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We study how concentration changes ionic transport properties along isobars-isotherms for a mix-
ture of hydrogen and silver, representative of turbulent layers relevant to inertial confinement fusion
(ICF) and astrophysics. Hydrogen will typically be fully ionized while silver will be only partially
ionized but can have a large effective charge. This will lead to very different physical conditions
for the H and Ag. Large first principles orbital free molecular dynamics (OFMD) simulations are
performed and the resulting transport properties are analyzed. Comparisons are made with trans-
port theory in the kinetic regime and in the coupled regime. The addition of a small amount of
heavy element in a light material has a dramatic effect on viscosity and diffusion of the mixture.
This effect is explained through kinetic theory as a manifestation of a crossover between classical
diffusion and Lorentz diffusion.

PACS numbers:

I. INTRODUCTION

Mixtures display rich behavior, and this is particularly
true for warm dense matter (WDM) and dense plasma
systems where ionization plays a significant role in de-
termining the properties. When there are many types
of ions, then the ionization properties will vary between
constituents, leading to very different coulomb couplings
between species. This will influence the properties of a
system and these influences will be particularly acute for
strongly asymmetric mixtures. Mixture properties play
a significant role in inertial confinement fusion (ICF).
For example, mixing of the plastic ablator into the fuel
has been used to partially explain lower than expected
yields in experiments [1–4]. Understanding this behavior
is crucial, so much so that experiments are designed to
monitor and control mixing of the ablator into the fuel.
Further motivation comes from the mixing of a gas/metal
interface [5–7]. In such cases, interfaces lead to strong
concentration gradients and mixing. Many astrophysical
situations also involve ionic transport in mixtures for the
investigation of the composition of giant planets [8] and
of the sedimentation of heavy elements in white dwarf
stars [9], for instance.

Efforts to understand mixtures have typically taken
on one of three approaches: (i) mixing rules; (ii) sim-
ulations with model systems, such as the one compo-
nent plasma (OCP) or Yukawa; or (iii) direct simulations
of mixtures. (i) Mixing rules have proven successful for
equation of state by systematic comparisons with simu-
lations [10–12]. They have also been shown to be reason-
able for transport coefficients for LiH [11] and CH [13]
mixtures, but less has been done for more asymmetric
mixtures. (ii) Models used to estimate transport prop-
erties are through the OCP model and its extension to
binary ionic mixtures (BIM) and Yukawa model. The
OCP and BIM are models where ions move in a uniform

background of electrons. The Yukawa model includes
screening effects of the electrons. A shortcoming of these
methods is that decisions have to be made about the de-
gree of ionization and screening to include in any given
simulations. Typical approaches seek to produce an ef-
fective single component result for the transport prop-
erties, some via the OCP and Yukawa models [14–18].
Large Yukawa molecular dynamics (MD) studies have ex-
plored the behavior of diffusion and viscosity for a fixed
ion density while the concentration is varied by simply
swapping out ion types [19, 20]. This work found sig-
nificant changes in both the diffusion and viscosity as
concentration was changed. Other recent work is based
on quantum average atom models that account for cor-
relations of ions via a hyper-netted chain approximation
[21, 22]; then by using pseudo-atom molecular dynam-
ics [23], the entire equation of state can be obtained.
(iii) The last approach is to perform direct simulations
from first principles. This involves a variety of meth-
ods, all of which solve the electronic structure, examples
include quantum molecular dynamics [24], path integral
Monte Carlo (PIMC) [25, 26], and orbital free molecu-
lar dynamics (OFMD) [27]. Here we will focus on the
use of OFMD, which has proven accurate for extracting
equations-of-state and mass transport properties for the
WDM regime and up to the dense plasma regime [28–32].

We study H-Ag as a prototypical light-heavy mixture.
H will be fully ionized while Ag will be only partially
ionized but can have a large effective charge. This will
lead to very different physical conditions for the H and
Ag. We will perform simulations along isobars-isotherms
and look at the impact of varying concentration at several
different temperatures, and we systematically study the
evolution of the ionic transport properties. We imagine
an interface at pressure and temperature equilibrium [33,
34] and sample different concentrations between pure H
and Ag. The density varies from pure Ag at 20 g/cc to
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pure H. The density of the H depends on the temperature
(0.8-3.8 g/cc). We pick several temperatures between 20-
2000 eV.

In the remaining paper we will first review OFMD
methods and transport properties. After describing the
pseudo ion in jellium (PIJ) model we will give some scal-
ing laws for pure species. At last we discuss the results of
OFMD and compare them to the PIJ model and extract
some scaling laws in temperature.

II. FORMULATION

A. OFMD simulations

We have performed large OFMD simulations of H-Ag
mixtures. We use the Born-Oppenheimer approximation
that separates the electronic and ionic degrees of freedom
so for a given ion configuration, the electronic structure
is computed at equilibrium. Then classical equations of
motion for the ions are numerically integrated within the
isokinetic ensemble [35]. The simulation has a total num-
ber N of ions in a volume V (n = N/V ). N is the sum
of all species N =

∑
γ Nγ , where for the γth species,

there are Nγ ions with nuclear charge Zγ and atomic
weight Aγ . Concentrations in number will be denoted by
xγ = Nγ/N and we will also use for simplicity x = N2/N
for the heavy element concentration. Additionally there
are Ne =

∑
γ NγZγ electrons in the volume.

The electronic density is found with a finite-
temperature orbital-free density functional theory [27]
treatment (TFD, Thomas-Fermi-Dirac) with the kinetic-
entropic form of Perrot [36]. The electron-ion interaction
is obtained from a regularization prescription [27] and the
exchange-correlation from a local density Perdew-Zunger
form [37]. Extensive studies were taken to optimize both
the time step and FFT grid required to converge all prop-
erties. The FFT grids range between 1283 and 2563. De-
spite the statistical description of electronic density com-
pared with an orbital description, the OFMD method has
proven to be accurate for ionic transport properties for
temperatures beyond 20eV [29].

For the OFMD simulations, the total pressure of the
system is

P = nkBT + Pconf(V, T ). (1)

This is the sum of the ideal gas pressure of the ions (at a
constant T enforced by the isokinetic thermostat) and the
configurational pressure Pconf , computed via the forces
on ions along trajectories and averaged after the system
has equilibrated.

To target a given pressure with OFMD simulations, we
start with 20 g/cm3 of pure Ag at a given temperature
and match various other concentrations to the pressure
of pure Ag. The concentrations studied are 0, 3, 5, 10,
25, 50, 75, and 100% silver by number. The temperatures
studied are 20, 50, 100, 200, 400, 600, 1000, and 2000 eV.

The mixture density ranges between 0.84 to 20 g/cm3 at
temperatures of 20 to 2000 eV. The ion number ranged
from 64 for pure species simulations up to 300 for mixture
simulations. The 3% Ag by number simulation had the
fewest number of Ag ions at 9.

We extract the transport properties from the mixture
OFMD simulations [38, 39]. The self-diffusion coefficient
of a particular ion species, Dγ is computed from the in-
tegral of the velocity autocorrelation function (VACF),
which is:

Dγ =
1

3

∫ ∞
0

〈~vi(t) · ~vi(0)〉dt, (2)

where ~vi is the velocity of the ith particle (γ species), and
the bracket indicates an ensemble average.

Mutual diffusion is found within the Maxwell-Stefan
formulation through the integral of a correlation function:

D12 =
1

3Nx1x2

∫ ∞
0

〈A(t)A(0)〉dt (3)

A(t) = x2

N1∑
i

~vi(t)− x1

N2∑
i

~vi(t).

The Darken relation,

D12 = x1D2 + x2D1, (4)

is an approximation found by neglecting cross correla-
tions between different species. The Darken approxima-
tion allows for quick estimate of the mutual diffusion.

The shear viscosity was computed from the autocorre-
lation function of the stress tensor

η =
V

kBT

∫ ∞
0

〈P12(t′)P12(0)〉dt′. (5)

Here the bracket indicates an ensemble average, for fur-
ther details see [11, 38].

We use empirical fits to the autocorrelation functions
(ACF) to shorten the duration of the trajectory required
to converge the transport properties [30, 40]. For our
set of thermodynamic conditions the ACFs are generally
not structured, and a simple exponential fit suffices to
extract the desired properties. The statistical error in-
herent in computing correlation functions from molecular
dynamics is estimated [41] as

√
2τ/Ntdt where Ntdt is

the length of the trajectory and τ is the correlation time
of the ACF. We usually fit the ACF over a time interval
of 0 to 4τ . The length of the simulation is much longer
than τ . For the viscosity, the error computed is 10% or
less for all simulations. The error for the self-diffusion
is less than 5%, due to the additional factor of 1/

√
Nγ

from averaging the VACF over all of the ions of type γ.
The convergence was tested even for high temperature
simulations that contain H.

The correlation time scales of the viscosity and the
mutual diffusion are typically long compared to self-
diffusion time scales. This is not always the case for
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hydrogen, when at several hundred eVs, the time scales
become comparable. To converge all properties required
a large number of time steps. The simulations required a
large amount of computational resources and were run on
Cielo, a Cray XE6 with AMD Opterons at Los Alamos.
Typical simulations ran on 2048 cores for 24-72 hours to
produce a few hundred thousand to several millions time
steps.

B. Pseudo Ion in Jellium model

In the asymmetric mixture considered here, the light
element (hydrogen) is in the kinetic regime because the
coupling parameter Γ = Q2e2/akBT is much smaller
than 1, where Q is the ionic charge, a = (3/4πn)1/3 is the
Wigner-Seitz radius, and kB is Boltzmann’s constant. On
the contrary the heavy element is strongly coupled due to
its high ionization, see Fig. 1 (a) below. It is thus impor-
tant to have a theory able to treat on a equal footing both
regimes. In the weakly coupled regime, the interaction
between particles α and β is described by collision fre-
quencies given by the kinetic theory in the Fokker-Plank-
Landau framework (FPL). For a Maxwellian distribution

ναβ =
nβ
mα

4
√

2π mαβ Q
2
αQ

2
β e

4 ln Λαβ

3 (kBT )
3/2

, (6)

where Qα, nα and mα are respectively the charge, the
density and the mass of specie α, and ln Λαβ the Coulomb
logarithm for αβ interactions. mαβ = mαmβ/(mα+mβ)
is the reduced mass and e the elementary charge. For
a binary mixture, the collision frequency between fully
ionized light elements 1 (hydrogen) is

ν11 =
n1

m1

4
√

2π m11 e
4 ln Λ11

3 (kBT )
3/2

, (7)

and for interactions between light (1) and heavy (2) ion-
ized Q times

ν12 =
n2

m1

4
√

2π m12 Q
2 e4 ln Λ12

3 (kBT )
3/2

. (8)

Using these standard collision frequencies, and defin-
ing a total collision frequency ν̃1 = ν11 + ν12 and ν̃2 =
ν22 + ν21 for each species. The total collision term in
a kinetic equation is the sum of binary collision terms.
This suggests to define a total collision frequency να for
species α as the sum of the Maxwellian estimates of the
collision frequencies ναβ . Taking it as a reference makes
the remaining coefficient (called relaxation correction) to
be of order unity in all cases. The viscosity ηFPL, the
mutual diffusion DFPL

12 and the self-diffusions DFPL
α read

[42–44]

ηFPL = K1
n1 kBT

ν̃1
+K2

n2 kBT

ν̃2
, (9a)

DFPL
12 = R12 c2

kBT

ν12

m

m1m2
, (9b)

DFPL
α = Rα

1

ν̃α

kBT

mα
, α = 1, 2 (9c)

where c2 is the heavy element mass concentration, m̄ =
x1m1 + x2m2 and K1, K2, R1, R2 and R12 are correc-
tion factors with respect to the Maxwellian estimate of
the collision frequencies, Eq. (6). These factors are called
relaxation corrections since they have been evaluated by
solving the linearized kinetic equations to obtain the cor-
rections to the Maxwellian distributions associated with
small gradients of concentration, velocity, and tempera-
ture. For pure element plasmas, the relaxation correc-
tions are known [43] : R1 = 1.19 and K1 = 0.965, with
x2 = 0.

For binary mixtures, the relaxation corrections have
been determined for high mass asymmetry, m1 � m2

[43]. In this case, K1 is parametrized by a function of
ν12/ν11, varying from 1 to 2 (see Appendix), whereas
K2 = 0.965. The relaxation correction R12 of the mutual
diffusion is also a parametrized function of ν12/ν11, vary-
ing from 1 to 3.5 (see Appendix). The only quantities,
which are not well-defined to our knowledge, are R1 and
R2 assumed to be of the order of a few units. We propose
in the Appendix an approximation of R1 and R2 assum-
ing that they do not depend on concentration. By mak-
ing the simplification of a constant Coulomb logarithm it
is easy to show that the total collision frequency of the
light element is strongly influenced by a small amount of
the heavy element. Let x equal the proportion in num-
ber of the heavy element and Q, its ionization, the sum
of the collision frequencies is proportional to inverse of
f(x) = ((1− x) +

√
2xQ2)−1. The self diffusion will thus

experience a rapid decay, proportional to f(x), with a
small amount of heavy element as shown in Fig. 1 (b).
This effect is not observed for silver which is well outside
the kinetic regime (Γ ' 15; see Fig. 1(a) in which the
coupling parameters of hydrogen and silver are given).
In Fig. 1(a) inset, we show the ionization of Ag as a
function of the temperature. This shows that the ioniza-
tion is near 7 at 20 eV. Then the ionization with nearly a√
T behavior increases. At 2000 eV, the ionization levels

out slightly.
In the pseudo ion in jellium, the Coulomb coupling

adds excess contributions to the kinetic formulas.

η = ηFPL + ηex, (10a)

D = DFPL +Dex, (10b)

with a bounded Coulomb logarithm to avoid divergencies

ln Λ −→ max (ln Λ , L0) with L0 = 2. (10c)
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FIG. 1: (Color online) a) Coupling parameter, Γ, for hydro-
gen (black) and silver (red) versus concentration for 50 eV
(solid line), 400 eV (dashed line) and 1000 eV (dotted line).
The gray area defines the weak coupling region where kinetic
formulation is the main contribution. Inset: The ionization
of Ag (open circles) is shown as a function of temperature

with a line showing T 1/2 scaling law. b) Plot of the function
f(x) = ((1−x)+

√
2xQ2)−1 proportional to the inverse of the

collision frequency of hydrogen mixed with silver (Q=15). x
is the Ag concentration by number.

The excess contribution to viscosity is computed using
the mixing rule from Ref. [14], where an effective OCP
is defined, with a coupling parameter Γeff equal to

Γeff =
∑
α

xα Γα =
Z

5/3
∗ Z∗

1/3
e2

a kBT
. (11)

Γα are obtained in the BIM formulation with ionizations
given by More’s fit, see Ref.[17, 45] for details. A smooth
interpolation across coupling regimes is obtained by sub-
tracting the corresponding kinetic viscosity of the effec-
tive pure element at Γeff , Eq. (9a), from Bastea’s OCP
fit [15]:

η∗OCP = 0.482 Γ−2 +0.629 Γ−0.878 +1.88 10−3 Γ. (12a)

Star superscript indicates dimensionless quantities. The
OCP Viscosity and diffusion are functions of the coupling

parameter Γ, and they are expressed in natural plasma
units: η/η0 = η∗(Γ), D/D0 = D∗(Γ), with η0 = nMωpa

2

and D0 = ωp a
2, where ωp is the plasma frequency ω2

p =

4πnQ2e2/M of species of charge Q and mass M .
The excess contribution to the mutual diffusion is com-

puted using Darken relation, Eq. (4), with effective BIM
components defined by Γ1 and Γ2, and Daligault’s fit [46]
for the self-diffusion

D∗OCP =
a0 + a1Γ + a2Γ2 + a3Γ3

b0 + b1Γ + b2Γ2 + b3Γ3
. (12b)

Coefficients can be found in [46]. Again, the correspond-
ing kinetic self-diffusion of the effective BIM compo-
nents are subtracted before applying the Darken mixing
rule. A smooth transition across coupling regimes is then
achieved at around Γeff = 0.15.

C. Simple approach for EOS

For the PIJ, a simplified formulation of the equation
of state of pure elements, as modeled by one component
plasma (OCP), gives a reasonable estimation of the pres-
sure in the multi-eV regime. The starting point is the
estimation of the effective charge Q defined through the
fit of the ionization given by More [47]. This fit could
be improved to match more precisely OFMD results, but
it leads to reasonably accurate results. The pressure is
split into an ionic and electronic contributions. The ionic
contribution is taken from the effective OCP and the elec-
tronic contribution is just the pressure of the electronic
gas: Peff = POCP + Pe. The OCP pressure is given by
the fit of Slattery et al [48] without the Madelung con-
tribution

POCP/nkBT = 1 +
1

3

[
bΓ1/4 + cΓ−1/4 + d

]
, (13)

with b = 0.94544, c = 0.17954 and d = -0.80049. The
Madelung term (−0.8975Γ) adds a contribution that
gives a spurious negative ion pressure for coupling pa-
rameter greater than 4. This is a consequence of the
rigid electronic background of the OCP model. For this
reason, this term is not included in the ionic contribution.
This leads to a good agreement with SESAME EOS in
the hot dense regime.

For the electronic component, we use an interpolation
formula between the Fermi gas and the perfect gas due to
Nikiforov et al [49], with the effective ionization ne = Qn,

Pele/ne =

[
(kBT )3 + 3.36ne(kBT )3/2 +

9π4

125
n2
e

]1/3

,

(14)
where atomic units are used for this latter (1 a.u. of pres-
sure =294 Mbar). Knowing the density of pure hydrogen
ρ1 that gives the same pressure as pure silver at density
ρ2, the density for an arbitrary mixture is deduced as

ρmix =
x1A1 + x2A2

x1V1 + x2V2
, (15)
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where V1 = A1/ρ1 and V2 = A2/ρ2. Densities obtained
with this model are in excellent agreement with Reference
[5] isobar-isotherm model.

D. Scaling laws for pure species

In this section we represent transport coefficients as
a function of temperature for pure species. Simulations
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FIG. 2: (color online) Temperature scaling laws (17) for trans-
port properties of silver (a) and hydrogen (b). Symbols are
OFMD results (white open circles for diffusion and red filled
circles for viscosity). Scaled diffusion, ρD is plotted on the
left scale (black) and viscosity on the right scale (red).

on pure silver are done for the same density 20 g/cm3

between 20 and 2000 eV. We have shown in previous pa-
pers [50, 51] that below a critical value of 0.0045 of the
reduced density (ρ∗ = ρ/AZ, where Z and A are respec-
tively the atomic number and the atomic weight), the
coupling parameter Γ was constant in a wide range of
temperature, at constant density. This regime, the Γ-
plateau, corresponds to a balance between temperature
and ionization, that scales as T 1/2 typically from 15 to
80% of full ionization (see Fig 1 (a), inset). The reduced
coupling parameter Γ∗ = Γ/Z, in the plateau, is a uni-
versal function of the reduced density and can be fitted
by

Γ∗ = b+ a ln[ρ∗], (16)

where a = 0.0695 and b = 0.714. Silver at 20 g/cm3 cor-
responds to a reduced density of 0.00394 and hence must
exhibit a plateau. Using the previous fit, we predict a
coupling of about 15 between 100 and 600 eV. As shown
in sec. II B, transport coefficients can be cast in an di-
mensionless form depending on Γ. The Γ-plateau thus
corresponds to a constant value of diffusion and viscosity
in plasmas units. To transform to real units (cm2/s and

Pa.s) one must multiply the diffusion by ωpa
2 and the

viscosity by nMωpa
2. For an isochoric transformation

(as it is the case for silver) the only changing quantity is
the plasma frequency proportional to the ionization Q,
which scales as T 1/2, along the Γ-plateau. For silver, a
scaling proportional to T 1/2 must be observed between
100 and 600 eV. The corresponding scaling law for silver
appears in Fig. 2(a) for diffusion (where DAg is multiplied
by a constant density of 20 g/cm3) and for viscosity .

Hydrogen, on the contrary, does not support a Γ-
plateau and can be considered as fully ionized beyond
a few tens of eV. Moreover, due to the isobaric con-
straint, the density of hydrogen varies between 0.88 and
3.81 g/cm3 with a coupling parameter always smaller
than 0.1, above 100 eV. To eliminate the density depen-
dency, we consider ρD. In the kinetic regime both diffu-
sion and viscosity are given by the Fokker-Plank-Landau
formula and scale as T 5/2 as shown in Fig. 2(b).

We find the following scaling laws

DAg ∝ T 1/2 for 100 < T < 600 eV

ηAg ∝ T 1/2 for 100 < T < 600 eV

ρDH ∝ T 5/2 for T > 200 eV

ηH ∝ T 5/2 for T > 200 eV. (17)

These trends are reported in Fig. 2 (a) for silver and (b)
for hydrogen and are in excellent agreement with OFMD
data. They will be useful guidelines for analyzing mix-
tures properties.

III. RESULTS AND DISCUSSION FOR THE
H-AG MIXTURE

A. EOS from OFMD simulations

Equation of state (EOS) is the relationship of pressure,
temperature, volume, energy, and entropy. It is neces-
sary to further understand the EOS of materials under
extreme conditions because their properties will dramat-
ically change. This study involves varying the concen-
tration along an isobar-isotherm to map the change of
the transport properties through a hypothetical interface.
Usually mixtures simulations are performed by substitu-
tions at constant volume leading to large changes in the
pressure. This is particularly true for very asymmetric
mixtures, where a small amount of the heavy element
adds a large number of electrons, raising the pressure.
The realization of isobaric mixtures requires changing the
volume and hence the density of the mixture to realize
a prescribed pressure. We present two approaches: the
first one uses the simulation itself to find the density, and
the second one uses a simplified, but analytical, equation
of state as input to the PIJ model, see section II C.

Fig. 3 (a) shows the pressure as a function of con-
centration for each temperature. The black points are
the OFMD pressure and the red dashed line is the target
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FIG. 3: (color online) (a) Pressure as a function of concentra-
tion for each temperature. The black points are the OFMD
pressure and the red line is the target pressure. (b) Aver-
age atom TFD calculations, the density along a isobar as a
function of concentration. Dots of corresponding colors are
effective OCP evaluations of the mixture density.

pressure. The pressure matching was done to within 10%.
The low concentration pressure matching was the most
varied. At higher temperature, the pressure matching is
better, near a few percent error. In general the trans-
port properties are only weakly dependent on density,
but highly dependent on concentration and temperature.

Fig. 3 (b) shows density from an average atom TFD
calculation along isobars as a function of concentration.
Starting at pure Ag, the density at low temperature (20
eV violet, lowest curve) gently bends over as it evolves
to pure H. In contrast, at high temperature the system
stays at higher densities even as H is added. Then the
density quickly drops as the system approaches pure H
(2000 eV red, highest curve).

Throughout the paper, when referring to an isobar, we
mean the pressure matched simulations to pure Ag at 20
g/cm3 for a given temperature.

B. Self and mutual diffusions versus concentration

We present the change in transport coefficients with
evolving composition for the H-Ag mixtures. We first
plot the transport properties versus concentration in per-
centage of the heavy element, for given temperatures.
Then, we examine the behavior of these transport co-
efficients versus temperature, at a given concentration.
To account for various densities and concentrations, we
introduce specific combinations of variables to uncover
general behaviors with respect to temperature.

We first examine the mutual and self-diffusions of the
H-Ag system. In Fig. 4 we show the OFMD results as
symbols for the self diffusion for Ag (red circles) and H
(open circles), mutual diffusion (green diamonds), and
the Darken estimate of mutual diffusion (blue circles) for
varying concentrations along isobars at three tempera-
tures: (a) 50, (b) 400, and (c) 1000 eV. PIJ predictions
are shown by corresponding shaded areas and solid lines.
For the sake of the demonstration, we have also reported
in dashed lines, PIJ estimates without the H-Ag collision
frequency for H self-diffusion.

For the pure H system, the H self-diffusion is largest.
Then as Ag is added to the system, the H self-diffusion
strongly decreases. For a pure Ag system, the Ag self-
diffusion is 3 orders of magnitude smaller, and it weakly
depends on the amount of H added. For the three tem-
peratures considered here, the PIJ model predicts reason-
ably well the self diffusion of Ag. For hydrogen, we have
plotted a shaded area corresponding to different choices
of the relaxation coefficient R1 (2 for the lower limit and
5 for the upper one). The lines within the shaded areas
correspond to the estimate of R1 from the limit of D12

when x2 → 1. Despite this dispersion, the PIJ model
predicts very well the huge reduction of the H self diffu-
sion produced by the introduction of a very small amount
of Ag. We note that the 50 eV case (ΓH ' 0.3) is less
sensitive to variations in the kinetic contribution of the
PIJ model. At 400 eV there is a transition from the corre-
lated regime to the kinetic one. In this transitory regime,
the PIJ model is sensitive to the choice of the bounding
of the Coulomb logarithm  L0. Changing this threshold
from to 2 to 3 would degrade the agreement with data at
400 eV. At higher temperature, 1000 eV, the agreement
is very good since hydrogen is in the fully kinetic regime
and silver still correlated.

Looking at the mutual diffusion in Fig. 4 (green sym-
bols). When the system is nearly pure H, the mutual
diffusion should approach the Ag self diffusion as a lower
limit, but depending on the temperature, the mutual dif-
fusion can still much larger. For small amounts of Ag, the
mutual diffusion approaches the Ag self-diffusion as the
fraction of Ag vanishes. We more clearly see this behav-
ior in the PIJ model (solid lines). As Ag is added, the
mutual diffusion increases until the mutual diffusion is
at its largest value nearly equally to the H self-diffusion.
This behavior is in line with the Darken relation, Eq. (4),
and these results are shown in blue symbols for Fig. 4.
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FIG. 4: (color online) The OFMD diffusion as a function of
percent Ag for H (open circles) and Ag (red circles), mu-
tual diffusion (green diamonds),and Darken estimate of mu-
tual diffusion (blue circles) along isobars are shown for three
temperatures: (a) 50, (b) 400, and (c) 1000 eV. The PIJ pre-
dictions are shown by corresponding solid lines. The shaded
area correspond to the uncertainty for relaxation correction:
2 lower limit and 5 upper limit. Additionally, we show the H
self-diffusion without the H-Ag collision frequency as a dashed
curve.

Note the Darken relation uses the self-diffusions from the
full mixture, not the self-diffusions from the pure species
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FIG. 5: (color online) ρ DH from OFMD versus tempera-
ture for hydrogen mixed with increasing percentage of Ag
compared with PIJ model (lines with corresponding colors).
Inset: power law scaling with temperature.

simulations. The Darken relation respects the limiting
behavior of D12 at extreme dilution. For this reason, it
is a good interpolation formula.

Also shown in Fig. 4 is hydrogen self-diffusion without
the cross terms H-Ag in the collision frequency (dashed
lines). These curves show that the common method of
estimating the transport properties can be inaccurate,
dramatically over predicting the self-diffusion. This is
important when considering the Darken relationship, Eq.
4. This result highlights the importance of using the self-
diffusion coefficients from simulations of the full mixture,
this is particularly acute for the light element. It further
highlights the importance of including the modified H-
Ag collision frequency for hydrogen’s self-diffusion in the
PIJ model.
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FIG. 6: (color online) ρDAg from OFMD (symbols) versus
temperature for silver mixed with increasing percentage of H
compared with PIJ model (lines with corresponding colors).

Inset: the T1/2 law is the consequence of the ionization of
silver in the Γ plateau.
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C. Self-diffusion versus temperature

Trends of diffusion versus temperature are well iden-
tified if we plot ρD versus T as shown in Figs. 5 and
6. In Fig. 5 we show the temperature dependence of
H self-diffusion times the density for various silver con-
centrations: 0 (open circles), 3 (open orange circles), 10
(blue circles), 50 (green down triangles) and 75 (green up
triangles) % Ag by number.

For hydrogen the situation is explicit. Pure hydrogen
follows kinetic scaling as soon as the temperature goes
beyond 200 eV. However if a small amount of silver is in-
troduced, the power law switches to T 3/2, which holds
for all considered concentrations with a very low disper-
sion beyond 200 eV. This is the signature of a qualita-
tive change from the diffusion of a pure OCP plasma
to a Lorentz type diffusion of hydrogen between heavy,
strongly charged silver atoms. This behavior is traced
back to the dominant collision frequency ν12, which scales
as Q2T−3/2, giving a diffusion coefficient, Eqn. (9c), scal-
ing as T 3/2/Q2 × T and hence as T 3/2 since on the Γ
plateau the ionization scales as Q ∝ T 1/2. We emphasize
that kinetic formula can be used here since H is charac-
terized by a coupling parameter less than 0.1 as soon as
the temperature is greater than 100 eV, see Fig. 1 (b).
In short, the change from 5/2 to 3/2 is simply due to
the appearance of a new dominant contribution (scaling
as Q2) to the collision frequency. The PIJ model repro-
duces these trends and gives the transition between the
kinetic regime (hydrogen beyond 400 eV) and the corre-
lated regime (mixture below 200 eV). For pure hydrogen,
the agreement with data at high temperature is not per-
fect and could be improved by another choice of the re-
laxation correction and coupling threshold (L0=3.5 and
RH=1.7 yields a perfect agreement for pure hydrogen at
all temperatures at the expense of mixture properties).
This raises the question of the best choice of the Coulomb
logarithm thresholds in mixtures.

In Fig. 6 we show the temperature dependence of Ag
self-diffusion multiplied by the density for various con-
centrations: 100 (red dots), 3 (orange circles), 10 (blue
circles), and 75 (green up triangle) % silver by number. in
contrast with hydrogen, silver always stays in the corre-
lated regime. We have seen in Fig. 2 (a) that between 100
to 600 eV the diffusion of pure silver scales as T 1/2, re-
flecting the increase of the ionization along the Γ-plateau.
The addition of a light element to the mixture has a weak
effect, and ρDAg remains close to a T 1/2 scaling. At very
low concentration of silver and lower temperature, we
note a larger discrepancy, up to a factor of 3, between
silver self-diffusion and PIJ predictions.

D. Mutual diffusion versus temperature

We conclude from the Sec. III B that, first, the Darken
relation provides a good estimation of the mutual diffu-
sion and, second, that the self diffusion of the heavy com-
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FIG. 7: (color online) Temperature dependence of the OFMD
ρD12/x for various levels of concentration x : 5% (orange
circles), 25 % (blue diamonds) and green up triangles (75%).

Inset: power laws T 3/2 for the solid line and T 1/2 for the
dashed line.

ponent is about two orders of magnitude smaller that the
light one. Thus, we can write for asymmetric mixtures
D12 ' xD1 and deduce the correct density scaled mutual
diffusion ρD12/x. The consequence is that the mutual
diffusion is essentially kinetic in contrast with the viscos-
ity which is driven by correlation. Using this scaling we
observe that all points gather on the same line in Fig.
7, whatever the concentration x in heavy element: 5%
(orange circles), 25 % (blue diamonds) and 75% (green
triangles). The density scaled mutual diffusion only de-
pends on the temperature and can be estimated through
kinetic formulation of the PIJ model. Beyond 200 eV,
if we suppose that Ag ionization Q scales as T 1/2, we
get a scaling of D12 as T 3/2, compatible with data in
Fig. 7. PIJ model predictions are also merging beyond
200 eV (kinetic regime) and close to the data but a larger
dispersion is observed at low temperature.

E. Viscosity versus concentration

Fig. 8 shows the behavior of the viscosity along isobars,
see section III A, as a function of Ag concentration for
three temperatures: 50 eV (black open circles), 400 eV
(blue open squares), and 1000 (red open triangles) eV. At
low temperatures the ratio between the viscosity for pure
hydrogen and pure silver is small, at 20 eV (not shown)
it is just over a factor of 2 and for 50 eV it is just under
a factor of 7. But at 1000 eV, the change in viscosity is
about a factor of 700 and for 2000 eV (not shown), it is
a factor of 2500. This behavior is reproduced well by the
PIJ model (solid lines).

It is also interesting to see how much the viscosity
changes with just a small amount of added silver. For
example at 1000 eV, the viscosity drops an order of mag-
nitude with the addition of 3% Ag. The comparison with
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Fig. 1 (b) immediately suggests that this effect is just a
matter of collision frequencies, Ag ions being the domi-
nant scatterers. This effect, already observed for asym-
metric BIMs [14], is not nearly as pronounced at low
temperature. At 20 eV the difference in viscosity from
simulations with 100 % H and 97% H is 23% and at 50
eV it is just under a factor of 2. When the system con-
tains more silver than hydrogen, any further change to
the viscosity is gradual.

F. Viscosity versus temperature

Fig. 9 (a) shows the temperature dependence of vis-
cosity for various concentrations. For pure hydrogen at
high temperature the viscosity scales as T 5/2 as discussed
in the previous section. We recognize the T 1/2 behavior
for pure Ag, as predicted by the Γ-plateau model. The
difference between these two limits is striking. These
two behaviors are captured by the PIJ model because
the kinetic limit and the Γ-plateau are included. PIJ
predictions are less accurate for low concentration mix-
tures that are also much more difficult to simulate due
to statistics.

When xη/ρ is plotted versus temperature, the viscosity
points, that were scattered in Fig. 9 (a), are now grouped
along two main lines in Fig. 9 (b), characteristic of two
well-identified behaviors. While pure hydrogen always
stays in the kinetic regime with a power law T 5/2 , a small
amount of silver changes the scaling to a dependence not
far from T 1/2, which is the signature of the Γ-plateau.
Even at very low silver concentration (3%) the behavior
of the viscosity is the one of a strongly correlated plasma.
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FIG. 8: (color online) The viscosity from OFMD simulations
along isobars, see section III A, as a function of percent Ag
for three temperatures 50 (black squares), 400 (blue squares),
and 1000 eV (red squares) . Lines of corresponding colors are
PIJ evaluations.
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FIG. 9: (color online) (a) Viscosity as a function of temper-
ature for both the PIJ model (lines) and OFMD simulations
(symbols) at different concentrations: pure H (open circles), 3
(orange circles), 10 (blue circles), 50% (green down triangles),
and pure Ag (red circles). (b) x η/ρ versus T. Lines represent

the T 5/2 and T 1/2 scalings.

IV. CONCLUSION

We have presented a series of simulations of hydrogen-
silver mixtures in the orbital-free molecular dynamics
framework. For each temperature, ranging from 20 to
2000 eV, the densities have been obtained through an
isobaric constraint to target the pure silver pressure, see
section III A. We have obtained diffusion coefficients and
viscosities and have shown the tremendous effect of a
small amount of heavy element. Simulations are com-
pared with the theoretical PIJ model which succeeds in
explaining these strong variations. Additionally, the sud-
den change in the temperature scaling law, when a heavy
element is added is clarified within the PIJ modeling as a
direct consequence of the cross H-Ag contribution to the
collision frequencies. The particular case of strong asym-
metric mixtures bring simplifications. WhenDH � DAg,
the Darken relation reduces to a mutual diffusion coef-
ficient given by xDH , where x is the Ag concentration.
Interestingly, the mutual diffusion is essentially kinetic
and the viscosity is correlated.

Future work will be to improve the microscopic de-
scription of the mixture through a detailed study of the
system. This will include looking at the pair distribu-
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tion function and the velocity auto correlation functions
for such mixtures as concentration changes. It will hold
valuable insights into the behavior of such mixtures and
how they relate to basic model systems [52].
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Appendix: Parametrization of relaxation corrections

In the weakly coupled regime, the kinetic equations can
be used to compute transport coefficients. The procedure
consists in linearizing the kinetic equations around equi-
librium and solving for the response to small gradients
in temperature velocity and concentrations. Following
Decoster [43] we get for the viscosity

η
(1)
12 = K1

n1 kBT1

ν11 + ν12
+K2

n2 kBT2

ν22 + ν21
. (A.1)

K1 = ξ(y) and K2 = 0.965

y =
ν12√
2 ν11

' n2 Q
2
2

n1 Q2
1

=
x Q2

1− x
. (A.2)

Q1 and Q2 are the ionizations and x = N2/N . The
coefficient ξ(y) is given by the following relation [43, 53]

ξ(y) =
5

6

(204
√

2 y + 205)(y + 1/
√

2)

96
√

2 y2 + 301 y + 89
√

2
, (A.3)

and varies between 1 and 2. For the mutual diffusion

DFPL
12 = R12 c2

kBT

ν12

m

m1m2
, (A.4)

the coefficient R12(y) is given by R12 = 1/χ(y) with the
following fit [43]

χ(y) =
(3π/32) y2 + 0.8783 y + 0.304

y2 + 1.609 y + 0.304
, (A.5)

and varies between 1 and 3.5.
In the lack of theoretical estimation for R1, we assumed
that it does not depend on the concentration and used
the limit of the mutual diffusion coefficient at infinite
hydrogen dilution lim

x→1
D12 = D1, which gives R1 ' 3.5.

Of course, this is a crude approximation since for pure
elements R1=1.19. These fits are implemented in PIJ
model.
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