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The Kramers’ rate for passage of trajectories X(t) over an energy barrier due to thermal or other
fluctuations is usually associated with additive noise. We present a generalization of the Kramers’
rate for systems with multiplicative noise. We show that the expression commonly used in the
literature for multiplicative noise is not correct, and we present results of numerical integrations of
the Langevin equation for dX(t)/dt evolving in a quartic bistable potential which corroborate our
claim.

I. INTRODUCTION

A key quantity in many problems involving the escape
from a metastable state, or the transition between two
stable states separated by a high barrier, is the so-called
Kramers’ escape rate, that is, the inverse of the aver-
age time required to cross over the barrier. The most
common scenario is that of a potential energy with two
minima separated by a high energy maximum that can
be overcome by thermal fluctuations alone (for exam-
ple, “absolute rate theory” for chemical reactions), or
together with a weak signal (the “stochastic resonance”
problem). There is a vast literature on this subject (see,
for example, [1, 2] and references therein).

One common way to formulate Kramers’ escape rate
problems is as a Langevin equation for the evolution of
trajectories, X(t), often in terms of a single variable (i.e.,
a one-dimensional formulation). Most cases involving
Kramers’ escape rates in these formulations are restricted
to systems with additive noise. If the fluctuations in these
Langevin equations are Gaussian and δ-correlated, the
problem can easily be transformed to a Fokker-Planck
equation (with constant diffusion coefficient D), that is,
to a partial differential equation for the probability den-
sity P (x, t) such that P (x, t)dx is the probability that
a measurement of X(t) yields a result between x and
x + dx. There are many physical, biological, ecological,
economics, etc., problems that admit such a description.
In each of these the meaning of X(t) is of course appropri-
ate for that model. In particular, X(t) need not represent
the trajectory of a massive particle, although it does in
some cases. We explicitly add this remark because this
interpretation is often assumed. In this case, the one-
dimensional Langevin equation describes the trajectory
of an overdamped particle.

In the past two decades or so there have been sev-
eral attempts to deal with multiplicative noise, often
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in the context of stochastic resonance. These attempts
have dealt with such models theoretically [3–13], numeri-
cally [13–17], and experimentally [18, 19]. It is interesting
to note that there seems to have been no comparison of
any of the theoretical results with experiments or with
simulations.

We are interested in exploring the Kramers’ escape rate
problem in systems with space-dependent diffusion coeffi-
cients D(x). For such systems (in one dimension), a suit-
able change of the variable can map the Fokker-Planck
equation into another Fokker-Planck equation with a con-
stant diffusion coefficient, for which the Kramers’ escape
rate can, in principle, be calculated [20]. However, this
change of the variable requires a non-trivial integration
of the inverse of the square root of the original space-
dependent diffusion coefficient, as well as the calculation
of an inverse function, as discussed in the next section.
Except for very particular cases, this procedure is in gen-
eral quite complex and can, in fact, not be completed
analytically.

Here we propose an alternative way of obtaining the
Kramers’ escape rate which does not involve any calcu-
lation of inverse functions and can readily be applied to
Fokker-Planck equations with space-dependent diffusion
coefficients. We call this the “direct approach”. Some
specific isolated examples that use a direct approach but
that do not point to a general method can be found in the
literature [10]. In this latter reference, for instance, the
discussion starts with a particular example of a system
with multiplicative noise. A mean escape time (inverse
of the Kramers’ rate) is calculated for that example, and
the form obtained for this particular case is generalized
in an ad hoc way to include all examples of this form.
In two other approaches, portions of the multiplicative
noise problem are included but others are not.

In this paper we derive the general form of the
Kramers’ rate associated with systems driven by mul-
tiplicative noise. In Sec. II we start with a gen-
eral one-dimensional Fokker-Planck equation with space-
dependent diffusion and first show in detail why conver-
sion (by change of variables) to a Fokker-Planck equa-
tion for additive noise is not a practical way to pro-
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ceed. Instead, we directly formulate a direct approach to
calculate the Kramers’ rate associated with the original
Fokker-Planck equation. In Sec. III we implement this
approach and arrive at an explicit form of the Kramers’
rate. We also exhibit two other rates used for the same
problems in the literature that we assert are not the cor-
rect Kramers’ rates. In Sec. IV we then consider the
example of a bistable system with both additive and mul-
tiplicative noise. We calculate the Kramers’ rate for pas-
sage from one well to the other using our formula, one
of the incorrect formulas, and the result obtained by nu-
merical simulations. That our result is the correct one is
incontrovertible. Finally, we end with a short summariz-
ing conclusion in Sec. V.

II. THE FOKKER-PLANCK EQUATION

Our starting point is the Fokker-Planck equation with
space-dependent drift and diffusion,

∂P (x, t)

∂t
= − ∂

∂x
[F (x)P (x, t)] +

∂2

∂x2
[G(x)P (x, t)] . (1)

This Fokker-Planck equation is associated with the
Langevin equation

Ẋ = −U ′(X) + g(X)ξ(t) + η(t), (2)

where U(X) is the “deterministic” potential, the prime
denotes a derivative with respect to the argument, ξ(t)
and η(t) are mutually uncorrelated Gaussian δ-correlated
noises of zero mean,

〈ξ(t)ξ(t′)〉 = 2DMδ(t− t′),
〈η(t)η(t′)〉 = 2DAδ(t− t′), (3)

and the space-dependent diffusion coefficientG(x) (called
D(x) in the Introduction) is given by

G(x) ≡ DMg
2(x) +DA. (4)

With the Stratonovich interpretation for multiplicative
noise, which we subsequently use, we have

F (x) = −U ′(x) +
1

2
G′(x). (5)

With the Itô interpretation, F (x) = −U ′(x). The
Fokker-Planck equation yields the probability density
P (x, t) that at time t a measurement of the random vari-
able X(t) yields the value x.

The multiplicative noise problem can be transformed
to one associated with additive noise via a change of vari-
ables from x to y and correspondingly from X(t) to Y (t).
The change of variables is (see, for example, [20])

y(x) =

∫ x [ D

G(x′)

]1/2
dx′, (6)

where the lower limit and D can both be chosen arbitrar-
ily. One can then write the Fokker-Planck equation for
the probability distribution

P̃ (y, t) =

[
G(x)

D

]1/2
P (x, t) (7)

as follows:

∂P̃ (y, t)

∂t
= − ∂

∂y

[
F̃ (y)P̃ (y, t)

]
+D

∂2

∂y2

[
P̃ (y, t)

]
. (8)

D can thus be identified as the diffusion constant in the
additive noise version. The explicit definition of D is
obtained from Eq. (6) as

D =

(
dy

dx

)2

G(x). (9)

The new drift term is given by

F̃ (y) =

√
D

G(x)

[
F (x)− 1

2
G′(x)

]
, (10)

and the new Langevin equation is

Ẏ = F̃ (Y ) + ζ(t), (11)

where ζ(t) is another Gaussian δ-correlated noise with
zero mean and

〈ζ(t)ζ(t′)〉 = 2Dδ(t− t′). (12)

The problem with this approach is that in order to write

the new drift term F̃ explicitly as a function of y we
need to perform the integral in Eq. (6) and calculate the
inverse function in order to obtain x(y) and use it in
Eq. (10). Except for very simple cases, this task is an-
alytically impossible. We therefore follow an alternative
route.

Our approach is to directly calculate the Kramers’
rate associated with the original Fokker-Planck equation,
Eq.(1), with the space-dependent diffusion term. We fol-
low a path similar to that used in Ref. [20], but allow
the diffusion contribution to vary in space. We will later
compare our results with two others that have appeared
in the literature and that we assert are incorrect, as con-
firmed in at least one of the two cases by numerical sim-
ulations (the other case has a fundamental flaw and does
not need to be compared, as will be discussed later).

As in the constant diffusion case, we want to calculate
the escape rate from a deep well over a high barrier, so
that the probability current over the top of the barrier
is very small and the probability density in the well is
almost time-independent. In other words, the system
behaves as if it were in a steady state. Consequently, the
probability density inside the well is well described by
the steady state probability density

Pss(x) =
K

G(x)
exp

[∫ x F (x′)

G(x′)
dx′
]

= Ke−Ueff (x), (13)
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where K is a normalization constant, the lower limit of
the integral is arbitrary, and the upper limit x is deep
inside the well. We have defined the effective potential
Ueff (x) as

Ueff (x) = ln [G(x)]−
∫ x F (x′)

G(x′)
dx′. (14)

The condition that the well is deep is contained in the
inequality

Ueff (xmax)� Ueff (xmin), (15)

where xmax (xmin) is the position of the maximum (min-
imum) of Ueff (x), that is, the top of the barrier (bottom
of the well).

The flow of probability outward across a point x at
time t, ∂S(x, t)/∂x, is related to the rate of change of the
probability at that point, ∂P (x, t)/∂t, by the continuity
equation:

− ∂S(x, t)

∂x
=
∂P (x, t)

∂t
. (16)

In terms of the effective potential, the probability current
is given by

S(x, t) = −G(x)e−Ueff (x)
∂

∂x

[
eUeff (x)P (x, t)

]
. (17)

Since we are considering a quasi-steady state regime, we
have

− ∂S(x, t)

∂x
=
∂P (x, t)

∂t
' 0 ⇒ S(x, t) ' S0. (18)

Therefore, rearranging Eq.(17) and integrating from
xmin to a given point x = q on the other side of the
high potential barrier, we have

S0

∫ q

xmin

eUeff (x
′)

G(x′)
dx′ = −

[
eUeff (q)P (q, t)

−eUeff (xmin)P (xmin, t)
]
.

(19)

Note that once a trajectory crosses the barrier, the time
it takes to arrive anywhere in the other well is very short.
Hence the precise location of q does not matter. Assum-
ing that at time t most of the probability is still in the
initial well so that P (q, t) is small, we have

S0 =
eUeff (xmin)P (xmin, t)∫ q

xmin

eUeff (x
′)

G(x′)
dx′

. (20)

The probability p of finding the system in the initial
well is

p =

∫ x2

x1

P (x′, t)dx′, (21)

where x1 and x2 are two points around xmin such that
the probability of finding the system outside of the in-
terval [x1, x2] is vanishingly small. Since for weak noise
the system rapidly decays to the bottom of the well, the
probability of finding the system far away from xmin is
exponentially small, and x1 and x2 need not be care-
fully specified. Deep in the well the probability density
is quasi-stationary, so we can use Eq. (13),

P (x, t) ' Pss(x) = Pss(xmin)e[Ueff (xmin)e−Ueff (x)].
(22)

Here we have explicitly exhibited the normalization con-
stant K = Pss(xmin)eUeff (xmin). We can then write the
probability p as

p = P (xmin, t)e
Ueff (xmin)

∫ x2

x1

e−Ueff (x
′)dx′. (23)

Equations (20) and (23) are the main results of this
section and will be used in the next section to calculate
the Kramers’ rate.

III. THE KRAMERS’ RATE

The characteristic time TK that the system spends in
the initial well is given by the ratio of the probability of
the system being in the well over the probability flow over
the barrier away from the well. This time is the inverse
of the escape rate rK from the well:

TK =
1

rK
=

p

S0
=

∫ x2

x1

e−Ueff (x
′)dx′

∫ q

xmin

eUeff (x
′)

G(x′)
dx′.

(24)
The subscript K stands for Kramers. The integrand of
the second integral can be rewritten as

eUeff (x)

G(x)
= exp [Ueff (x)− lnG(x)] = eÛeff (x), (25)

where we have defined

Ûeff (x) = −
∫ x F (x′)

G(x′)
dx′. (26)

Hence, we have that,

TK =
1

rK
=

∫ x2

x1

e−Ueff (x
′)dx′

∫ q

xmin

eÛeff (x
′)dx′. (27)

Each of the potentials U(x) and Û(x) has a deep well
where most of the probability distribution resides and a
high barrier crossed due to thermal fluctuations. It fol-
lows that the integrand of the leftmost integral is highly
peaked around the minimum of Ueff , already labeled
xmin, and that of the rightmost integrand around the

maximum of Ûeff , defined as x̂max. It is therefore valid
to expand each of the potentials around the appropriate
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extremum and retain terms up to second order, respec-
tively, yielding

Ueff (x) ≈ Ueff (xmin) +
U ′′eff (xmin)

2
(x− xmin)2,

Ûeff (x) ≈ Ûeff (x̂max) +
Û ′′eff (x̂max)

2
(x− x̂max)2.

(28)

Using these expansions in Eq. (27), and extending the
limits of integration to go from −∞ to +∞ (which can
safely be done because the integrands are highly peaked),
we arrive at Gaussian integrals that can readily be per-
formed analytically, leading to the Kramers’ rate

rK = (2π)−1
√
−Û ′′eff (x̂max)U ′′eff (xmin)× exp

[
−Ûeff (x̂max) + Ueff (xmin)

]
. (29)

If a more accurate result is desired, one can easily keep
terms up to fourth order in the expansion (28). Equa-
tion (29) is the principal result of this paper.

Several papers in the literature have presented incor-
rect calculations of the Kramers’ rate (or the average

escape time) over a barrier for systems with multiplica-
tive noise. For instance, [4–9, 17] present the following
expression for the Kramers’ rate (the notation is adapted
to ours for comparison):

r∗K = (2π)−1
√
−U ′′(x+)U ′′(x0)× exp [−Ueff (x+) + Ueff (x0)] , (30)

where x+ and x0 are the maximum and minimum of the
deterministic potential U(x) of Eq. (2). We will show
in a particular example that the inverse of the mean es-
cape time obtained by performing an average over real-
izations of the direct integration of the Langevin equa-
tion, Eq. (2), for that example does not agree with this

expression, but is well approximated by Eq. (29).
The other expression we found in the literature appears

in Ref. [13], where it is said that the escape rate can be
calculated using the effective potential Ueff instead of
the deterministic potential that appears in the additive
noise case,

r†K = (2π)−1
√
−U ′′eff (xmax)U ′′eff (xmin)× exp [−Ueff (xmax) + Ueff (xmin)] . (31)

This expression has an additional fundamental flaw: it
does not reduce to the additive noise result when one
has both additive and multiplicative noise, and the mul-
tiplicative noise is allowed to vanish at the end of the
calculation. Instead, in this limit the escape rate ap-
pears divided by the additive noise diffusion constant.
Therefore, we will not discuss this case any further.

IV. A PARTICULAR EXAMPLE

As a test case, consider a simple bistable system under
the influence of both additive and multiplicative noise,

described by the Langevin equation

Ẋ = aX − bX3 +Xξ(t) + η(t), (32)

where a and b are positive constants, and ξ(t) and η(t)
are mutually uncorrelated Gaussian fluctuations with
zero mean and correlations given in Eq. (3). Using the
Stratonovich formalism, the functions F and G in the
Fokker-Planck equation, Eq. (1), now are

F (x) = ax− bx3 +DMx, (33)

G(x) = DMx
2 +DA. (34)
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For this simple model, the escape rate expressions
Eqs. (29) and (30) can be calculated analytically, leading

to

rK =

√
[DM (a−DM ) + bDA] (a2 −D2

M )

2πDAb
× exp

DM (a−DM )− (DM (a+DM ) + bDA) log
(

DM (a−DM )
bDA

+ 1
)

2D2
M


(35)

and

r∗K =
a√
2π

exp

− (DM (a+DM ) + bDA) log
(

aDM

bDA
+ 1
)
− aDM

2D2
M

 . (36)

In the limit of vanishing multiplicative noise, DM → 0,
both expressions give the same familiar result for the

average escape rate, [a/
√

2π]e−a
2/4bDA , but when the

multiplicative noise increases, so does the difference be-
tween rK and r∗K . In Fig. 1, we show an example of how
the two results differ, and compare these with the out-
come of the numerical integration of the Langevin equa-
tion Eq. (32). This numerical integration was performed
as follows. The initial condition in all the integrations
was set at one of the minima of the effective potential
Ueff (x), and the trajectory was allowed to evolve accord-
ing to the Langevin equation until it reached the other
minimum. We recorded the time it took the trajectory
to arrive at the other minimum as the escape time. We
repeated this process for 1,000 runs and calculated the
average time it took the system to go from one minimum
to the other. We equated the Kramers’ rate with the
inverse of this mean escape time. Since the potential is
symmetric, the time it takes from either minimum to the
other is the same.

It is clear from the figure that the agreement of our
result, Eq. (35), and the result of the integration of the
Langevin equation, is excellent, and that both differ from
the result (36). The difference between our results and
the direct integration at high values of DM is a conse-
quence of the fact that here the multiplicative fluctu-
ations are large, or, correspondingly, the barrier is no
longer so high. We note that for this example the an-
alytic transition rates obtained in Ref. [10] also fall es-
sentially on top of our analytic curve in Fig. 1 (result
not shown), but that our analytic result (29) differs from
theirs. Specifically, direct comparison leads to the con-
clusion (in our notation) that instead of using the min-

imum of Ueff (x) and the maximum of Ûeff (x), the po-
tentials shifted from the deterministic potential by the
multiplicative noise, in their steepest descent implemen-
tation they work with the extrema of the deterministic
potential. We expect the differences in the results not to
be major not only for this particular example but more
generally when the shifts are small, which is the case

 0

 0.001

 0.002

 0  0.1  0.2  0.3  0.4

r K

DM

FIG. 1: Transition rates vs multiplicative noise strength pa-
rameter DM , calculated directly from the integration of the
Langevin equation (averaged over 1000 samples), crosses;
from Eq. (35), top curve; and from Eq. (36), bottom curve.
The values of the other parameters are a = 5.0, b = 1.0, and
DA = 0.5.

when the barrier is high relative to the fluctuations.

V. CONCLUSION

In this paper we have derived an explicit expression
for the Kramers’ transition rate from one potential well
over a potential barrier for systems with multiplicative
noise. Our starting point was a one-dimensional Fokker-
Planck equation, and our basic assumptions were similar
to the two hypotheses usually made in the purely addi-
tive noise case, namely, that the system is in the adiabatic
limit (that is, the relaxation to equilibrium is much faster
than any other process), and that the (effective) potential
barrier is high. We explained why our result differs from
one that has been incorrectly used in the literature. We
have shown via an explicit example that the integration
of the Langevin equation corroborates our result. Our
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findings can be used to explain existing numerical results
in a variety of escape problems involving multiplicative
noise. One particularly interesting problem that we are
now able to reproduce with our theory is that of stochas-
tic resonance in the presence of multiplicative noise [21].
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