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The probability distribution for the free energy of directed polymers in random media (DPRM)
with uncorrelated noise in d = 1 + 1 dimensions satisfies the Tracy–Widom distribution. We inquire
if and how this universal distribution is modified in the presence of spatially correlated noise. The
width of the distribution scales as the DPRM length to an exponent β, in good (but not full)
agreement with previous renormalization group and numerical results. The scaled probability is well
described by the Tracy–Widom form for uncorrelated noise, but becomes symmetric with increasing
correlation exponent. We thus find a class of distributions that continuously interpolates between
Tracy–Widom and Gaussian forms.

PACS numbers: 05.20.-y, 05.40.-a, 05.50.+q

The Tracy–Widom (TW) distribution was originally
introduced in connection with the probability for the
largest eigenvalue of a random matrix [1]. It has since ac-
quired iconic status [2] due to applications ranging from
bioinformatic sequence alignments [3] to aircraft fault de-
tection [4]. Like the Gumbel and Gaussian distributions,
TW is universal in being independent of various underly-
ing (microscopic) details. However, whereas it is known
how the addition of fat-tailed random variables modifies
a Gaussian to a Lévy distribution, corresponding lim-
itations for TW are not known. We take up this ques-
tion in the context of directed polymers in random media
(DPRM) [5–7], one of the more highly studied systems
in the TW class [8, 9].

The DPRM problem considers configurations of a di-
rected path (no overhangs) traversing a random energy
landscape. Unlike the traveling salesman problem (which
allows overhangs and loops), the optimization problem
can be solved in polynomial time with a transfer matrix
formalism [5–7]. The optimal energy path (or the free
energy at finite temperature) exhibits sample to sample
fluctuations, which scale with the path length t, as tβ . In
1+1 dimensions, and for uncorrelated random energies,
the scaled probability of these fluctuations satisfies the
TW distribution [8, 9]. It is known, however, that the
exponent β is modified if the random energies have long-
range (power-law) correlations [10]. We examine energy
fluctuations in such correlated energy landscapes, and
inquire if and how the TW form changes along with the
exponent β.

As one of the simplest random processes described
by the Kardar-Parisi-Zhang (KPZ) equation [10, 11],
DPRM has been extensively studied over the past three
decades [12–14], with renewed recent interest [15–17] due
to its connection to TW. It is closely related to the
Eden [18–20], the restricted solid-on-solid (RSOS) [21,
22], and ballistic deposition (BD) models [19, 23]. (Ex-
tensive reviews from both statistical physics [6, 7] and
mathematical [9] perspectives provide an excellent back-
ground on the subject.) In the continuum limit, the par-
tition function W (x, t) of a polymer of length t termi-
nating at a point x ∈ Rd satisfies the stochastic heat

equation

∂tW (x, t) = ν∇2W (x, t) + η(x, t)W (x, t) , (1)

where ν is related to the polymer line tension, and η(x, t)
is the random energy at (x, t). [The Cole-Hopf transfor-
mation, W = exp[(λ/2ν)h], maps the above to the KPZ
equation, ∂th(x, t) = ν∇2h+ λ(∇h)2/2 + η(x, t).]

In d = 1 dimension, the KPZ equation with uncorre-
lated energies [η(x, t), independent white noise at each
x] has exact exponent β = 1/3 [15, 24, 25]. Recently,
the exact limiting end-point energy distribution has also
been obtained [26, 27]: The extremal path from the ori-
gin to (x, t) for given x and t (called the pt-pt model),
related to stochastic growth in a radial geometry, obeys
TW Gaussian unitary ensemble (TW-GUE) statistics;
the extremal path from the origin to any x and a given t
(called the pt-line model), related to stochastic growth in
a flat geometry, obeys TW Gaussian orthogonal ensem-
ble (TW-GOE) statistics [1, 16]. It is known that the
exponent β can be modified by introducing noise that
is fat-tailed [P (η) ∼ 1/η1+µ as η → −∞] [28–30], or
long-range correlated [10]. The former was considered
in Ref. [17], concluding that for 0 < µ < 5, both the
scaling exponent and the end-point distributions are in-
consistent with the KPZ/TW universality class described
above, but did not focus on the nature of the modified
distributions. Here, we consider the latter, expanding on
earlier work in Ref. [16].

In the generalization of the KPZ equation proposed
in Ref. [10], the random energies are spatially correlated
such that

〈η(x, t)η(x′, t′)〉 ∼ |x− x′|2ρ−1δ(t− t′). (2)

A one-loop dynamical renormalization group (RG) cal-
culation [10, 31] predicts

β(ρ) =

{
1/3, 0 < ρ < 1/4,
(1 + 2ρ)/(5− 2ρ), 1/4 < ρ < 1.

(3)

Eq. (3) was also obtained in the field-theoretic works of
Ref. [32] and Ref. [33], using a stochastic Cole-Hopf trans-
formation and a nonperturbative RG approach, respec-
tively. On dimensional ground, the case of uncorrelated
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noise [δ(x) ∼ 1/|x|] corresponds to ρ = 0, in the regime
where the RG result coincides with the exact value of
β = 1/3. The limit ρ = 1 corresponds to the interface
of a two-dimensional Ising model in random fields. The
case of ρ = 1/2 is of particular interest: The DPRM
problem is trivial if the noise does not depend on x, in
which case the addition of random variables at different t
would lead to a Gaussian distribution whose width grows
with β = 1/2 (as predicted by the above). However, as
we shall elaborate below, the numerical procedure used
generates non-trivial correlations for ρ = 1/2 which vary
logarithmically with |x− x′|.

We simulate the discrete pt-line DPRM on a square
lattice, with random energies on each site η(x, t). The
path is directed along the diagonal, such that the minimal
energy is calculated recursively according to the (transfer
matrix) relations

E(x, t) = min{E(x, t−1)+η(x, t), E(x−1, t−1)+η(x, t)}.
(4)

The square lattice is wrapped around a cylinder of size L,
corresponding to periodic boundary conditions along the
x-direction. For ρ < 1, random energies correlated as in
Eq. (2) are generated using the Fourier transform method
proposed in Ref. [34]. (A similar method for generating
correlated noise was developed in Ref. [35].) For ρ = 1,
the noise is constructed as a Brownian bridge, shifted to
have zero mean. The simulated system size is L = 106,
evolved over t = 104 time steps, and averaged over 102

realizations.
With finite L, the variance of the minimal energy is

expected to satisfy the scaling form

∆E = 〈(E−〈E〉)2〉1/2 ∼ Lχf
(
t

Lz

)
∼
{
tβ , t� Lz,
Lχ, t� Lz

,

(5)
where angular brackets indicate averaging over different
realizations (or independent segments in the same re-
alization) of random energies. We have introduced the
scaling function f , whose argument depends on the dy-
namic exponent z, which quantifies the ratio of scaling
exponents in the x and t directions. The validity of the
scaling form requires that the roughening exponent χ sat-
isfy the identity χ = βz. In fact, according to dynamical
RG, the Galilean invariance of the KPZ equation implies
an additional exponent identity χ + z = 2 [10, 31], such
that there is only one independent exponent [e.g. β(ρ)].

We extract the growth exponent β and the dynamic
exponent z from the collapse of the curves of ∆E/tβ vs.
L/tζ for different times t, where ζ = 1/z. Alternatively,
β and z can be deduced respectively from the scaling of
the energy fluctuations ∆E ∼ tβ , and the transverse fluc-
tuations ∆x = 〈(x−x0)2〉1/2 ∼ tζ , where x0 is the origin
of the polymer. This method yields exponents which are
in good agreement with the data collapse approach for
small ρ, where finite size effects are less important.

As presented in Fig. 1, the data is very well collapsed
according to Eq. (5), although somewhat less so for larger
values of ρ. In particular we note the excellent collapse

FIG. 1: Collapse of energy fluctuations of DPRM with a spa-
tially correlated landscape. The data corresponds to system
size L = 106, evolved to time t = 104. The error bars on
the exponents reflect statistical errors in the fits; neglecting
potentially larger systematic errors.

at ρ = 1/4 which according to the RG result of Eq. (3)
is the limiting point for which β sticks to 1/3. However,
we find β = 0.375± 0.005, (and ζ = 0.68± 0.01) in con-
tradiction to RG, but consistent with previous results in
Ref. [35] of β = 0.364 ± 0.005 and ζ = 0.692 ± 0.005.
Indeed, as depicted in Fig. 2, the exponent β appears to
vary continuously with ρ, in contradiction to Eq. (3).
As in Ref. [35], we extend the simulations to ρ ≤ 0,
and throughout this regime obtain β = 1/3 consistent
with uncorrelated noise. (We also find ζ = 2/3 in this
regime through data collapse as in Fig. 1). For larger
values of ρ, the agreement with RG improves, and the
expected random field Ising exponents of β = ζ = 1 are
recovered for ρ = 1. The continuous variation of β for
ρ ≤ 1/2 is similar to observations in previous simulations
of DRPM, RSOS, and BD models [35–38]. We note that
the RG exponents are constrained to be exact for uncor-
related noise due to a fluctuation-dissipation condition.
The exponents in Eq. (3), however, follow from a non-
renormalization of correlated noise amplitude, which in
view of the numerics is perhaps questionable.

In principle, the scaling relation, Eq. (5), involves
two exponents (β and ζ, or χ and z). We estimated
the roughening exponent χ from the slope of the col-
lapsed curve in the regime t � Lz. A hallmark of the
KPZ equation (even with correlated noise) is Galilean
invariance [11, 31], which implies the exponent identity
χ + z = 2. The explicit check of this identity presented
in Fig. 2 appears to indicate its breakdown for ρ > 1/2.
However, simply dividing this identity by z, and noting
β = χ/z, yields a second form 2/z − β = 1, which is ex-
cellently obeyed by the data! The discrepancy between
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FIG. 2: (a) Variation of β with the exponent ρ of spatially
correlated energies. There is a small, but clear deviation from
the predicted RG exponents (dashed line). (b) Validity of
the exponent identities predicted by Galilean invariance; the
discrepancies are likely a measure of systematic errors.

these two identities is an indication of the systematic er-
rors afflicting the fits, such as the small but systematic
curvature in the initial rise of the collapsed curves in
Fig. 1, whose slope is used to obtain the exponent χ.

The end-point energy probability distributions are ob-
tained from time t = 103 to t = 104, in increments of
∆t = 103, and are normalized to have mean 0 and vari-
ance 1. The full distributions presented in Fig. 3 are
qualitatively similar to the TW-GOE form for ρ ≤ 0,
but shift smoothly towards Gaussian as ρ increases to
ρ = 1/2. Beyond ρ = 1/2, it is unclear whether the
distribution remains Gaussian.

The skewness s and kurtosis k, plotted in Fig. 4, are
obtained by averaging results over the above snapshots
in t. In the uncorrelated case, it is possible to estimate
the true asymptotic values of s and k using methods de-
veloped in Ref. [39]. In the correlated case, however,
we run into problems as the uncertainties grow rapidly
with correlation. For ρ ≤ 0, the skewness and kurtosis
approach those of the TW-GOE, the limiting distribu-
tion for uncorrelated noise. As ρ increases towards 1/2,
both s and k decrease to 0, and the distribution becomes
more symmetric. In particular, the data suggests that
s, k → 0 as ρ → 1/2, consistent with a Gaussian distri-
bution. This would be expected if ρ = 1/2 corresponded
to random energies fully correlated in the x-direction, but
randomly changing along the t-direction. The energy of
the DPRM would then be a sum of random variables,
thus β = 1/2, while the path executes a random walk
with z = 2. The latter is not correct, as the Galilean
exponent identity at β = 1/2 leads to the numerically

FIG. 3: Probability distributions for the optimal energy of
DPRM for different correlation exponents ρ. The data corre-
sponds to system size L = 106 at time t = 5 × 103, rescaled
to have mean 0 and variance 1. Results are consistent with
the TW-GOE form (solid line) for ρ ≤ 0, and shift smoothly
towards Gaussian (dashed line) at ρ = 1/2.

observed exponent of z = 4/3. We note also that the
Fourier transform procedure for generating spatially cor-
related noise, devised in Ref. [34] and used here, actu-
ally produces correlations which vary logarithmically at
ρ = 1/2, as 〈η(x, t)η(x′, t′)〉 ∼ (a − b ln |x − x′|)δ(t − t′)
(see Appendix). Interestingly the RG result (also based
on Fourier transformed noise) also predicts the observed
β = 1/2. Finally, for ρ > 1/2, the uncertainty in s and k
grow rapidly due to the increased correlations in random
energies, and we cannot conclusively state whether the
distribution is Gaussian or not. It is of interest to note
that another class of distributions, interpolating between
TW-GUE and Gaussian, was found in Ref. [40] in the
context of random matrix theory, and the convergence of
TW distributions to the Gumbel distribution was studied
in Ref. [41].

In summary, we have performed extensive simulations
of the DPRM over a spatially correlated landscape. The
energy fluctuations are well described by scaling expo-
nents β and z, extracted by standard data collapse. We
find that the exponent identity 2/z − β = 1 reflecting
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FIG. 4: (a) Skewness and (b) kurtosis for DPRM with spa-
tially correlated noise, compared to the TW-GOE values
(solid lines), s = 0.293 and k = 0.165, respectively: Both
approach the TW-GOE values for ρ ≤ 0, and decrease to 0 as
ρ increases to 1/2. Beyond ρ = 1/2, the uncertainties are too
large to rule out s = k = 0.

Galilean invariance holds for all ρ, while the related iden-
tity χ + z = 2 is apparently violated for ρ ≥ 1/2, most
likely due to systematic errors. While the growth expo-
nent β(ρ) is qualitatively similar to predictions of the RG,
there are significant deviations for ρ < 1/2. In particular,
for the important value of ρ = 1/2, at the borderline of
correlations growing or decaying with separation, there
is strong evidence that β = 1/2, with Gaussian energy
fluctuations.

For an uncorrelated landscape, the optimal energy of
DPRM behaves as E = f∞t + (Γt)1/3ξ, where f∞ and
Γ are non-universal, system-dependent parameters, and
ξ is a O(1) random variable obeying TW-GOE statis-
tics. There is currently no analytical prediction for
the limiting distribution in the case of correlated noise.
From the overall scaling, we can propose an analogous
form, E = f∞t + (Γt)β(ρ)ξ(ρ), where β(ρ) is the modi-
fied growth exponent. The random variable ξ(ρ) is dis-
tributed according to TW-GOE statistics for ρ ≤ 0. A
priori one could have imagined that the distribution re-
tains the TW form in general, or that it discontinuously
transitions to a different distribution for ρ > 0. Instead,
we observe a smooth shift as ρ increases, to a Gaus-
sian form at ρ = 1/2. For ρ > 1/2, the uncertainty
in skewness and kurtosis become too significant to con-
clude whether the distribution is Gaussian. We thus find
a class of distributions, interpolating between TW and
Gaussian, which governs the statistics of DPRM with
spatially correlated noise.
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ρ < 1/2 for system size L = 106. The data for ρ = 0.35,
ρ = 0.25, and ρ = 0.15 are plotted (from top to bottom). The
best fit lines (dashed) give ρ = 0.33 ± 0.02, ρ = 0.24 ± 0.02,
and ρ = 0.15± 0.01 respectively.

FIG. A2: Log-log plot of correlation of generated noise with
ρ > 1/2 for system size L = 106. The data for ρ = 0.85,
ρ = 0.75, and ρ = 0.65 are plotted (from top to bottom). The
best fit lines (dashed) give ρ = 0.86 ± 0.03, ρ = 0.77 ± 0.04,
and ρ = 0.69± 0.04 respectively.
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Appendix: Algorithm for generating correlated noise

We present here the method used for generating cor-
related noise developed in Ref. [34]. Note that a similar
method was developed in Ref. [35] to study DPRM and
BD models with correlated noise.

In d = 1 dimension, the goal is to use a sequence of
Gaussian i.i.d. random variables {ui}i=1,...,L to generate
a sequence {ηi}i=1,...,L with correlation function [10]

C(j) = 〈ηiηi+j〉 ∼ j2ρ−1, j →∞. (A1)

Taking the Fourier transform gives the spectral density
function S(q), which has asmptotic form

S(q) = 〈ηqη−q〉 ∼ q−2ρ, q → 0. (A2)
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FIG. A3: Semilog plot of correlation of generated noise with
ρ = 1/2 for system size L = 106. The correlation decays
logarithmically with separation, and the best fit line (dashed)
gives C(j) = −1.13 ln |j|+ 13.52.

The correlated random variables can then be obtained
from the relation

ηq = [S(q)]1/2uq, (A3)

where {ηq} and {uq} are the Fourier transform coeffi-
cients of {ηi} and {ui}, respectively.

As in Ref. [34], we define the correlation function to be

C(j) ≡ (1 + j2)ρ−1/2, (A4)

on the interval j ∈ [−L/2, L/2]. This then has the same
asymptotic power law decay as in Eq. (A1). The spec-
tral density can be calculated analytically as the discrete
Fourier transform,

S(q) =
2π1/2

Γ(−ρ+ 1)

(q
2

)−ρ
Kρ(q), (A5)

where q = 2πn/L with n = −L/2, . . . , L/2, and Kρ is
the modified Bessel function of the second kind of order
ρ. We define S(q = 0) = 0 to avoid any divergences. For
ρ > 0, the modified Bessel function has asymptotic form

Kρ(q) ∼


Γ(ρ)

2

(
2

q

)ρ
, q � 1,√

π

2q
e−q, q � 1.

(A6)

As q → 0, we recover the asymtotic form in Eq. (A2).

The process for generating the correlated noise used to
study DPRM can then be summarized in the following
steps.

1. Generate Gaussian i.i.d. random variables {ui},
and calculate {uq} using the fast Fourier transform.

2. Calculate the spectral density function S(q) using
Eq. (A5), (A6).

3. Calculate {ηq} using Eq. (A3), and calculate {ηi}
using the inverse Fourier transform.

For the DPRM model we simulated, the system size
is L = 106, evolved over t = 104 time steps. We check
the correlation of the noise generated using the above
method by averaging over 102 realizations. The results
for ρ < 1/2 and ρ > 1/2 are plotted in Fig. A1 and A2,
respectively, and we see that the data is in good agree-
ment with the expected values of ρ up to a separation of
j = 103. In the special case ρ = 1/2, we find that the cor-
relation decays logarithmically with separation, as shown
in Fig. A3.
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