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The Gibbs canonical state, as a maximum entropy density matrix, represents a quantum system
in equilibrium with a thermostat. This state plays an essential role in thermodynamics and serves as
the initial condition for non-equilibrium dynamical simulations. We solve a long standing problem
for computing the Gibbs state Wigner function with nearly machine accuracy by solving the Bloch
equation directly in the phase space. Furthermore, the algorithms are provided yielding high quality
Wigner distributions for pure stationary states as well as for Thomas-Fermi and Bose-Einstein dis-
tributions. The developed numerical methods furnish a long-sought efficient computation framework
for non-equilibrium quantum simulations directly in the Wigner representation.

PACS numbers: 02.60.Cb,02.70.Hm,03.65.Ca

I. INTRODUCTION

The state of a quantum system in thermodynamic
equilibrium with a heat reservoir at temperature T is
given by the (un-normalized) Gibbs canonical density
matrix

ρ̂ = e−βĤ , β = 1/(kT ), (1)

where Ĥ is the quantum Hamiltonian. This state plays a
fundamental role in statistical mechanics. In particular, a
system’s equilibrium thermodynamical properties can be
directly calculated from the corresponding partition func-
tion Z = Tr [ρ̂] . Furthermore, studies of non-equilibrium
dynamics driven by an external perturbation require the
knowledge of the state in Eq. (1), usually serving as both
initial and final condition.

Recognizing the mathematical intractability for ob-
taining a generic quantum Gibbs state, Wigner at-
tempted to derive a quantum correction to the corre-
sponding classical ensemble by introducing the quasi
probability distribution now bearing his name [1]. This
discovery subsequently led to the development of the
phase space representation of quantum mechanics [2–7],
where an observable O = O(x, p) is a real-valued func-
tion of the coordinate x and momentum p [systems with
one spatial dimension are considered, the scalability is
discussed prior to Eq. (19)] while the system’s state is
represented by the Wigner function

Wxp =
1

2π

∫
〈x− ~

2 θ|ρ̂|x+ ~
2 θ〉e

ipθdθ, (2)

where 〈x|ρ̂|x′〉 denotes a density matrix in the coordinate
representation.

The Wigner function is a standard tool for studying the
quantum-to-classical interface [3–5, 8–12], chaotic sys-
tems [13], emergent classical dynamics [14–19], and open
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systems evolution [2, 7, 20–22]. Moreover, the Wigner
distribution has a broad range of applications in optics
and signal processing [23–25], and quantum computing
[26–32]. Techniques for the experimental measurement
of the Wigner function are also developed [10, 33–36].

The knowledge of the Gibbs state Wigner function is
essential for some models of non-equilibrium dynamics
and transport phenomena (see, e.g., reviews [37–39]).
Despite numerous attempts, no ab initio and universally
valid method to obtain the Gibbs state in the phase space
exists. Based on recent analytical and algorithmic ad-
vances in the phase space representation of quantum me-
chanics [40, 41], we finally deliver a numerically efficient
and accurate method for calculating the Gibbs canon-
ical state within the Wigner formalism. Additionally,
a robust method to calculate ground and excited state
Wigner functions are also designed. Thomas-Fermi and
Bose-Einstein distributions in the Wigner representation
are also computed. Since all the simulations presented
below require the computational power of an average lap-
top, these algorithmic advancements enables quantum
phase space simulations previously thought to be pro-
hibitively expensive.

The rest of the paper is organized as follows: The nu-
merical method to calculate the Wigner function for the
Gibbs canonical state is presented in Sec. II. Exten-
sions of the algorithm to obtain the Wigner functions
for pure stationary states as well as Thomas-Fermi and
Bose-Einstein distributions are developed in Secs. III and
IV, respectively. Python implementations of all the algo-
rithms are supplied. Finally, the conclusions are drawn
in the last section.

II. GIBBS STATE AS A BLOCH EQUATION
SOLUTION

Given the definition (2), the problem of finding the
Gibbs state Wigner function might appear to be triv-
ial: Substitute Eq. (1) into Eq. (2) and perform the
numerical integration. However, this route is not only
computationally demanding, but also yields poor results.
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In particular, the obtained function will not be a station-
ary state with respect to the dynamics generated by the
Moyal equation of motion [3, 41–43]

i~ ∂tWxp = Hxp ? Wxp −Wxp ? Hxp, (3)

where Hxp and Ĥ are connected via the Wigner trans-
form (2) and ? denotes the Moyal product [6, 11, 12],

Hxp ? Wxp ≡ Hxp exp
(
i~
2

←−
∂x
−→
∂p − i~

2

←−
∂p
−→
∂x

)
Wxp, (4)

which is a result of mapping the non-commutative oper-
ator product in the Hilbert space into the phase space.
Note that we follow the conventions of Ref. [41] through-
out. The Moyal equation (3) is obtained by Wigner trans-
forming (2) the von Neumann equation for the density
matrix,

i~∂tρ̂ = [Ĥ, ρ̂]. (5)

Such a simple approach fails because the interpolation is
required in Eq. (2) to obtain values of the density matrix
at half steps, as indicated by the ~θ/2 shifts. Therefore,
a different route must be taken to completely avoid the
density matrix.

Following Refs. [2, 38], we note that the unnormalized
Gibbs state (1) obeys the Bloch equation [44]

∂β ρ̂ = −(Ĥρ̂+ ρ̂Ĥ)/2, ρ̂(β = 0) = 1̂. (6)

The latter could be written in the phase space as

∂βWxp = −(Hxp ? Wxp +Wxp ? Hxp)/2. (7)

The Bloch equation in the Wigner representation is
mathematically similar to the Moyal equation (3). Thus,
a recently develop numerical propagator [41] (as well as
other methods [45–48]) can be readily adapted to obtain
the Gibbs state.

Assume that the Hamiltonian is of the form

Hxp = K(p) + V (x). (8)

To construct the numerical method, we first lift Eq. (7)
into the Hilbert phase space, as prescribed by Refs. [40,
41],

d

dβ
|ρ〉 = −1

2

[
H
(
x̂− ~

2 θ̂, p̂+ ~
2 λ̂
)

+H
(
x̂+ ~

2 θ̂, p̂−
~
2 λ̂
)]
|ρ〉

= −1

2

[
K̂+ + K̂− + V̂ + + V̂ −

]
|ρ〉, (9)

V̂ ± = V
(
x̂± ~

2 θ̂
)
, K̂± = K

(
p̂± ~

2 λ̂
)
, (10)

Wxp = 1√
2π~ 〈xp|ρ〉, (11)

where the four-operator algebra of self-adjoin operators

x̂, p̂, θ̂, λ̂ satisfies the following commutator relations [40,
41, 49]:

[x̂, p̂] = 0, [x̂, λ̂] = i, [p̂, θ̂] = i, [λ̂, θ̂] = 0, (12)

and |xp〉 denotes the common eigenvector of operators x̂
and p̂,

x̂|xp〉 = x|xp〉, p̂|xp〉 = p|xp〉. (13)

The power of the Hilbert phase space formalism lies in
the fact that the Bloch equation (7) is transformed into
Eq. (9) resembling an imaginary-time Schrödinger equa-
tion in two spatial dimensions, which could be efficiently
solved via the spectral split operator method [50]. The
formal solution of Eq. (9) reads

|ρ(β)〉 = e−
β
2 (K̂++K̂−+V̂ ++V̂ −)|ρ(β = 0)〉. (14)

Using the Trotter product [51], the iterative first-order
scheme is obtained

|ρ(β + dβ)〉 =e−
dβ
2 (K̂++K̂−)

× e−
dβ
2 (V̂ ++V̂ −)|ρ(β)〉+O

(
dβ2

)
. (15)

Returning to the Wigner phase space representation, we
finally arrive at the desired numerical scheme

Wxp(β + dβ) = Fλ→xe−
dβ
2 (K++K−)Fx→λ

×Fθ→pe−
dβ
2 (V ++V −)Fp→θWxp(β), (16)

where Fp→θ and Fx→λ are direct Fourier transforms with
respect to the variables p and x, respectively,

Fp→θ[Wxp] =

∫
Wxpe

−ipθdp, (17)

Fx→λ[Wxp] =

∫
Wxpe

−ixλdx, (18)

Fθ→p and Fλ→x are the corresponding inverse transfor-

mations, and V ± = V
(
x± ~

2 θ
)
, K± = K

(
p± ~

2λ
)

have
now become scalar functions. Utilizing the Fast Fourier
Transforms [52], the complexity of the algorithm (16) is
O(N logN), where N is the total length of an array stor-
ing the Wigner function. Moreover, the Wigner func-
tion at every iteration corresponds to a Gibbs state of
a certain temperature, and Eq. (16) physically models
cooling.

In the current work, we consider one-body systems.
The ab initio algorithm (16) can be straightforwardly
extended to the D-body case albeit at the price of the
exponential scaling O

(
DND logN

)
. In the subsequent

work, we will present a polynomial algorithm by adapt-
ing the matrix product state formalism [53, 54] to phase
space dynamics. For example, deployment of the follow-
ing matrix product state ansatz for a D-body Wigner
function, W (D) = W (x1, p1;x2, p2; . . . ;xD, pD),

W (D) =

D−1∏
k=1

Wk(xk, pk;xk+1, pk+1) (19)

should lead to the desired polynomial scaling.
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FIG. 1. (Color online) The log plot of the Gibbs canonical
state Wigner function (β = 1 a.u.) for the Mexican hat sys-
tem with the Hamiltonian Hxp = p2/2−0.05x2+0.03x4 (a.u.)
Since the Gibbs state is characterized by a positive Wigner
function, we use the logarithmic scale to show that the Gibbs
distribution obtained by Eq. (16) [Fig. (a)] remains invariant
under the time evolution of the Moyal equation (3) up to the
values of 10−14. See Ref. [55] regarding the python code used
to generate this figure.

In Fig. 1, we employ Eq. (16) to compute the
Gibbs state Wigner function for a Mexican hat potential.
Atomic units (a. u.), where ~ = m = 1, are used through-
out. To verify the consistency of the obtained solution,
we subsequently propagate it by the Moyal equation (3)
using the method in Ref. [41]. Comparing the initial
[Fig. 1(a)] and final [Fig. 1(b)] states, one observes that
the Gibbs state remains stationary up to O

(
10−14

)
.

III. WIGNER FUNCTIONS OF PURE
STATIONARY STATES

The numerical scheme (16) recovers the ground state
as β → ∞. To speed up the convergence to the zero-
temperature ground state, the following adaptive step
algorithm can be employed: Initially pick a large value
of the inverse temperature step dβ ∼ 1 (a.u.). Using a
constant Wigner function [i.e., Wxp(β = 0) = 1] as an
initial guess, obtain Wxp(β + dβ) within Eq. (16). Ac-
cept the updated Wigner function, if it lowers the energy
[i.e.,

∫
Wxp(β)Hxpdxdp >

∫
Wxp(β + dβ)Hxpdxdp] and

Wxp(β+ dβ) represents a physically valid state. If either
condition is violated, reject the state Wxp(β + dβ), half
the increment dβ, and repeat the procedure.

Note that there is no computationally feasible criterion
to verify that a Wigner function underlines a positive
density matrix (see, e.g., Ref. [57]). Thus, we suggest
to employ the following heuristic: Verify that the purity,
P = 2π~

∫
W 2
xpdxdp cannot exceed unity (note that P =

1 is for pure states only) and the Heisenberg uncertainty
principle is obeyed. See Ref. [56] regarding a pythonic
implementation of the full algorithm.

Once the ground state is found, any exited state can
be constructed in a similar fashion. For example, an
amended algorithm can be used to calculate the first
exited state. After Eq. (16), the ground state Wigner

function W
(g)
xp := Wxp(β = ∞) should be projected out
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FIG. 2. (Color online) The Wigner functions of the ground (a)
and first excited states (b) for the Mexican hat system with
the Hamiltonian Hxp = p2/2−0.05x2 +0.03x4 (a.u.). In Figs.
(c) and (d), the red solid line depict the marginal coordinate
distribution of the ground and first excited state, respectively;
whereas, the dashed blue line depict the coordinate distribu-
tion obtained after the propagation via the Moyal equation
(3). Note that both lines overlap, indicating that the pure
states in Figs. (a) and (b) are calculated with high accuracy.
See Ref. [56] regarding a python code used to generate this
figure.

of Wxp(β+dβ). More specifically, the state Wxp(β+dβ)
must be updated as

Wxp(β + dβ) :=
W

(1)
xp∫

W
(1)
xp dxdp

, (20)

W (1)
xp = Wxp(β + dβ)− cW (g)

xp , (21)

c = 2π~
∫
Wxp(β + dβ)W (g)

xp dxdp. (22)

The physical meaning of c is a fraction of the total pop-
ulation occupying the ground state. This algorithm, im-
plemented in Ref. [56], is more efficient and easier to
maintain than the one in Refs. [58, 59].

Figures 2(a) and 2(b) show the Wigner functions of
ground and first exited states, respectively, for the Mex-
ican hat potential. Using merely 512× 512 grids to store
Wigner functions, the purities of the computed states are
found to be 1−O

(
10−14

)
and 1−O

(
10−7

)
, respectively.

This demonstrates numerical effectiveness of the devel-
oped algorithm. Furthermore, to verify that the states
are stationary, we propagated them via the Moyal equa-
tion (3) [41]. The comparison of the coordinate marginal
distributions, defined as

∫
Wxpdp, before and after Moyal

propagation [Figs. 2(c) and 2(d)] confirm that the ground
[Fig. 2(a)] and exited [Fig. 2(b)] states are stationary
within the accuracy of O

(
10−14

)
.
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It is noteworthy that the ground state Wigner func-
tion [Fig. 2(a)] exhibits small negative values. This is
in compliance with Hudson’s theorem [60] stating that
a pure state Wigner function is positive if and only if
the underlying wave function is a Gaussian (whereas, the
ground state of the Mexican hat potential is evidently
non-Gaussian). The excited state Wigner function [Fig.
2(b)] contains a central oval region with pronounced neg-
ative vales encircled by a zero-valued oval followed by a
positive-value region. This is a hallmark structure of the
Wigner distributions for first excited states. The zero-
valued oval and negative center emerge from the node at
x = 0 in the first excited state wave function, which can
also be seen in Fig. 2(d) visualizing the absolute value
square of the wave function. Note that Wigner function’s
negativity is associated with the exponential speedup in
quantum computation [29–32].

IV. WIGNER FUNCTIONS FOR
THOMAS-FERMI AND BOSE-EINSTEIN

DISTRIBUTIONS

The proposed method can be used to compute other
steady states not directly describable by the Bloch equa-
tion. In particular, to calculate the Thomas-Fermi (s =
+1) or Bose-Einstein (s = −1) states, the following ex-
pansion can be utilized

1

eβ(Ĥ−µ) + s
=

e−β(Ĥ−µ)

1 + se−β(Ĥ−µ)

=

∞∑
k=0

e(2k+1)βµe−(2k+1)βĤ − s
∞∑
k=1

e(2k)βµe−(2k)βĤ ,

(23)

where µ denotes the chemical potential. Equation (23)
consists of the (unnormalized) Gibbs states at different
temperatures β, 2β, 3β, . . .. Thus, the Wigner function
for the Thomas-Fermi and Bose-Einstein states could be
easily found via the numerical method (16) by adding or
subtracting the corresponding Gibbs distributions, which
are sequentially obtained during β →∞ propagation. In
Fig. 3, the Gibbs state [Fig. 3(a)] has been compared
with the Bose-Einstein [Fig. 3(b)] and Thomas-Fermi
[Fig. 3(c)] distributions for β = 1.5 (a.u.) and vanishing
chemical potential.

V. OUTLOOK

The Gibbs canonical state, a maximum entropy sta-
tionary solution of the von Neumann equation (5), is
a cornerstone of quantum statistical mechanics. The
Wigner phase space representation of quantum dynam-
ics currently undergoes a renewing interest due to the
promise to solve open problems in non-equilibrium ther-
modynamics. To simulate open system dynamics, a
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FIG. 3. (Color online) The Wigner functions of the (a) Gibbs,
(b) Bose-Einstein, and (c) Thomas-Fermi states for the Mex-
ican hat system with the Hamiltonian Hxp = p2/2− 0.05x2 +
0.03x4 (a.u.), β = 1.5 (a.u.), and µ = 0. Distributions (b)
and (c) were obtained using expansion (23). See Ref. [61]
regarding a python code used to generate this figure.

good quality initial condition, usually the Gibbs state
Wigner function, needs to be supplied. We have de-
velop the numerical algorithm yielding Gibbs states with
nearly machine precision. Moreover, an extension of
this algorithm allows computing Wigner functions of
pure stationary states, corresponding to the eigensolu-
tions of the Schrödinger equation. Wigner functions for
Thomas-Fermi and Bose-Einstein distributions are also
calculated. Such states are essential for studying non-
equilibrium dynamics in atomic and molecular systems.
As a result, the developed algorithmic techniques finally
make the Wigner quasi-probability phase space represen-
tation of quantum dynamics a computationally advanta-
geous formulation compared to the density matrix ap-
proach.
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