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Quantum work is usually determined from two projective measurements of the energy at the beginning
and at the end of a thermodynamic process. However, this paradigm cannot be considered thermodynami-
cally consistent as it does not account for the thermodynamic cost of these measurements. To remedy this
conceptual inconsistency we introduce a novel paradigm that relies only on the expected change of the av-
erage energy given the initial energy eigenbasis. In particular, we completely omit quantum measurements
in the definition of quantum work, and hence quantum work is identified as a thermodynamic quantity of
only the system. As main results we derive a modified quantum Jarzynski equality and a sharpened maxi-
mum work theorem in terms of the information free energy. Comparison of our results with the standard

approach allows to quantify the informational cost of projective measurements.

PACS numbers: 05.70.Ln, 05.30.-d, 03.65.Ta

In classical mechanics and thermodynamics work is de-
termined by a functional of a force along a trajectory in
phase space [1-3]. For quantum systems the situation is
much more subtle, since trajectories simply do not exist
and a hermitian work operator cannot be defined [4, 5].
Rather, quantum work is commonly determined as the dif-
ference between two energies projectively measured at two
times: one at the beginning and one at the end of a ther-
modynamic process [6, 7]. Despite the obvious limitations
of this notion — no truly open systems can be described
since the change of internal energy comprises only work,
but no heat — the two-time energy measurement approach
has proven to be practical and powerful. For instance, this
approach has led to the experimental verification of quan-
tum fluctuation theorems [8, 9] and the development of heat
engines at the nanoscale [10-13].

Nevertheless, quantum work has remained somewhat
elusive with many peculiar features and open questions
[14, 15]. For instance, it has only recently been pointed out
that work can be measured at a single (final) time by means
of a generalized measurement [16], that its probability dis-
tribution can be interferometrically estimated [17-20], that
it reduces to the classical notion of thermodynamic work in
high-temperature [21] and semi-classical [22] limits, and
that the paradigm of two-time energy measurements is also
applicable to open systems as long as the dynamics is unital
[23], see Refs. [24-30].

In the following we will motivate and introduce a new
definition of quantum work based on a proper character-
ization of the role of quantum measurements — a feature
not present in the semi-classical limit [22]. Imagine the
typical situation for which the quantum Jarzynski equal-
ity is valid [3]: at ¢ = O the system is prepared in a
Boltzmann-Gibbs distribution, py o exp (—8H,), where
H, is the initial Hamiltonian and § denotes the inverse
temperature. Then the density operator pg is diagonal in

energy basis, and the projective measurement of the en-
ergy simply determines the thermal occupation probabil-
ities p(ng) o exp (—pPe(ng)). After the first measure-
ment, the system evolves under a time-dependent Hamil-
tonian H(t) from ¢ = 0 to ¢ = 7, and the final state,
pr, 1s typically a complicated nonequilibrium state [31—
33]. Generally, p, is not diagonal in the energy basis,
and therefore a projective measurement of the energy is ac-
companied by a back-action on the system [34]. In many
realistic situations one does not have to worry too much
about this back-action. Experimentally it poses a real chal-
lenge to fully isolate a quantum system from its environ-
ment, and hence almost all, real quantum systems eventu-
ally decohere [35, 36]. Interestingly, the energybasis can
be superselected by the environment [37], and hence p,
quickly becomes close to diagonal in energy eigenbasis.
Hence, we believe that the methods put forward here will
be also useful in the treatment of open systems, see e.g.
also Refs. [38]. For the time being, however, we will ex-
clusively focus on isolated systems.

For fast processes — faster than the time-scales over
which decoherence happens — or small systems p, is gen-
erally not diagonal, which has been seen explicitly, e.g., in
the ion trap experiment by An et al. [9]. In such situations
the back-action of the measurement on the system does
play a role and results in an increase of von-Neumann en-
tropy of the system, i.e., in a change of information. Infor-
mation, however, is a thermodynamic resource [39], which
can be related to a free energy usable to perfrom additional
work [40, 41]. Hence, one would expect this additional
(information) free energy to explicitly show up in the ther-
modynamic relations [42, 43]. However, in the standard
treatment [5] and in experiments [8, 9] this informational
back-action on the system from the second projective mea-
surement has not been considered. Hence, the paradigm of
two-time measurements is thermodynamically incomplete.



In our analysis we will address this issue and resolve
the conceptual inconstency arising from neglecting the in-
formational contribution to the laws of thermodynamics.
This will lead to a new notion of quantum work, which
relies only on the internal energy as an average of the time-
evolved energy eigenstates. We will see that this notion
is in full agreement with the first law of thermodynam-
ics — the average work is given by the change of internal
energy — but that we can also quantify the informational
contribution to the free energy from projective measure-
ments. As a main result we will derive a modified quantum
Jarzynski equality and an associated maximum work theo-
rem, in which the thermodynamic free energy is replaced
by the information free energy [41, 44-46]. To the best
of our knowledge no previous work has derived a modified
Jarzynski equality and a sharper maximum work theorem
relating the cost of projective measurements with such a
generalized free energy.

Two-time measurements — notions and issues We be-
gin by briefly reviewing the paradigm of the two-time en-
ergy measurement approach, and establish notions and no-
tations. Here and in the following we consider an isolated
quantum system with time-dependent Schrodinger equa-
tion, ik |1;) = H,; |1;). We are interested in describ-
ing thermodynamic processes that are induced by vary-
ing an external control parameter \; during time 7, with
H, = H(\).

Commonly quantum work is determined by the follow-
ing, experimentally motivated protocol: After preparation
of the initial state py a projective measurement of the en-
ergy is performed; then the system is allowed to evolve un-
der the time-dependent Schrodinger equation, before a sec-
ond projective energy measurement is performed at ¢ = 7.

For the sake of simplicity and to avoid clutter in the for-
mulas we further assume that the system is initially pre-
pared in a Gibbs state, py = exp (—FHy)/Zy, where
[ is the inverse temperature and Z is the partition func-
tion, Zy = tr{exp (—/Hy)}. Strictly speaking the pro-
jective measurement at ¢ = 0 is superfluous for initially
thermal states, since such pgs are diagonal in the energy
basis. The internal energy of the system, and therefore
the full thermodynamic behavior, can simply be deter-
mined by an average over all energy eigenstates equipped
with the thermal occupation probabilities [47], p(ng) =
exp (—B €(no, \o))/Zo.

The first law of thermodynamics determines that the
average work is given by the change of internal energy,
(W)Y =tr{p, H.} —tr{po Ho}, where U, is the unitary
time evolution operator, U, = T~ exp (—i /h fOT dt Ht),
and 7~ denotes time-ordering. Accordingly, for a single
realization of the two-time measurement protocol the quan-
tum work reads

WnO—M’LT = E(n'm AT) - 6(nOa )‘0) ) (1

where |ng) is the initial eigenstate with eigenenergy

2

€(no, Ao) and |n,) with €(n,, \,) describes the final en-
ergy eigenstate.

The corresponding quantum work probability distribu-
tion (2) is then given by an average over an ensemble of re-
alizations of this protocol, P(W) = (§ (W — W,y 0. ),
which can be written as [18, 48]

POV) = Y 6OW = W) p (i) @

no,Nr

In the latter equation the symbol ¥ denotes a sum over
the discrete part of the eigenvalues spectrum and an inte-
gral over the continuous part. In Eq. (2) p (ng; n,) are the
joint probabilities for detecting 1y and n.- in the two energy
measurements [18, 27, 48],

p (no;n,) = tr {IL, U,IL, polL,, U},  (3)

where, II,, denotes the projector into the space spanned
by the nth eigenstate, which becomes for non-degenerate
spectra I1,, = |n) (n|. It is then a simple exercise to show
that from the definition of (W) (2) we have the quantum
Jarzynski equality [4, 5],

(e = / AW P(W)e PV =e P28 (4)

where AF = F, — Fyand F, = —(1/0) In(Z,).
Neglected informational cost Generally the final state
pr is a complicated nonequilibrium state. This means,
in particular, that p, does not commute with the final
Hamiltonian H ., and one has to consider the back-action
on the system due to the projective measurement of the
energy [34]. For a single measurement, II,_, the post-
measurement state is given by IL,,_p.II,,_/p,, where p,, =
tr {HELT p-}. Thus, the system can be found on average in

pr =", p 10, . (5)

Accordingly, the final measurement of the energy is accom-
panied by a change of information, i.e., by a change of the
von Neumann entropy of the system

AHM = —tr {p]Tw In (pi”)}—i—tr {p-In(p)} >0. (6)

Information, however, is physical [49] and its acquisition
“costs” work. This additional work has to be paid by the
external observer — the measurement device. In a fully con-
sistent thermodynamic framework this cost has to be taken
into consideration [40] — in particular when calculating the
efficiency of thermodynamic devices [10, 11].

Quantum work without measurements To remedy this
conceptual inconsistency arising from neglecting the in-
formational contribution of the projective measurements,
we propose an alternative paradigm. For isolated systems
quantum work is clearly given by the change of internal
energy. As a statement of the first law of thermodynamics
this holds true no matter whether the system is measured or
not. Quantum measurements, however, can be understood



as an interaction with a “measuring environment”. How-
ever, almost any environment induces decoherence [36].
Thus, defining work with the help of the environment and
ignoring the effect of decoherence is as thermodynamically
inconsistent as defining work via an external measurement
and neglecting the informational cost of these projective
measurements.

For thermal states measuring the energy is superfluous
as state and energy commute. Hence, a notion of quantum
work can be formulated that is fully based on the time-
evolution of energy eigenstates [50]. Quantum work for a
single realization is then determined by considering how
much the expectation value for a single energy eigenstate
changes under the unitary evolution [51]. Hence, we define

W, = (no| UL Ho Us [ng) — €(ng, Ao) . (7)

We can easily verify that the so defined quantum work (7),
indeed, fulfills with the first law. To this end, we compute
the average work (W) for the modified quantum work

distribution P (W), and we obtain,

W)z = Y (0ol U H. U ) pling) — tx {po Ho)

=tr {pT HT} —tr {PO HO} = (W) .
(®)

It is important to note that the average quantum work de-
termined from two-time energy measurements is identical
to the (expected) value given only knowledge from a single
measurement at ¢ = 0. Most importantly, however, in our
paradigm the external observer does not have to pay a ther-
modynamic cost associated with the change of information
due to measurements. Hence, the present paradigm can be
considered thermodynamically consistent and complete.

Modified quantum Jarzynski equality What we have
seen so far is that the first law of thermodynamics is im-
mune to whether the energy of the system is measured or
not, since projective measurements of the energy do not af-
fect the internal energy. However, the informational con-
tent of the system of interest, i.e., the entropy crucially
depends on whether the system is measured. Therefore,
we expect that the statements of the second law have to be
modified to reflect the informational contribution [40]. In
our paradigm the modified quantum work distribution be-
comes

POV) = Yo = Wo)ptn), )

where as before p(ng) = exp (—5 €(ng, A\o))/Zo. Now,
we can compute the average exponentiated work,

1 T
—BW no|lUl Hr Ur|ng
<€ B >73~ = 70 i e B (nol o) . (10)

no

The right side of Eq. (10) can be interpreted as the
ratio of two partition functions, where Z, describes

the initial thermal state. The second partition function
Z. =¥, exp (=B (no| Ul H, U, |ng)) corresponds to
the best possible guess for a thermal state of the final sys-
tem given only the time-evolved energy eigenbasis. This
state can be written as

1 —B{ny|UT n
= Zie B (no|UL H. Uy |no) U, [no) (no| U, (11)

r

which differs from the true thermal state, pS? =
exp (—pH,)/Z,.

In information theory the “quality” of such a best pos-
sible guess is quantified by the relative entropy [52, 53],
which measures the distinguishability of two (quantum)
states. Hence, let us consider

S(7|1p) = tr {7, In (7,)} — tr {7, I (6)}, (12)
for which we compute both terms separately. For the first
term, the negentropy of p, we obtain,

tr {5, In (7)) = —In (Z)

— e 5. Y. (ol UL HL U fmo) U o) (mo] U]
= —In(Z) - BE,
(13)

where we introduced the expected value of the energy, F,
under the time-evolved eigenstates,

~ 1
E = Z i e~ B (nolUL Hr Urlno) (| Ul H. U, |ng) .

° (14)
The second term of Eq. (12), the cross entropy of p, and
p4, simplifies to

e {p, In (5} = —In (2,)

1
— [tr i Eefmnowi Hr Urlno) 7 |no) (nol U H.

= —In(Z,) - BE.
(15)

Hence, the modified quantum Jarzynski equality (10) be-
comes

<e—BW>7,5 — ¢ PAF o=S@rller) (16)

where as before AF = —1/8 In(Z,/Z,). Jensen’s in-
equality further implies,

B W)= BAF +5(p-|p7) (17)

where we used (W) = (W) (8).

Equations (16) and (17) are our main results. By defining
quantum work as an average over time-evolved eigenstates
we obtain a modified quantum Jarzynski equality (16) and
a generalized maximum work theorem (17), in which the



thermodynamic cost of projective measurements becomes
apparent. These results become even more transparent by
noting that similar versions of the maximum work theorem
have been derived in the thermodynamics of information
[40, 41, 44, 54]. In this context it has proven useful to
introduce the notion of an information free energy,

F. = F. + S(p|n5%)/8. (18)

This free energy is a true thermodynamic quantity [41, 44]
that accounts for the additional capacity of a thermody-
namic system to perform work due to information [40].
Note that in the present context F, is computed for the fic-
titious thermal state p- (11), whereas one usually considers
the information free energy for the nonequilibirum state p.,
[40, 41, 44, 54].
We can rewrite Eq. (17) as

8 (W) > BAF. (19)

Equation (19) constitutes a sharper bound than the usual
maximum work theorem, and it accounts for the extra free
energy available to the system. Free energy, however, de-
scribes the usable, extractable work. In real-life applica-
tions one is more interested in the maximal free energy
the system has available, then in the work that could be
extracted by intermediate, disruptive measurements of the
energy. Therefore, our treatment could be considered ther-
modynamically more relevant than the two-time measure-
ment approach.

Hllustrative example: parametric harmonic oscillator
For the remainder of this discussion we will turn to an
analytically solvable example, namely the parametric har-
monic oscillator,

H = p*/2m + mw? 2*/2. (20)

This system has been studied extensively in the literature,
and it can be shown that the average work performed by
changing the angular frequency from wy to w, is given by
[21, 31]

(W) =h/2 (Q"w,; —wp) coth (8/2hwy).  (21)

The quantity Q* is a measure of adiabaticty [21, 55], which
fully encodes the dynamics. In particular, we have Q* = 1
for adiabatic, infinitely slow processes, and Q* > 1 for
finite time driving. The change in equilibrum free energy
becomes [31]

1 sinh (/2 hw,)
AF =3 1“<smh (6/2%))‘ 22

Therefore, we merely have to compute the partition func-
tion Z, which can be written as

27— = Zexp <_ ZBMT (nT + 1/2) pno,n,) 9 (23)

N,

<W>

SRRV R Y e N

FIG. 1. (color online) Average work (W) (21) (blue, solid line),
together with the change of equilibrium free energy AF (22)
(red, dotted line) and the informational maximum work theorem,
BAF + S(pr||psd) (17) (purple, dashed line) for the parametric
harmonic oscillator 20) with A =1,8 =1, wy = 1, and wr = 2.

where p,,, ., = tr{IL, U, IL, Ul}. Hence, 7 is fully
determined by the average final occupation number [31]

<n7'>n0 = ZnTpnomT =(no+1/2) Q" —1/2, 24

nr

from which we obtain

7, = Zexp (—=Bhw.Q"(ng +1/2))
no (25)

— (2sinh (8/2Q" hw,)) " .

Accordingly, the informational correction to the maximum
work theorem arising from omitting the second projective

measurement beCOIneS
~ sinh (5/2 Q* ﬁwT))
S(p-||p3) =1 - ,
ol =t (S

which is clearly non-negative and a simple function of the
measure of adiabaticity (J*. Note that for adiabatic pro-
cesses, Q* = 1, the information free energy (17) be-
comes identical to the equilibrium free energy, since we
have S(p. || %) = 0.

In Figs. 1 and 2 we plot the average work (W) (21)
together with the change of equilibrium free energy AF
(22) and the modified maximum work theorem (17). We
observe that the bound arising from the information free
energy (18) is process dependent and sharper — for some
parametrizations even tight.

Concluding remarks A conceptually consistent and
complete framework of quantum thermodynamics cru-
cially depends on accounting for quantum features and pe-
culiarities [56]. In the present analysis we have shown that
despite its success the two-time energy measurement ap-
proach to quantum work neglects the informational back-
action of the projective measurements. This informational
contribution to the laws of quantum thermodynamics has

(26)
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FIG. 2. (color online) Average work (W) (21) (blue, solid line),
together with the change of equilibrium free energy AF (22)
(red, dotted line) and the informational maximum work theorem,
BAF + S(pr||p7Y) (17) (purple, dashed line) for the parametric
harmonic oscillator (20) with A =1, 8 =1, wg = 2, and wr = 1.

been highlighted by introducing a new paradigm, in which
quantum work is fully determined by the change of inter-
nal energy as an average over the initial energy eigenstates.
This approach has allowed us to derive a modified quantum
Jarzynski equality and a modified maximum work theorem,
in which the equilibrium free energy is replaced by the
information free energy. In conclusion, we achieved sev-
eral important insights: (i) we have proposed a thermody-
namically consistent notion of quantum work, which does
not rely on external observers and projective measurements
and (ii) we have included the thermodynamic cost of infor-
mation gain in the paradigm of quantum work, and hence
taken an instrumental step towards a conclusive theory of
quantum thermodynamics of quantum information.
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