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Nanomechanical electron shuttles can work as ratchets for radio-frequency rectification. We de-
velop a full stochastic model of coupled shuttles, where the mechanical motion of nanopillars and
the incoherent electronic tunneling are modeled by a Markov chain. In particular, the interaction of
their randomness is taken into account, so that a linear master equation is constructed. Numerical
solution from our fast approximate method and analytical derivation reveal the symmetry breaking,
which results in the direct current observed in earlier measurements [Phys. Rev. Lett. 105, 067204
(2010)]. Additionally, the method can facilitate device simulation of more complex designs such as
shuttle arrays.

I. INTRODUCTION

Nanoelectromechanical systems have attracted signif-
icant interest in the past decade as they can provide
a number of promising applications [1]. Among them,
the nanomechanical electron shuttle proposed by Gore-
lik et al. is an outstanding example that received con-
siderable theoretical [2–22] and experimental [23–34] at-
tention. The shuttle is typically realized by metallic is-
lands, quantum dots, or large molecules, and can be ex-
cited by a radio-frequency (RF) voltage so that electrons
are shuttled between electrodes. Due to strong nonlin-
ear electro-mechanical coupling, such devices can be used
as RF modulators or as high-frequency current ratchet.
It was shown that single and—more effectively—coupled
electron shuttles can rectify applied RF signals and give
rise to a direct current that may be used to power elec-
tronic devices [21, 22, 31–33]. While previous theoretical
studies provide fundamental insight into the physics, we
are still unable to make accurate predictions on the de-
vice level.

In this paper, we focus on modeling coupled electron
shuttles that would greatly favor energy scavenging. As
shown in Fig. 1a, the coupled electron shuttles oscillate
between the source and drain electrodes with alternating
voltage V (t) (additional gate electrodes with constant
charges can be applied), triggering nonresonant electron
tunneling. The size of shuttles is generally 1–100 nm and
they work at room temperature. Fig. 1b shows a typi-
cal design where the oscillation of shuttles is restrained
by the supporting nanopillars’ eigenmodes. Thus, we de-
velop a new model based on the semi-classical stochas-
tic theory that enables analytical and numerical analysis
of the device. This is important for designing practical
energy-scavengers, where arrays of electron shuttles are
coupled to generate an appreciable output current.

Because the incoherent tunneling is dominant in such
scenarios [35], the electron tunneling and the shuttle os-
cillation in the system can be modeled as a continu-

∗ robert@nanomachines.com

(a) (b)

FIG. 1. (a) Coupled nanomechanical electron shuttles, set
with electrodes S, D and optionally G1, G2, oscillate under
driving voltage and have electrons tunneled. (b) Side-view of
a typical design where shuttles are on top of nanopillars.

ous stochastic process. Thus, a semi-classical statistical
model is more suitable than the full quantum-mechanical
treatments [15–19], which work better for coherent de-
vices. In the following, we develop a linear master equa-
tion describing the probability distribution of the elec-
tron numbers in the shuttles. Although the probability
distribution was widely discussed in previous studies on
the single shuttle [2, 3, 8–14], most approaches describe
the mechanical oscillation by deterministic variables and
their master equation is nonlinear.

Ahn [21] and Prada [22] extended such approaches to
pioneer modeling the coupled shuttles. In contrast to
some earlier models [6–11, 14], they allow electron num-
bers in a shuttle to be greater than 1. Our model fol-
lows their assumptions, but the linear master equation
enables further analytical study. More importantly, we
propose the approximate deterministic equations for the
mean and deviation of physical quantities, from which we
can compute the macroscopic direct current. This brings
the large-scale device simulation to a level of acceptable
speed and accuracy.

II. FULL STOCHASTIC MODEL

We describe the displacement and velocity of the sth

shuttle (s = 1, 2) at the time t by random variables x̃s(t)
and ṽs(t), and describe the number of net electrons in the
shuttle by the integer-valued random variable ñs(t). For
simplicity, we write them by vectors x̃(t), ṽ(t) and ñ(t)
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(typically ‘(t)’ is omitted in the following). We assume
these three random variables are sufficient to describe the
immediate state of the system and evolute as a Markov
chain. The mean of a random variable is noted by a
bracket, e.g., 〈x̃(t)〉 or simply 〈x̃〉. Also assume constant
number of electrons on the gate electrodes noted by vec-
tor nG. We use P (n,x,v, t) to describe the joint proba-
bility distribution function (PDF) of ñ(t), x̃(t) and ṽ(t),
whose variables n, x and v have the same value range as
these random variables.

Assuming the sth pillar has an eigenfrequency ωs, ef-
fective mass ms, and damping coefficient γs = ωs/Q with
Q being the quality factor, we have x̃s(t) and ṽs(t) sat-
isfying the following stochastic differential equations:{

dx̃s/dt = ṽs
dṽs/dt = −γsṽs − ω2

s x̃s + Fs(ñ, t)/ms
(1)

where Fs is the electromagnetic force on the sth shut-
tle and can be approximated as a function of ñ(t) and
V (t). Since the probability distribution of ñ(t) is un-
known, we cannot simply solve the equations to describe
x̃s(t) and ṽs(t). Instead, assuming P (n,x,v, t) changes
to P (n′,x′,v′, t′) after infinitesimal time ∆t = t′−t, from
Eq. (1) that implies deterministic change of motion, we
can write the conditional probability in the form of Dirac
delta functions:

P (x′s, v
′
s, t
′|n,x,v, t) = δ(x′s − xs − vs∆t) (2)

· δ
(
v′s − vs + [γsṽs + ω2

s x̃s − Fs(ñ, t)/ms]∆t
)

+ o(∆t),

where o(∆t) denotes a high-order infinitesimal of ∆t.
Another mechanism restraining the PDF besides the

mechanical motion is the tunneling of electrons, which
can be modeled by the orthodox model [6]. The compo-
nents of n − n′ are limited to ±1 and 0 for considering
single electron tunneling at each step. Technically, we de-
fine a vector µ, whose components µj denote the number
of electron tunneled through the jth junction (j = 1, 2, 3)
and can be 0 and ±1. We also define

T =

 1 0
−1 1

0 −1

 , (3)

so that n = n′ − µT and note its jth row by a vector
Tj . The transition probability of µj electrons tunneling
through the jth junction is

P (µj , t
′|n,x, t) =

{
Γ±j ∆t, µj = ±1,

1− (Γ+
j + Γ−j )∆t, µj = 0,

(4)

where

Γ±j (n,x, t) =
e−x·Tj/λj

q2R0
j

U±j

1− e−U
±
j /kBT

(5)

is the forward/backward (+/−) tunneling rate of elec-
trons through the jth junction, wherein R0

j is the unper-
turbed tunneling resistance from the mechanical motions,

λj is the tunneling wavelength, T is the temperature, kB
is the Boltzmann constant, and U±j denotes the change
of electromagnetic energy due to the tunneling.

The electromagnetic field can be modeled by the par-
tial capacitance matrix due to the geometry that makes
the inductance (or variation of the magnetic energy) neg-
ligible. Thus, the energy EC stored in the field should
be a homogeneous 2nd-order polynomial of the charges
qn(t), qnG and the applied voltage V (t), with coefficients
associated with the partial capacitance. Comparing the
formula of EC before and after the tunneling, we obtain
the unperturbed U±j :

U±j (n, t) = −E0
j ∓ (E0Θj) · (n− nGB)± qκjV (t) (6)

where E0
j is the jth component of E0 (j = 1, 2, 3) de-

noting the ground-state energies, B is a unitless matrix
to describe the effect of gate bias, κj is a unitless coef-
ficient representing the number of electrons pumped be-
tween the electrodes by an outside voltage source when
an electron tunnels through the jth junction, satisfying
κ1 +κ2 +κ3 = 1. Their values are determined by the ca-
pacitance matrix associated with geometry and material
[36]. In addition, Θj is a constant matrix:

Θ1 =

 2 1
0 −1
0 1

 , Θ2 =

 −1 −1
−1 1

1 1

 , Θ3 =

 −1 0
1 0
−1 −2

 .
The electric force on the sth shuttle (s = 1, 2) is Fs =

−∂EC/∂xs. Take the first-order Taylor expansion of EC

and ignore the dependence of Fs on xs. We get

Fs(ñ, t) = ñF 0
s ñ

T + ñFG
s n

T
G + nGF

GG
s nT

G

+ q(ñ ·αs + nG ·αG
s )V (t), (7)

where F 0
s , FG

s and FGG
s are matrices of constant force

related to geometry and material (the matrix dimensions
are consistent with their multipliers ñ or nG to make Fs
a scalar), and αs and αG

s are constant vectors represent-
ing the reciprocal length. These parameters result from
spatial derivatives of the capacitance matrix. Note that
αss, the sth component of the vector αs, is usually much
larger than other components. If nG = 0, we could drop
the small terms and use Fs ∼= qñsαssV (t), which is linear
to ñs and consistent with the assumption in [21]. For
large nG, Fs ∼= qnG ·αG

s V (t) is a fair approximation.
The white noise can be added to Eq. (7) to account for

heating effects, but its energy kBT/2 is usually far too
small compared to the electric driving vibrations.

For the first-order perturbation for x, EC should be
subtracted by F (n, t) ·x, where F = [F1, F2] is the force
vector on shuttles. For nG = 0, we have

U±j (n,x, t) ∼= U±j (n, t)∓ [qV (t)ᾱj + nF̄ 0
j ] · x,

where F̄ 0
j = [F 0

1 T
T
j ,F

0
2 T

T
j ], ᾱj = Tj [α

T
1 ,α

T
2 ]. For nG 6=

0, we further add ∓Tj [FG
1 n

T
G,F

G
2 n

T
G] · x to Uj .
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Because the electron tunneling through each junction
and the mechanical motion of each shuttle are indepen-
dent, we have the Chapman-Kolmogorov equation [36]:

P (n′,x′,v′, t′) =
∑

µj=0,±1

∫
P (n,x,v, t)

3∏
j=1

P (µj , t
′|n,x, t)

·
2∏
s=1

P (x′s, v
′
s, t
′|n,x,v, t)dΩ, (8)

where dΩ = dx1dx2dv1dv2. From Eq. (2), (4) and (8),
we can describe the time derivative of the PDF by adopt-
ing the limit t′ → t. Note that a strict derivation should
consider a mixed moment of displacement and velocity in-
stead of using Eq. (2), which is covered by [36]. We hence
build the following master equation for P (n,x,v, t):

∂P

∂t
=

3∑
j=1

∑
±

(
N̂∓Tj

− 1
)
Γ±j P (9)

+

2∑
s=1

{
γsP − vs

∂P

∂xs
+

[
γsvs + ω2

sxs −
Fs(n, t)

ms

]
∂P

∂vs

}
,

where the operator N̂∓Tj shifts the argument n in a func-
tion by ∓Tj . Eq (9) is a linear first-order partial differ-
ential equation. Its boundary condition is implicit, i.e.,
as |ns| → ∞ or |xs| → ∞ or |vs| → ∞, P (n,x,v, t)→ 0
(asymptotically as a Gaussian function). In addition,
Eq. (9) is homogeneous, so the solution is linear with the
initial condition, in which the PDF should be normalized.
Given an initial condition, we can solve the equation to
obtain a conditional-PDF. Nevertheless, we are more in-
terested in the steady-state solution in which the PDF
becomes periodic and irrelevant to the initial PDF after
numerous periods (so that the initial condition only plays
a role in normalization). From numerical solutions, we
learn that such a PDF (at a specific time) is usually very
close to a multivariate Gaussian distribution [36]. This
conclusion complies with the central limit theorem under
weak dependence, because the stochastic process consists
of infinite times of single electron tunneling which are
weakly dependent on others.

Although Eq. (9) with linear properties is meaning-
ful for analysis, it is very difficult to solve numerically
with good accuracy (like the Monte-Carlo method and
the method of lines), because the PDF has as many as
seven arguments. Ignoring the generally weak correla-
tion of ñ(t) and x̃(t) and the relatively small variance of
x̃(t), we can integrate Eq. (9) over x1, x2, v1, v2 to trans-
form into a simpler equation for the marginal distribution
P (n, t) =

∫
P (n,x,v, t)dΩ:

∂P (n, t)

∂t
=

3∑
j=1

∑
±

(
N̂∓Tj

− 1
)
Γ±j (n, 〈x̃〉, t)P (n, t), (10)

where 〈x̃〉 can be linked to 〈Fs(ñ, t)〉 by the mean of
Eq. (1). In fact, this is equivalent to the master equa-
tion given in [21] and [22]. The disadvantage is that the

equation is nonlinear as the relation of 〈x̃〉 and P (n, t)
is implicit. Without linearity, we can hardly discuss the
analytical solution, since superposition of initial condi-
tions and solutions are disallowed. For numerical solu-
tions, challenge is normalization of the PDF and conver-
gence and accuracy after a long time. Besides, the ap-
proximation does not cover the resonance scenario where
max〈x̃(t)〉 � λj .

III. DEVICE-LEVEL SIMULATION

A. Approximate Solution for Means and Variances

In fact, we are more interested in the measurable phys-
ical quantities which are the mean values of the ran-
dom variables, rather than the PDF. Without solving the
PDF, we can build deterministic equations for the mean
from Eq. (9) as well and solve them as time-dependent
functions. By multiplying ns to both side of Eq. (9),
s = 1, 2, and summing over n, x, v, we obtain

d〈ñs〉
dt

=

3∑
j=1

Tjs〈Γj(ñ, x̃, t)〉 (11)

where Γj = Γ+
j − Γ

−
j , and Tjs is a matrix element of T .

Let us first consider a simple approximation: use the
unperturbed 〈U±j (ñ, t)〉 and assume its mean has an ab-
solute value much larger than kBT ; ignore the correla-
tion of ñ(t) and x̃(t) and the variance of x̃(t). Then
Γj(ñ, t) ≈ Uj(ñ, t)/(q2R0

j ), where

Uj(ñ, t) = [U+
j (ñ, t)− U−j (ñ, t)]/2

= qκjV (t)− (ñ− nGB) · (E0Θj)

is a linear function of ñ. We can replace Eq. (11) by

d〈ñs〉
dt

∼=
3∑
j=1

Tjs
q2R0

j

e−〈x̃〉·Tj/λjUj(〈ñ〉, t). (12)

This can be combined with the mean of Eq. (1) to solve
〈x̃〉 and 〈Γj〉. In fact, Eq. (12) can be interpreted as a cir-
cuit model composed by capacitors and resistors, and the
model can even more be simplified by ignoring the charg-
ing current of capacitors (i.e., ∂〈ñs〉/∂t = 0) to comply
with the adiabatic-limit model in [21]. However, this
simple circuit model does not hold with a high frequency
excitation and is too rough for simulation of the current.

For higher accuracy, we may assume ñs, x̃s and ṽs
(s = 1, 2) have the multivariate Gaussian distribution. If
the covariance matrices of ñ, x̃ and ṽ are denoted by D,
Λ and V , respectively, we can use the Taylor expansion
of Γ±j (ñ, x̃, t) for ñ and x̃ near their means to obtain

〈Γ±j (ñ, x̃, t)〉 ∼=
1

q2R0
j

e−〈x̃〉·Tj/λjeTjΛT
T
j /λ

2
j (13)

·
∞∑

l1,l2=0

(∓1)l1+l2

l1! l2!
El11jE

l2
2j · Yl1+l2

(
U±j (〈n〉, 〈x〉, t)

)
Ml1l2 ,
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where Yl(U) = ∂l
[
U/(1− e−U/kBT )

]
/∂U l, E1j and E2j

are components of E0Θj , and Ml1l2 is the l1, l2-order
mixed moment of n1, n2 following the Isserlis’ theorem:

Ml1l2 = 〈(ñ1 − 〈ñ1〉)l1(ñ2 − 〈ñ2〉)l2〉 (14)

=



lm∑
k=0

l1! l2!D
l1
2 −k
11 D

l2
2 −k
22

(l1 − 2k)!!(l2 − 2k)!!

D2k
12

(2k)!
, l1, l2 even

lm∑
k=0

l1! l2!D
l1−1

2 −k
11 D

l2−1
2 −k

22

(l1 − 1− 2k)!!(l2 − 1− 2k)!!

D2k+1
12

(2k + 1)!
, l1, l2 odd

0, l1 + l2 odd

where lm denotes the integer part of min(l1, l2)/2. We can
also build equations for the variance and the covariance:

dDss

dt
=

3∑
j=1

[2Tjs〈Γj(ñ, x̃, t)(ñs − 〈ñs〉)〉

+T 2
js〈Γ ∗j (ñ, x̃, t)〉], (15)

dD12

dt
=

3∑
j=1

2∑
s=1

Tj(3−s)〈Γj(ñ, x̃, t)(ñs − 〈ñs〉)〉

−〈Γ ∗2 (ñ, x̃, t)〉, (16)

where Γ ∗j = Γ+
j +Γ−j . The result of 〈Γj(ñ, t)(ñs−〈ñs〉)〉

is similar to the right side of Eq. (13) with Ml1l2 replaced
by Ml1+1,l2 or Ml1,l2+1 according to s = 1, 2.

Further, assume Σs as the covariance of x̃s and ṽs, Xs

as the covariance of x̃s and ñs, and Ys as the covariance of
ñs and ṽs. Other covariances which are between different
shuttles are generally negligible, due to small correlation
between Fs(ñ, t) and ñs′ (s 6= s′), i.e., αss � αss′ . Mul-
tiply Eq. (9) with xs and x2s, and sum over n, x, v, so
we can derive d〈x̃s〉/dt = 〈ṽs〉 and d〈x̃2s〉/dt = 2〈x̃sṽs〉,
respectively. By combining them, we obtain

dΛss
dt

= 2Σs. (17)

Similarly, we can build equations describing the time
derivative of Ws, Σs, Xs, and Ys [36]:

dWs

dt
= 2

[
−γsWs − ω2

sΣs + Ys
〈fs(ñ, t)〉

ms

]
, (18)

dΣs
dt

= Ws − γsΣs − ω2
sΛss +Xs

〈fs(ñ, t)〉
ms

, (19)

dXs

dt
=

3∑
j=1

Tjs〈Kj(x̃)〉
[
gjs(t)Xs −

Tjs
λj

Gj(t)Λss

]
+ Ys,

(20)

dVss
dt

=

3∑
j=1

Tjs〈Kj(x̃)〉
[
gjs(t)Ys −

Tjs
λj

Gj(t)Σs

]
− γsYs − ω2

sXs +
〈Fs(ñ, t)(ñs − 〈ñs〉)〉

ms
, (21)

where we define fs(n, t) = ∂Fs(n, t)/∂ns which is a
linear function of n, Kj(x̃) = e−x̃·Tj/λj and its mean

〈Kj(x̃)〉 = Kj(〈x̃〉)eTjΛT
T
j /λ

2
j , gj(t) = 〈∂Γj(ñ, t)/∂ñ〉

with gjs(t) being the sth component, and Gj(t) =
〈Γj(ñ, t)〉 − gj(t)diag(Tj)[X1, X2]T/λj .

The model can be further refined by the nonlinear re-
sistance and the nonlinear vibration of nanopillars. Ac-
cording to the calculation in [37], we can add a factor of
(1 + βjU

2
j ) to the conductance 1/R0

j in Eq. (5), where

β ∝ (dj/λj)
2 if the tunneling length dj � λj .

We can combine the ordinary differential equations
Eq. (11),(13)-(21) and the mean of Eq. (1) together in
order to solve the mean of variables, which can be ac-
complished numerically. Empirically, the order of mo-
ment in Eq. (14) can be set to l1 + l2 ≤ 4 for decent
accuracy. For nonresonant scenarios, we can simply set
Λss, Ws, Σs, Xs and Ys zero and ignore Eq. (17)-(21)
to reduce the complexity. Another considerable approx-
imation is that a high quality factor Q for the mean of
Eq. (1) may be scaled down to a smaller value by scal-
ing up λj , in order to greatly reduce the simulation time,
as long as vibration is close to an undamped resonance
(the resonant frequency is close to the eigenfreuency, the
electric force is usually balanced by the damping force in
the steady state). Details are discussed in [36].

B. Current

The macroscopic current can be calculated from the
mean rate of electrons tunneling:

I(t) = C0
dV

dt
+ q

3∑
j=1

κj〈Γj(ñ, x̃, t)〉, (22)

where C0 is the equivalent capacitance seen from the elec-
trode. In the steady state, I(t) is periodic. Direct current
Idc is a time-average of I(t) for a full period. As 〈ñ1〉,
〈ñ2〉 and V (t) are periodic, we can substitute Eq. (11)
into Eq. (22) and remove the terms with ∂〈ñ1,2〉/∂t, thus

Idc =
qω

2π

∫ t0+2π/ω

t0

〈Γj(ñ, x̃, t)〉dt, (23)

where j = 1,2 or 3 are equal. The value of Idc is usu-
ally small compared to I(t) because the current flows in
another direction after half a period π/ω.

An important conclusion about symmetry breaking of
the current can be derived from Eq. (9). If nG = 0
and V (t) = −V (t + π/ω), we have Γ±j (n,x, t + π/ω) =

Γ∓j (−n,x, t) from Eq. (5) and (6), and Fs(n, t+π/ω) =

Fs(−n, t) from Eq. (7). Let us replace t by t + π/ω in
Eq. (9), and substitute the above relations into Eq. (9)
with n replaced by −n. Then, we obtain the same
equation for P (−n,x,v, t + π/ω) as Eq. (9) indicat-
ing P (n,x,v, t), P (−n,x,v, t + π/ω) = P (n,x,v, t) in
the steady-state solution. In this case, we have I(t) =
−I(t+ π/ω) from Eq. (22) and no direct current.
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FIG. 2. Direct current versus driving frequency (with an
offset of the average eigenfrequency of the two shuttles 500
MHz), when driving amplitude is 1 V and a second-order har-
monic with amplitude of 0.5 V introduces asymmetry. The
difference of two eigenfrequencies are varied for 3 curves, in-
dicated in the legend.

Thus, there are two ways to break the symmetry: First
is to apply bias on the gate. If nG 6= 0, we still have
Γ±j (n, t+π/ω) = Γ∓j (2nGB−n, t), but Fs(n, t+π/ω) 6=
Fs(2nGB−n, t). Thus, I(t) 6= −I(t+π/ω) which enables
the direct current. Second is to introduce even-order har-
monics in V (t), which breaks the symmetry of AC voltage
after half a period making V (t) 6= −V (t+π/ω). The wave
superposition makes use of the nonlinear transport rela-
tion. In practice, this could be realized by natural wave
distortion, introducing nonlinear elements in the circuit,
or magnifying the second-order harmonic by RF circuit.

In addition, as e−〈x〉·Tj/λj is periodic with ω, 〈ñ(t)〉 has
considerable higher-order harmonic components. Thus,
the system resonates when the frequency component is
close to both ω1 and ω2, so ω should be around ω1/l
where l = 1, 2, 3, . . ., and smaller l leads to stronger vi-
brations. This phenomenon is known as Arnold’s tongues
and was observed in [31, 32].

The direct current, as a key device characteristic, must
be obtained from accurate numerical computation, since
the value is usually so small that it is flooded by noise,
and therefore it can hardly be acquired from previous
methods. Using our fast approximate solution above,
Fig. 2 plots a typical resonant response of coupled shut-
tles, whose geometry follows [31] (for simulation of ca-
pacitance and resistance) and their eigenfrequencies are
both around 500 MHz. Here we assume that V (t) =
V1 sin(ωt) + V2 cos(2ωt) with V1 = 1 V and V2 = 0.5 V.
The second order harmonics (with π/2 phase difference)
introduces asymmetric phases for current of two direc-
tions. According to theoretical prediction [37] and to

match experimental results in [31], we assume the tun-
neling length λj is 0.2 Å.

In addition, Fig. 3 shows how the amplitude of driving
voltage impacts on the direct current, where V1 varies
from 0 to 2 V and V2/V1 varies from 0.2 to 0.5. The quasi-
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FIG. 3. Peak direct current (over the frequency) versus
driving voltage amplitude V1, with different ratios of second-
order amplitude V2/V1.

inear reation matches the measurement in [31]. Although
the direct current shown here is of the order of 10 pA,
109 arrays integrated in 1 cm2 area could provide a 10
mA order current, which is useful to drive a device.

IV. CONCLUSION

In conclusion, we have proposed a full stochastic model
for the coupled nanomechanical electron shuttles, focus-
ing on the Markovian behavior and the direct output
current. By treating the electronic and mechanical mo-
tions as stochastic processes, we derive the linear mas-
ter equation that enables analysis of symmetry breaking.
Further results show that even-order harmonics of the
driving voltage or a gate bias are necessary for observing
a direct signal. Beyond, we developed the deterministic
ordinary differential equations for the mean and covari-
ance of random variables, by assuming the multivariate
Gaussian distribution. This provides an efficient method
for device-level simulation.
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