φ1t1φ

1
t′1
φ2x2

)

+O(ǫ2) . (111)

D. First moment: correlations between the local
shock sizes for short-ranged elasticity.

Let us now give the precise form of the first connected
moment for an interface with the short-ranged elasticity
(15) and for correlations between the local avalanche sizes
at two points x1 and x2. We choose φ1x = δd(x−x1) and
φ2x = δd(x − x2) and note x = |x1 − x2| the distance

between the two points. Thus Sφ
1

1 = S1x1
and Sφ

2

2 =
S2x2

. We obtain

〈〈S1x1
S2x2

〉〉ρc
W

= −∆′′(W )

∫

q

eiq(x1−x2)gqg−q

= −∆′′(W )md−42−
d
2
−1π− d

2 (mx)2−
d
2K2− d

2
(mx)

=x=0 −∆′′(W )2−dπ− d
2md−4Γ

(

2− d

2

)

≃x≫1/m −∆′′(W )2−
d
2
− 3

2π
1
2
− d

2m
d−5

2 x
3
2
− d

2 e−mx , (112)

where Kn(x) denotes a modified Bessel function of the
second kind. Note that integrating this formula yields an
exact result,

∫

x1,x2

〈〈S1x1
S2x2

〉〉ρc
W

= 〈S1S2〉ρc
W

= −Ld∆
′′(W )

m4
.

(113)
This is equivalent to Eq. (41), which is exact. We thus
expect Eq. (112) to be quite accurate even for large values
of ǫ.

5 The result (110) can simply be turned into an exact one if one
introduces the bi-local part of the renormalized disorder corre-
lator ∆x2−x1

(w1 −w2) = m4[ux1(w1)− w1][ux2(w2)− w2] (see
also [41]) and proceeds as in Sec. III F. The result (110) can then
be understood as the lowest-order approximation of ∆x2−x1

(w)
in terms of ∆(w).
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As expected, we observe that the amplitude of the cor-
relations decays exponentially beyond the length Lm =
1/m. For smaller distances they decay algebraically with
an exponent that depends on the dimension:

〈〈S1x1
S2x1+x〉〉ρcW − 〈〈S1x1

S2x1
〉〉ρc

W

≃d=1
∆′′(W )

8m
x2 +O(x3)

≃d=2 −
∆′′(W )

16π

[

2γE − 1 + 2 log(mx/2)
]

x2

≃d=3
∆′′(W )

8π
x+O(x2) . (114)

Finally, to emphasize the universal nature of Eq. (112),
we note that it can be rewritten, using the notations of
Sec. IVE and introducing a new universal scaling func-
tion F11

d (w, x), as

〈〈S1x1
S2x2

〉〉ρc
W

= F11
d (

W

Wµ
,m|x1 − x2|) (115)

F11
d (w, x) = −2−

d
2
−1π− d

2Ad∆
∗′′(w)x2−

d
2K2−d

2
(x)

+O(ǫ2) . (116)

E. First moment: correlations between the local
shock sizes for long-ranged elasticity.

Let us now study the correlations between local
avalanche sizes (we choose again φ1x = δd(x − x1) and
φ2x = δd(x− x2) with |x1 − x2| = x) for the case of long-
ranged elasticity using the kernel (16) with γ = 1. Then
the result for the first connected moment is

〈〈S1x1
S2x2

〉〉ρc
W

= −∆′′(W )
µd−2

(2π)
d
2

(µx)1−
d
2K1− d

2
(xµ)

=d=1
e−µx

2µ
. (117)

As the previous formula for short-ranged elasticity, this
formula should be rather accurate for the experimentally
relevant case of d = 1 (in this case ǫ = 1). We again
observe an exponential decay of the correlations beyond
the length Lµ = 1/µ. However, here the correlations are
constant at small distances, a signature of the long-range
nature of the elasticity. As before, the universal nature of
this result can be emphasized by introducing a universal
scaling function F11

d,LR(w, y):

〈〈S1x1
S2x2

〉〉ρc
W

= F11
d,LR

(

W

Wµ
, µ|x1 − x2|

)

(118)

F11
d (w, x) = −(2π)−

d
2Ad∆

∗′′(w)x1−
d
2K1−d

2
(x) +O(ǫ2) ,

where we used the same notations as in Sec. IVE.

VI. MEASUREMENT OF CORRELATIONS IN
SIMULATIONS OF d = 0 TOY MODELS.

A. Models and goals

In this section we compare our results with numerical
simulations of toy models of a particle in a discrete ran-
dom potential. The position of the particle can only take
integer values u ∈ N and its Hamiltonian is

HV [u;w] = V (u) +
1

2
m2(u− w)2 , (119)

where V is a random potential. We consider two dis-
tributions for the random potential mimicking the two
non-periodic static universality classes of interfaces mod-
els:

RB model: The first model is a toy model for the
Random-Bond universality class with short-ranged cor-
related disorder where the random potentials V (i) at each
site i ∈ N, are chosen as independent, centered and nor-
malized Gaussian random variables.

RF model: The second model is a toy model for the
Random-Field universality class where V (0) = 0 and for

i ≥ 1, V (i) = −∑i
j=1 F (j); the random forces F (i) at

each site i ∈ N are chosen as independent, centered and
normalized random variables. Thus V (i) is a random
walk with Gaussian increments.

In the RB model we choose the mass as mRB = 0.01
and in the RF model as mRF = 0.02. With these param-
eters, the probability ρ0 to trigger a shock when mov-
ing w → w + 1 is ρRF

0 = (6.959 ± 0.001) × 10−3 and
ρRB
0 = (9.471 ± 0.001) × 10−3. These small values of

the masses ensure that the models efficiently approxi-
mate our continuum model in d = 0, and that the par-
ticle optimizes its energy over a large number of random
variables. We perform averages over 10 simulations of
environments of size N = 5 × 108 sites. We obtain ex-
cellent statistics for various observables studied in this
work, including ρ2(W ), ∆(W ) measured using Eq. (23),
〈S1S2〉ρW and 〈S2

1S2〉ρW .

Let us emphasize that these simulations are more
a proof of principle to motivate simulations on higher
dimensional models and measurements in experiments,
than a full test of the results obtained in this article.
This said, our simulations allow us to verify the exact re-
sult (40) to a very high accuracy. Second, although d = 0
is at a large value of ǫ in the d = 4 − ǫ expansion, the
FRG equation and the associated fixed-point functions
for random-field disorder are known to behave quite sim-
ilarly [30, 43]. For random-bond disorder we expect less
universality since ∆(u) is non-universal in d = 0; never-
therless the relations between the correlation and ∆(u)
are interesting to investigate, in particular the sign of the
correlations.
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FIG. 2: Renormalized disorder ∆(u) measured in the d = 0
RB toy model. Inset: its second derivative ∆′′(u), computed
using a numerical fit of the measured ∆(u).

B. Numerical Results: RB model

Using the definition (23) we measure the renormal-
ized disorder correlator. The result is shown in Fig. 2.
Using an interpolation of the result with a polynomial
of degree 10, we obtain a smooth version that is later
used to compute its second derivative ∆′′(u) which ap-
pears in our analysis as the central object controlling
the amplitude of the correlations. Some measured prop-
erties are: ∆(0) ≈ 3.34 × 10−5, ∆′′(0) ≈ 6.78 × 10−9;
∆(76.2) ≈ 0, ∆′′(215) ≈ 0; the position of the minimum
and the value at the minimum: ∆(148.2) ≈ −7.3× 10−6,
∆′′(274, 4) ≈ −5.1 × 10−10. This is compared with the
measurement of 〈S1S2〉ρW using the exact result (40), see
Fig. 3. We obtain a perfect agreement.

From a qualitative perspective, we note the following:

(i) We observe the predicted crossover from anti-
correlated shocks at small distances (W < 215) to posi-
tively correlated shocks at large distances.

(ii) The correlations are far from being negligible: by

definition
〈S1S2〉ρc

W

〈S〉ρ2
> −1, while we observe

〈S1S2〉ρc
W≈0

〈S〉2ρ
≈

−0.6, an indication that the shocks in this toy model are
strongly correlated.

We now check the predictions obtained using the ǫ ex-
pansion. We first measure ρ2(W ) and compare it with
the result (75), see Fig. 4. We obtain a surprisingly
good agreement between the two curves, considering that
ǫ = 4. We also measure 〈S2

1S2〉ρW and compare it with
the result (67), see Fig. 5. Here the discrepancy is large
for smaller values of W , a fact that can be anticipated

since our result predicts
〈S2

1S2〉ρc
W

〈S2〉ρ〈S〉ρ
< −1 at small W ,

which is unphysical. This discrepancy keeps increasing
with higher-order moments. However the sign of the cor-
relation, and its value for largeW is quite well predicted.

100 200 300 400 500
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�S✁
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FIG. 3: Comparison between the measurement of the normal-

ized moment
〈S1S2〉ρc

W

〈S〉2ρ
(blue dots) and the prediction from the

exact result (40) using the measurement of ∆(u) (red curve)
in the RB toy model. The agreement is perfect as expected.
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FIG. 4: Comparison between the measurement of ρ2(W ) (blue
dots) and the prediction from the O(ǫ) result (75) using the
measurement of ∆(u) (red curve) in the RB toy model. We
obtain a surprisingly good agreement.

C. Numerical Results: RF model

In Figs. 6 to 9 we show the corresponding results for
the RF toy model. They are similar except that as
predicted in this type of model the shocks are always

anti-correlated. The value at the origin of the renormal-
ized disorder correlator and of its second derivative are
measured as ∆(0) ≈ 3.4 × 10−3, ∆′′(0) ≈ 9.4 × 10−8.
Once again we observe that these correlations are large,
〈S1S2〉ρc

W≈0

〈S〉2ρ
≈ −0.6. We obtain a perfect agreement for

the exact result 〈S1S2〉ρW , see Fig. 7. The agreement for
the O(ǫ) result for ρ2(W ) (75) is surprisingly good (see
Fig. 8), whereas the O(ǫ) approximation breaks down for
higher moments at smallW such as 〈S2

1S2〉ρc
W
, see Fig. 9.
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FIG. 5: Comparison between the measurement of the normal-

ized moment
〈S2

1S2〉ρc
W

〈S2〉ρ〈S〉ρ
(blue dots) and the prediction from the

exact result (40) using the measurement of ∆(u) (red curve)
in the RB toy model.
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FIG. 6: Renormalized disorder ∆(u) measured in the d = 0
RF toy model. Inset: its second derivative ∆′′(u), computed
using a numerical fit of the measured ∆(u).
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FIG. 7: Comparison between the measurement of the normal-

ized moment
〈S1S2〉ρc

W

〈S〉2ρ
(blue dots) and the prediction from the

exact result (40) using the measurement of ∆(u) (red curve)
in the RF toy model. The agreement is perfect as expected.
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FIG. 8: Comparison between the measurement of ρ2(W ) (blue
dots) and the prediction from the O(ǫ) result (75) using the
measurement of ∆(u) (red curve) in the RF toy model. The
agreement is surprisingly good.
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FIG. 9: Comparison between the measurement of the normal-

ized moment
〈S2

1S2〉ρc
W

〈S2〉ρ〈S〉ρ
(blue dots) and the prediction from the

O(ǫ) result (40) using the measurement of ∆(u) (red curve)
in the RF toy model.

VII. CONCLUSION

In this paper we shed light on the fact that, for realis-
tic models of elastic interfaces in a random medium be-
low their upper critical dimension, correlations between
(static) avalanches should always be expected. To do so
we have studied the correlations between the size and lo-
cation of shocks in the ground state of elastic interfaces in
a random potential. We found the exact relation (8) for
the first connected moment that characterizes these cor-
relations in terms of the renormalized disorder correlator,
a universal quantity at the center of the FRG treatment
of disordered elastic systems. Beyond the first cumulant,
higher-order moments (70), (72) and the full joint den-
sity of shocks (74) were computed using the FRG at first
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non-trivial order in the ǫ expansion. The local structure
of these correlations was made precise through a study
of local shock sizes. The qualitative phenomenology as-
sociated with these correlations clearly distinguishes be-
tween the Random-Bond and Random-Field universality
classes. This was highlighted through a numerical simu-
lation of d = 0 toy models.

We expect our results to broadly apply to models in the
universality class of the statics of disordered elastic sys-
tems. Concerning the dynamics, and avalanches at the
depinning transition of elastic interfaces, we expect our
results to be equivalently applicable and accurate. The
derivation of the exact relation (8) can easily be adapted
to the dynamics by considering the quasi-static steady-
state process of the position field of the interface instead
of the position of its ground-state as was done in Ref. [33].
For the results at the improved tree level, it is expected
that both theories are equivalent for those observables
[33]. The most important difference is that in the dy-
namics the Random-Bond universality class is unstable,
and thus the observed correlations should always be of
the Random-Field type (at least as long as the micro-
scopic disorder is short-ranged).

For physical systems where the usual model of elastic
interfaces is accurate, our results give a precise descrip-
tion of the correlations. Even if additional mechanisms
generating correlations are present, such as in earthquake
problems, correlations due to the short-ranged nature of
the disorder as described in this work should be included
in order to gain a quantitative understanding of the cor-
relations due to these additional mechanisms.
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Appendix A: Proof of the identity on generating
functions

As in the case of one shock (Appendix A of [31]), the
important identity is

(∂δ + λLd)eλL
d(u(w+δ)−w−δ) =

∑

i

(eλSi − 1)eλL
d[u(w−

i )−w−δ]δ(w + δ − wi) (A1)

By definition u(w−
i ) = L−d

∑

j<i Sj . Let us consider

Gw1,w2
(δ1, δ2) = (∂δ1 + λ1L

d)(∂δ2 + λ2L
d)×

eλ1L
d[u(w1+δ1)−u(w1)−δ1]+λ2L

d[u(w2+δ2)−u(w2)−δ2]

=
∑

ij

(eλ1Si − 1)(eλ2Sj − 1)eλ1L
d[u(w−

i )−u(w1)−δ1]×

eλ2L
d[u(w−

j )−u(w2)−δ2]δ(w1 + δ1 − wi)δ(w2 + δ2 − wj)

(A2)

Taking advantage of the Dirac δ-function, we can replace
the u(w1) inside the exponential by u(wi − δ1) which
unambiguously gives u(w−

i ) when one takes the limit of
δ1 → 0+. We thus obtain

lim
δ1,δ2→0+

Gw1,w2
(δ1, δ2) =

∑

ij

(eλ1Si − 1)(eλ2Sj − 1)δ(w1 − wi)δ(w2 − wj). (A3)

Taking the average over disorder, we obtain by definition
of Zw2−w1

(λ1, λ2)

Zw2−w1
(λ1, λ2) = lim

δ1,δ2→0+
L−2dGw1,w2

(δ1, δ2) . (A4)

On the other hand, developing (∂δ1+λ1L
d)(∂δ2+λ2L

d) =
∂δ1∂δ2 + Ldλ1∂δ2 + Ldλ2∂δ1 + L2dλ1λ2 in the expression
of Gw1,w2

(δ1, δ2) one arrives at Eqs. (46) and (47).

Appendix B: Diagrammatic rules for two-shocks
moments

In this appendix we explain the rules (i), (ii) and
(iii) that were stated and used in Sec. IV to obtain
diagrammatically the result (70).

These rules come from the fact that in the K opera-
tion each external leg produces an additional factor of δ1
(for the n legs at w1, . . . wn ≈ 0) or δ2 (for the m legs at
wn+1, . . . wn+m ≈W ), thus tend to be of higher order in
δ1 and δ2. However, from the study of the one-shock case
(see Section V.C of [31]), we know the general mechanism
to escape this apparent trivialization and to allow that
each part of the diagram that connects only coinciding
points together brings a single δi. In this case, starting
from the top of a diagram the δi attached to an external
leg can be brought to the bottom of the diagram as long
as the disorder vertex encountered along the way leads to
a ∆′(0+) when taking the limit of coinciding points. In
such diagrams each vertex linking coinciding points must
have two up-going propagators and one entering from be-
low (effectively corresponding to the ∆′(0+) cubic vertex
of the BFM [33]), except for the vertex at the bottom
of the diagram which has only two up-going propagators
(see Section V.D. of [31]). This last vertex is the one
carrying the remaining factor of δ1: being differentiated
in the end it also leads to an additional factor of ∆′(0+).
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This explains why the disorder only enters as ∆′(0+) in
the one-shock improved-tree-theory result (58). The rule
(iii) stated above is a generalization of that property.
In the two-shock case the same mechanism occurs and

rule (i) is obvious: a diagram cannot have more than
two sets of points separated by a double-dashed line (one
around w ≈ 0 and one around w ≈W ) since each set con-
tributes a factor of δi. For example, in the last diagram of
Eq. (66), each leg is such a set of points, and the diagram
is O(δ21δ2). To explain rule (ii), let us consider one end-
point of a double-dashed line and distinguish three cases.
First, if there is no propagator entering from below this
point, such as the points at w ≈ W in the first and sec-
ond diagrams of Eq. (66) and the two points in Eq. (63),
then the δi originating from the set of connected points
above it end at this vertex, and the vertex is differentiated
during the K operation. Second, if there is a propaga-
tor entering from below that point, such as the point at
w1 ≈ 0 in the first diagram of Eq. (66), then the δi orig-
inating from above the vertex continues downward the
diagram without modifying the vertex. Third, if there
is more than one propagator entering from below the
point then the diagram will necessarily be of higher order
in δi. Combining these three cases, one concludes that
the double-dashed-line vertex necessarily corresponds to
a ∆′′(W ).

Appendix C: A derivation from the Carraro-Duchon
formula

Let us recall the results obtained in Ref. [32], gener-
alizing to arbitrary dimension the result from Ref. [42].
Consider

eL
d
Ẑt{ωi,wi} := e

−Ld

t

∑p
i=1 ωi[u(wi)−wi] , (C1)

where t := 1
m2 . Then, in the improved-tree theory, Ẑ

solves the differential equation

∂tẐt{ωi, wi} = −
p
∑

i=1

∂

∂ωi
Ẑt{ωi, wi}

∂

∂wi
Ẑt{ωi, wi}

Ẑt=0{ωi, wi} =
1

2

p
∑

i,j=1

ωiωj∆(wi − wj) . (C2)

It further satisfies the STS symmetry relation,

Ẑt{ωi, wi + δw} = Ẑt{ωi, wi}
∑

i

∂

∂wi
Ẑt{ωi, wi} = 0 . (C3)

In order to extract the needed information for the two-
shock statistics we choose p = 4 and the quadru-
plets (ω1, ω2, ω3, ω4) = (−ω1 − ω̃, ω1,−ω2 + ω̃, ω2) and
(w1, w2, w3, w4) = (0, δ1,W,W + δ2). We then consider
(with a slight abuse of notations)

Z̃t(ω1, δ1, ω̃,W, ω2, δ2) (C4)

= Ẑt(−ω1 − ω̃, 0, ω1, δ1,−ω2 + ω̃,W, ω2,W + δ2)

Because of the STS the p = 4 function Z̃t depends only
on six variables (and not eight) and satisfies a closed
equation. Indeed, using Eqs. (C2) and (C3), one proves

that Z̃t satisfies the following evolution equation

∂tZ̃t = −
(

∂

∂ω1
Z̃t

∂

∂δ1
Z̃t +

∂

∂ω̃
Z̃t

∂

∂W
Z̃t +

∂

∂ω2
Z̃t

∂

∂δ2
Z̃t

)

(C5)
We are only interested in a perturbative resolution. De-
fine the expansion

Z̃t =
∑

mnp

zpmn(t, ω1, ω2,W )δm1 δ
n
2 w̃

p . (C6)

Indeed, this is sufficient to retrieve the generating func-
tion ẐW (λ1, λ2) = Ẑdisc

W (λ1, λ2) + ẐcW (λ1, λ2) as (com-
pare with the small-δi expansion of (C1) and (47))

Ẑdisc
W (λ1, λ2) = z010(ω1, ω2,W )z001(ω1, ω2,W )

ẐcW (λ1, λ2) = L−dz011(ω1, ω2,W ) . (C7)

On the right-hand side the arguments are ω1 = −tλ1 and
ω2 = −tλ2. Inserting the expansion (C6) inside Eq. (C5),
we obtain the initial conditions:

z000(t = 0, ω1, ω2,W ) = 0

z010(t = 0, ω1, ω2,W ) = −∆′(0+)ω2
1

z001(t = 0, ω1, ω2,W ) = −∆′(0+)ω2
2

z011(t = 0, ω1, ω2,W ) = −∆′′(W )ω1ω2

z100(t = 0, ω1, ω2,W ) = 0 . (C8)

Obviously we have z000(t, ω1, ω2,W ) = 0, ∀t. We also
obtain the evolution equation:

∂tz
0
10 = −

( ∂

∂ω1
z010

)

z010 −
( ∂

∂ω2
z010

)

z001 − z100
∂

∂W
z010

∂tz
0
01 = −

( ∂

∂ω1
z001

)

z010 −
( ∂

∂ω2
z001

)

z001 − z100
∂

∂W
z001

∂tz
0
11 = −

( ∂

∂ω1
z010

)

z011 −
( ∂

∂ω1
z001

)

2z020 −
( ∂

∂ω1
z011

)

z010

−
( ∂

∂ω2
z010

)

2z002 −
( ∂

∂ω2
z001

)

z011 −
( ∂

∂ω2
z011

)

z001

−z100
∂

∂W
z011 − z110

∂

∂W
z001 − z101

∂

∂W
z010

∂tz
1
00 = −

( ∂

∂ω1
z100

)

z010 −
( ∂

∂ω2
z100

)

z001 − z100
∂

∂W
z100

(C9)

As a consequence of the initial conditions (C8), one can
look for a solution of Eq. (C9) such that

∂

∂ω2
z010 =

∂

∂ω1
z001 =

∂

∂W
z010 =

∂

∂W
z001 = z100 = 0 .

(C10)
Each term has an interpretation in the notations of the
main text. z010 corresponds to Ẑ(λ1) and z001 corre-

sponds to Ẑ(λ2), which in the present notations reads
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(see Eqs. (43) and (58) and recall Sm = σ/m4 = σt2)

z010(ωi) = Ẑ(λi) =
1 + 2σωit−

√
1 + 4σωit

2σt2
. (C11)

This is the solution of Eq. (C9) using Eq. (C10). Note
that z100 = 0 can be seen as the signature that diagrams
contributing to the avalanche at w = 0 and at w =W can
be linked only by one vertex ∆′′(W ), as observed in the
diagrammatics, see Eq. (69). This is already present in
the initial condition (C8). The equation for z011 becomes

∂tz
0
11 = −

( ∂

∂ω1
z010

)

z011 −
( ∂

∂ω1
z011

)

z010

−
( ∂

∂ω2
z001

)

z011 −
( ∂

∂ω2
z011

)

z001 . (C12)

One can check that the result (70) obtained diagrammat-
ically in the main text, and which in the present notations
reads

z011 = −∆′′(W )

4σ2t2
1−√

1 + 4σω1t√
1 + 4σω1t

1−√
1 + 4σω2t√

1 + 4σω2t
,

solves this equation with the initial condition (C8). This
demonstrates the equivalence of the two methods and
results.

Appendix D: Saddle-point calculation for the local
structure.

1. Algebraic derivation of Eq. (107)

In this appendix we prove formula (107) “from first
principles” using a saddle-point calculation on the im-
proved action (57). This computation is similar to the
one presented in Ref. [32] for the calculation of the one-
shock density. Here the observable of interest is

Ẑφ
1φ2

W (λ1, λ2) =
1

∫

x
φ1x
∫

x
φ2x

lim
δ1,δ2→0+

∂δ1,δ2GW (δ1, δ2)

GW (δ1, δ2) = (D1)

e
∫
x
φ1
xλ1(ûx(w1+δ1)−ûx(w1))e

∫
x
φ2
xλ2(ûx(w2+δ2)−ûx(w2)),

where w2 = w1+W . This observable can be expressed us-
ing the improved action Γ[u] of the replicated field theory
(57) with i = 1, . . . , 4 sets of a = 1, . . . , n replicated posi-
tion fields ũiax feeling a parabolic well at position w̃i with
w̃1 = w1, w̃2 = w1+δ1, w̃3 = w1+W , w̃4 = w1+W +δ2:

GW (δ1, δ2) =

∫

D[u]e
∫
x

∑4
i=1

νiψ
i
x(u

i
1x−w̃i)−Γ[u] (D2)

Here and for the rest of this appendix, the n → 0 limit
is implicit. To compute the disorder average we have
singled out replica a = 1. In order to write the formulas
in a compact form, we introduced new variables ν2 = λ1,
ν1 = −λ1, ν4 = λ2, ν3 = −λ2, ψ1

x = ψ2
x = φ1x, ψ

3
x = ψ4

x =

φ2x. At the improved tree level, the functional integral is
evaluated through a saddle-point calculation as

GW (δ1, δ2) = e
∫
x

∑4
i=1

νiψ
i
x(u

i
1x−w̃i)−Γ[u] , (D3)

where the position fields uiax solve the saddle-point equa-
tion
∫

x′

g−1
xx′(u

i
ax′ − w̃i)−

1

T

∑

cj

R′(uiax − ujcx) = Tνiψ
i
xδa1 .

(D4)
We are interested in the solution of Eq. (D4) in the T → 0
limit. As in Ref. [32], we look for a solution that isolates
the first replica (a = 1) in each set (i = 1, . . . , 4) of
position fields as

uiax = uix − (1− δa1)TU
i
x. (D5)

Inserting the Ansatz (D5) into (D4) leads to
∫

x′

g−1
xx′(u

i
1x′ − w̃i) +

∑

j

R′′(ui1x − uj1x)U
j
x = 0

∫

x′

g−1
xx′U

i
x′ +

∑

j 6=i

R′′′(ui1x − uj1x)U
i
xU

j
x = νiψ

i
x .

Being ultimately interested in the computation of (D1),
we solve this equation in an expansion in δ1 and δ2 as

u1x =
w̃1 + w̃2

2
− u11x δ1 + u12x δ2

u2x =
w̃1 + w̃2

2
+ u21x δ1 + u22x δ2

u3x =
w̃3 + w̃4

2
+ u31x δ1 − u32x δ2

u4x =
w̃3 + w̃4

2
+ u41x δ1 + u42x δ2

U ix = U i0x + U i1x δ1 + U i2x δ2. (D6)

Using now the definition (D1) we need to perform the
following derivatives of (D3), ∂δ1∂δ2 = ∂w̃2

∂w̃4
. Since

the fields uiax are evaluated at the saddle point, we can
differentiate only with respect to the explicit dependence
in the w̃i. Using the form (57) for Γ[u], these derivatives
can be calculated by repeating the identity

∂w̃i
GW =

(

−νi
∫

x

ψix +
1

T

∑

ai

∫

xx′

g−1
xx′(u

i
ax′ − w̃i)

)

GW .

Using that limn→0

∑

a(u
i
ax − w̃i) = TU ix we obtain the

following decomposition

Ẑφ
1φ2

W (λ1, λ2) = Ẑφ
1

(λ1)Ẑ
φ2

(λ2)+ Ẑ
c,φ1φ2

W (λ1, λ2) (D7)

with the explicit forms

Ẑφ
1

(λ1) =

∫

x(−ν2ψ2
x +

∫

x′
g−1
xx′U20

x′ )
∫

x
ψ2
x

Ẑφ
2

(λ2) =

∫

x
(−ν4ψ4

x +
∫

x′
g−1
xx′U40

x′ )
∫

x ψ
4
x

(D8)
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and

Ẑc,φ
1φ2

W (λ1, λ2) =
1

∫

ψ2
x

∫

ψ4
x

∫

x

∫

x′

g−1
xx′U

22
x′

=
1

∫

ψ2
x

∫

ψ4
x

∫

x

∫

x′

g−1
xx′U

41
x′ . (D9)

Although not obvious, these definitions are in agreement
with those of the main text. Despite their complexity, the
equations satisfied by the u and U variables obey several
symmetries. The important ones are U10

x = −U20
x and

U30
x = −U40

x ; U11
x = −U21

x and U32
x = −U42

x ; U12
x =

−U22
x and U31

x = −U41
x ; u11x = u21x and u32x = u42x ; u12x =

u22x and u31x = u41x . We also have U22
x = U41

x .

Using these symmetries, one finds that U20
x and U40

x

satisfy

∫

x′

g−1
xx′U

20
x′ = σ(U20

x )2 + ν2ψ
2
x ,

∫

x′

g−1
xx′U

40
x′ = σ(U40

x )2 + ν4ψ
4
x , (D10)

where σ = R′′′(0+). Note that these are related to
the function Zφx (λ) defined in the main text in Eq. (96)

through the relation Zφ
1

x (λ1) =
∫

x′
g−1
xx′U20

x′ . Hence, Eq.
(D8) leading to the disconnected part of the result for

Ẑφ
1φ2

W (λ1, λ2) is in agreement with the main text. Let us
now introduce two important kernels defined as the func-

tional derivativesK2(x, z) =
δU20

x

ν2δψ2
z
andK4(x, z) =

δU40
x

ν4δψ4
z
.

They satisfy

∫

x′

g−1
xx′K2(x

′, z)− 2σU20
x K2(x, z) = δ(x− z)

∫

x′

g−1
xx′K4(x

′, z)− 2σU40
x K4(x, z) = δ(x− z)

and are important building blocks in our calculation.
These kernels are symmetric: the kernel of the opera-
tor K−1

2 is given by K−1
2 (x, x′) = g−1

xx′ − 2σU20xδ(x−x′).
In particular it is a symmetric function of its arguments,
and thus K2(x, z) also is a symmetric function. The an-
alytic expressions of the functions U20

x and U40
x are hard

to obtain in generality. In Ref. [31] they were obtained
for avalanches measured on hyperplanes for SR elasticity:
ψ2
x = δ(x1) where x1 denotes the first coordinate of the
d-dimensional variable x. We recall this explicit solution
below in Appendix D2.

a. Solutions for the u variables

Let us first consider the solution for the u variables.
The equations read

∫

x′

g−1
xx′

(1

2
− u11x′

)

− 2σU10
x u11x = 0

∫

x′

g−1
xx′u

31
x′ = 2u11x U

10
x R′′′(W )

∫

x′

g−1
xx′

(1

2
− u32x′

)

− 2σU30
x u32x = 0

∫

x′

g−1
xx′u

12
x′ = 2u32x U

30
x R′′′(W ) (D11)

The solutions are expressed in terms of the two kernels
as

u11x = u21x = − σ

R′′′(W )
u31x +

1

2
= − σ

R′′′(W )
u41x +

1

2

=
m2

2

∫

z

K2(x, z) (D12)

u32x = u42x = − σ

R′′′(W )
u12x +

1

2
= − σ

R′′′(W )
u22x +

1

2

=
m2

2

∫

z

K4(x, z) (D13)

b. Solutions for the U variables

For the U variables, the equations read

∫

x′

g−1
xx′U

21
x′ − 2σU20

x U21
x − 2R(4)(0)u11x (U20

x )2 = 0

∫

x′

g−1
xx′U

42
x′ − 2σU40

x U42
x − 2R(4)(0)u32x (U40

x )2 = 0

∫

x′

g−1
xx′U

22
x′ − 2σU20

x U22
x − 2R(4)(W )u32x U

20
x U40

x = 0

∫

x′

g−1
xx′U

41
x′ − 2σU40

x U41
x − 2R(4)(W )u11x U

40
x U20

x = 0

(D14)

Its solutions are

U11
x = −U21

x = −2R(4)(0)

∫

z

K2(x, z)u
11
z (U20

z )2

U32
x = −U42

x = −2R(4)(0)

∫

z

K2(x, z)u
32
z (U40

z )2

U12
x = −U22

x = −2R(4)(W )

∫

z

K2(x, z)u
32
z U

20
z U40

z

U31
x = −U41

x = −2R(4)(W )

∫

z

K4(x, z)u
11
z U

20
z U40

z

(D15)
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c. Final result

Using Eq. (D9) we obtain

Ẑc;φ1,φ2

W (λ1, λ2) = (D16)

1
∫

ψ2
x

∫

ψ4
x

R(4)(W )m4

∫

x′,z,z′
K2(x

′, z)U20
z U

40
z K4(z

′, z)

Using the above results U20
x =

∫

x′
gxx′Zφ1

x′ (λ1), and

U40
x =

∫

x′
gxx′Zφ2

x′ (λ2), as well as K2(x, z) =
∫

x′
gxx′

δZφ1

x′
(λ1)

λ1δφ1
z

and K4(x, z) =
∫

x′
gxx′

δZφ2

x′
(λ2)

λ2δφ2
z

; remem-

bering that ψ2
x = φ1x and ψ4

x = φ2x, one shows that this
formula is equivalent to Eq. (107).

d. Simplified form of the final result

The equivalent results (D16) and (107) both involve a
functional derivative, which is in general a rather com-
plicated object. We can however obtain a simplified for-
mulation. From Eq. (D16) it is clear that it is sufficient
to compute, for i = 1, 2,

χi(x) =

∫

z

Ki(z, x) =

∫

z

Ki(x, z) (D17)

rather than the full kernel Ki, and using the symmetry
of Ki. Integrating Eq. (D11) over z one shows that χi(x)
solves the equation

∫

x′

g−1
xx′χ2(x

′)− 2σU20
x χ2(x) = 1 ,

∫

x′

g−1
xx′χ4(x

′)− 2σU40
x χ4(x) = 1 .

Solving these equations (a task a priori simpler than the
computation of the functional derivative) then leads to,
following (D16),

Ẑc;φ1,φ2

W (λ1, λ2) (D18)

= − 1
∫

φ1x
∫

φ2x
∆′′(W )m4

∫

z

χ2(z)U
20
z U40

z χ4(z) .

2. More explicit solution for avalanches measured
on parallel hyperplanes

a. Setting

We now obtain more explicit formulas in the case where
avalanches are measured on two parallel hyperplanes at
a distance y > 0 from one another and where the elastic-
ity is short-ranged with kernel (15). That is, noting for
definiteness x1 the first coordinate of the d-dimensional
vector x,

φ1x = δ(x1) , φ2x = δ(x1 − y) . (D19)

In this case the problem becomes effectively unidimen-
sional and the functions U and χ entering into Eq. (D18)
only depend on x1, abbreviated as x in the following.
Furthermore, by translational invariance we can write

U20
x = Y (λ1, x) , χ2(x) = χ(λ1, x) (D20)

U40
x = Y (λ2, x− y) , χ4(x) = χ(λ2, x− y) .

These quantities obey the equations

(

− d2

dx2
+m2

)

Y (λ, x)− σ (Y (λ, x))
2
= λδ(x) (D21)

(

− d2

dx2
+m2

)

χ(λ, x) − 2σY (λ, x)χ(λ, x) = 1.

Solving these equations then leads to

Ẑc;φ1,φ2

W (λ1, λ2) =
1

Ld−1
R(4)(W )m4× (D22)

×
∫

x

χ(λ1, x)Y (λ1, x)Y (λ2, x− y)χ(λ2, x− y) .

b. Solution for Y

The solution Y (λ, x) of equation (D21) is already
known in the literature, see Ref. [34] for details. It admits
a scaling form

Y (λ, x) =
m2

σ
Ỹ
( σ

m3
λ,mx

)

, (D23)

where Ỹ (λ̃, x̃) solves

(

− d2

dx̃2
+ 1

)

Ỹ (λ̃, x̃)−
(

Ỹ (λ̃, x̃)
)2

= λ̃δ(x̃) . (D24)

An explicit solution is

Ỹ (λ̃, x̃) =
6(1− z2)e−|x̃|

(

1 + z + (1 − z)e−|x̃|
)2 , (D25)

where z(λ̃) is one of the solutions of

λ̃ = 3z(1− z2) . (D26)

The right solution is uniquely defined from the following
properties: it is defined for λ̃ ∈] − ∞, λ̃c = 2/

√
3[,

decreases from z(−∞) = ∞ to zc = z(λ̃c) = 1/
√
3 and

approaches 1 as λ̃ approaches 0.

c. Solution for χ

From the coupled equations (D21), it is seen that
χ(λ, x) can be deduced from Y (λ, x) as

χ(λ, x) =
1

m2
− 2σ

m2

∂Y

∂m2
. (D27)
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Using the scaling form (D23) we obtain

χ(λ, x) =
1

m2
χ̃
(

λ̃ = λ
σ

m3
, x̃ = mx

)

, (D28)

where

χ̃ = 1− 2Ỹ + 3λ̃∂λ̃Ỹ − 2x̃∂x̃Ỹ . (D29)

d. Final scaling form

Combining Eqs. (D22), (D23) and (D28) we can ex-
press our result in terms of a universal scaling function

Zw̃ as (we scale y = ỹ/m, λi =
m3

σ λ̃i, W = w̃/Wµ):

Ẑc;φ1,φ2

w̃/Wµ

(

m3

σ
λ̃1,

m3

σ
λ̃2

)

=
1

(Lm)d−1

1

(mSm)2
× Ẑw̃(λ̃1, λ̃2, ỹ) (D30)

The quantities Wµ and Sm are as in Eq. (90) with here
µ = m (SR elasticity) and

Zw̃(λ̃1, λ̃2, ỹ) = Ad∆
∗′′(w̃)× (D31)

∫

x̃

χ̃(λ̃1, x̃)Ỹ (λ̃1, x̃)Ỹ (λ̃2, x̃− ỹ)χ̃(λ̃2, x̃− ỹ) ,

where Ỹ and χ̃ are explicit functions given in Eqs. (D25)
and (D29). This is our final result; its explicit evaluation
is left for the future.

Appendix E: First moment to one-loop order

In this appendix we give the result for 〈S2
1S2〉ρc

W
to one-

loop accuracy for short-ranged elasticity. Note that since
the formula (40) is exact, it does not receive higher-loop
contributions and the first improvement brought to mo-
ments of ρcW is for 〈S2

1S2〉ρc
W
. The latter can be obtained

from the known formulas (61) and (118) of Ref. [31],

Ĉ(3)(w1, w2, w3) = − 6

m2
sym123

{

∆′(w12)∆(w13)
}

−6I3 sym123

{

∆′(w12)
2∆′(w13) + [∆(w12)−∆(0)]

×
[

∆′(w13)∆
′′(w12) + ∆′(w12)∆

′′(w13)

+ ∆′(w23)∆
′′(w13)

]

}

. (E1)

The first line corresponds to the improved tree approxi-
mation, sym123 denotes the symmetrization over the wi
variables, I3 =

∫

k
1

(k2+m2)3 , and we have use the short-

hand notation wij := wi − wj . As explained in the text,
this formula is sufficient to obtain 〈S2

1S2〉ρc
W

using the K
operation. The final result reads

L−2d〈S2
1S2〉ρc

W
= −6Sm

−4I3
Sm
Ldm2

[

∆′′(0)∆′′(W ) + 3∆′′(W )2

+3∆′(W )∆′′′(W )
]

+O(ǫ3) . (E2)
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