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The importance of finite-temperature exchange-correlation

for warm dense matter calculations
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Effects of explicit temperature dependence in the exchange-correlation (XC) free-energy functional
upon calculated properties of matter in the warm dense regime are investigated. The comparison
is between the KSDT finite-temperature local density approximation (TLDA) XC functional [Phys.
Rev. Lett. 112, 076403 (2014)] parametrized from restricted path integral Monte Carlo data on
the homogeneous electron gas (HEG) and the conventional Monte Carlo parametrization ground-
state LDA XC functional (Perdew-Zunger, “PZ”) evaluated with T -dependent densities. Both
Kohn-Sham (KS) and orbital-free density functional theory (OFDFT) are used, depending upon
computational resource demands. Compared to the PZ functional, the KSDT functional generally
lowers the direct-current (DC) electrical conductivity of low density Al, yielding improved agreement
with experiment. The greatest lowering is about 15% for T= 15 kK. Correspondingly, the KS band
structure of low-density fcc Al from KSDT exhibits a clear increase in inter-band separation above
the Fermi level compared to the PZ bands. In some density-temperature regimes, the Deuterium
equations of state obtained from the two XC functionals exhibit pressure differences as large as 4%
and a 6% range of differences. However, the Hydrogen principal Hugoniot is insensitive to explicit
XC T -dependence because of cancellation between the energy and pressure-volume work difference
terms in the Rankine-Hugoniot equation. Finally, the temperature at which the HEG becomes
unstable is T ≥ 7200 K for T -dependent XC, a result that the ground-state XC underestimates by
about 1000 K.

PACS numbers: 51.30.+i, 05.30.-d, 71.15.Mb, 52.25.Fi

I. INTRODUCTION

Warm dense matter (WDM), characterized by elevated
temperatures and wide compression ranges, plays an im-
portant role in planetary-interior physics and materials
under extreme conditions, including the path to inertial
confinement fusion, heavy ion beam experiments, and Z-
pinch compression experiments [1–6]. Development of
computational and theoretical methods to treat WDM
applications is important both for interpreting experi-
mental results and for gaining insight about thermody-
namic regions that are difficult to access experimentally.

Current practice is to treat the WDM electronic de-
grees of freedom via finite-temperature density functional
theory (DFT) [7–9]. That necessitates use of an approxi-
mate exchange-correlation (XC) free-energy density func-
tional, Fxc[n(T ), T ]. A common approximation [10–12]
is to use a ground-state XC functional evaluated with the
finite-T density, that is Fxc[n(T ), T ] ≈ Exc[n(T )]. This
is the “ground state approximation” or GSA. Ref. 13 pre-
sented a rationale for why the GSA might be expected to
work well. The essence of that argument is that GSA au-
tomatically fulfills certain constraints. The present study
gives clear demonstrations of GSA deficiencies for specific
systems in certain thermodynamic conditions and phys-
ical properties. The study involves systematic investiga-
tions of three essential questions. What properties are
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FIG. 1: Map in (rs, T ) plane which shows the rela-
tive importance of explicit T -dependence in the exchange-
correlation free-energy functional for the HEG measured as
log

10
(|fxc(rs, T ) − exc(rs)|/[|fs(rs, T )| + |exc(rs)|]).

affected by the explicit T -dependence of Fxc, over what
thermodynamic regime does the dependence manifest it-
self, and what are the magnitudes of the effects?

For compactness in what follows we use the phrase
“XC thermal effects” as a shortened expression for “ef-
fects of the explicit T -dependence in the XC free energy”.
Thus, XC thermal effects are those not included in the
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GSA. As orientation to the issue, Fig. 1 shows the rel-
ative importance of XC thermal effects as a function of
rs (the Wigner-Seitz radius, rs = (3/4πn)1/3) and T as
log10(|fxc(rs, T )− exc(rs)|/[|fs(rs, T )|+ |exc(rs)|]) for the
homogeneous electron gas (HEG). fxc is the XC free-
energy per particle [14], exc is the zero-T XC energy per
particle [15], and fs is the non-interacting free-energy per
particle [16]. Note that this ratio is the difference of ener-
gies per particle for two small quantities divided by the
energy per particle for what, in most cases, is a larger
quantity. In particular, the denominator of the ratio al-
ways is greater than or equal to the magnitude of the free
energy per particle (calculated with the zero-T exchange-
correlation): |fs|+ |exc| ≥ |fs + exc|. The ratio therefore
generally underestimates the significance of XC thermal
effects.

The orange and yellow regions of Fig. 1 indicate the
(rs, T ) domain wherein one may expect the T -dependence
of XC to be important for accurate predictions. The
nearly diagonal orange-yellow band is particularly use-
ful for insight. First, it shows that finite-T XC may be
expected to be important at low T for large rs values.
Second, that T -dependence in XC dwindles in impor-
tance in the large-T limit. Thus the relative importance
ratio has a maximum at some intermediate temperature
which depends on rs. In terms of the reduced temper-
ature, t = T/TF ( TF = (1/2)(9π/4)2/3r−2

s the Fermi
temperature), the near diagonal orange-yellow band in
Fig. 1 is rendered in the (rs, t) plane as a roughly hori-
zontal band with a lower border starting at t ≈ 0.3 for
rs = 0.1 and rising to t ≈ 1 for rs = 100. That band is
narrowest at low rs and broadens by over a factor of 100
at rs = 100.

This plain analysis of a fundamentally important
many-fermion system motivates investigation of XC
thermal effects upon the calculated properties of real
inhomogeneous systems. There have been a few previous
studies, [17–22] but all except one used T -dependent
XC functionals [23–26] constructed from various ap-
proximations to the underlying many-fermion theory,
not from parametrization to path-integral Monte Carlo
(PIMC) data. They also involved other approximations,
e.g., ensemble averaging of core-hole pseudopotentials
in Ref. 17, average-atom and related schemes [18, 19],
and Car-Parrinello MD in Ref. 20. For equations of
state (EOS), Hugoniot shock compression curves, and
conductivities, Refs. 17–19 predicted significant XC
temperature effects, while Ref. 20 found only small dif-
ferences for the electrical resistivity of Aluminum. Danel
et al. [22] find consistent lowering of pressures from
thermal XC effects and small effects on the Deuterium
Hugoniot. The common limitation of all those studies
was the uncontrolled nature of the local-density approxi-
mation (LDA) XC functionals they used. Ref. 21 did use
the modern Karasiev-Sjostrom-Dufty-Trickey (KSDT)
finite-temperature local density approximation (TLDA)
[14] for Fxc but showed results only for the equation of
state of Deuterium at relatively high material density

(small-rs) and concluded that the fractional pressure
shifts relative to ground-state LDA were small, though
not of one sign.

In contrast, the present work provides an assessment
of XC thermal effects on the basis of KSDT [14] for
several properties in diverse systems and state con-
ditions. KSDT was parametrized solely to quantum
Monte Carlo (QMC) plus restricted path integral Monte
Carlo (RPIMC) simulation data for the HEG [27, 28]
and rigorous limiting behaviors. KSDT therefore is the
consistent counterpart to the widely used Perdew-Zunger
(PZ) [15] LDA functional, which is a parametrization
of ground-state HEG QMC data. Lack of consistency
between the PZ parametrization and some earlier
finite-T LSDA approximations was noted explicitly as a
problem in Ref. 20.

The next Section gives details about the KSDT finite-
T and PZ XC functionals along with the basics of the
methodology employed, including monitoring of entropy
positivity. Section IIIA presents Kubo-Greenwood con-
ductivity calculations on Aluminum for those two func-
tionals, as well as the KS band structures of fcc Alu-
minum at comparable densities and temperatures. Sec-
tions III B-III C provide the corresponding KSDT vs. PZ
comparison for the Deuterium equation of state and for
the liquid Hydrogen Hugoniot. Section IIID gives a brief
study of the equilibrium properties of the electron gas
(both HEG and with a point charge compensating back-
ground) at finite-T . Concluding discussion is in Sec. IV.

II. METHODS

A. Exchange-correlation free-energy functional

To reiterate, the KSDT finite-T LDA XC free-energy
functional [14] is a first-principles parametrization of
RPIMC simulation data for the finite-T HEG [27] and re-
cent zero-T QMC HEG data [28]. KSDT also has proper
asymptotics and is free of unphysical roughness. Addi-
tionally, it fits the recent data from Schoof et al. [29]
well. For the spin-unpolarized XC free-energy per parti-
cle, KSDT has the form

fu
xc(rs, t) = − 1

rs

a(t) + bu(t)r
1/2
s + cu(t)rs

1 + du(t)r
1/2
s + eu(t)rs

. (1)

The functions a(t) and bu(t)−eu(t) are tabulated in Ref.
14. Most calculations require evaluation of the XC free-
energy, Fxc[n, T ] ≡

∫

drn(r)fu
xc(rs(r), t(r)) and the corre-

sponding functional derivative. Evaluation of properties
which involve the internal energy (e.g. Hugoniot curves,
heat capacities) requires the XC internal energy per par-
ticle as well. It follows via the standard thermodynamic
relation Sxc = −∂Fxc/∂T |N,V as

εuxc(rs, t) = fu
xc(rs, t)− t

∂fu
xc(rs, t)

∂t

∣

∣

∣

rs
, (2)
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so the corresponding XC internal energy is Exc[n, T ] ≡
∫

drn(r)εuxc(rs(r), t(r)). Both Eqs. (1) and (2) are imple-
mented in our Profess@QuantumEspresso interface
[30–34]. (KSDT also has been implemented in LibXC [35]
recently.) Also as noted above, the comparison ground-
state XC functional evaluated with T -dependent densi-
ties is the well-known PZ LDA [15].

B. Computational details

Both the KSDT and PZ functionals were used in
ab initio molecular dynamics (AIMD) simulations. We
used two forms of AIMD, with Kohn-Sham (KS) DFT
forces and with orbital-free DFT (OFDFT) forces. For
OFDFT, the non-interacting free energy functional Fs

we used was the recently developed VT84F approxima-
tion [36] in the case of the Deuterium equation of state
and a semi-empirical “tunable” functional [37] for Al at
low material density.
The KS calculations used standard projector-

augmented-wave (PAW) pseudo-potential data sets [38]
(three electrons in the valence for the Al atom), and
PAWs transferable to high compressions [34, 39, 40], all
generated with the ground state LDA XC. For calcula-
tions with Profess@Q-Espresso, that LDA XC was
PZ [15], while for those done with Abinit (see below) it
was the Perdew-Wang (PW) [41] XC. For the purposes
of this study the difference in behavior between those
two functionals is negligible [39]. The PAW data sets
were generated at T = 0 K. At the highest temperatures
involved, thermal depopulation of the core levels treated
by the PAWs is minuscule. To illustrate, the highest
LDA KS Kohn-Sham eigenvalue among the frozen
atomic Al core states is about -70 eV. At T = 30 kK
(the highest T of our Al calculations), the Fermi-Dirac
occupation of that level depopulates by about 10−12.
The underlying assumption (and common practice in
WDM studies) therefore is that these PAW data sets are
transferable to various thermodynamic conditions (i.e.,
the sets describe an effective core-valence interaction
with valence electrons in various states). Therefore,
one assumes validity for that core-valence interaction at
finite-T as well. Observe that use of the T -dependent
KSDT XC functional in subsequent calculations does not
introduce an inconsistency because the KSDT functional
reduces de facto to the PZ functional in the zero-T limit
at which the PAW sets were generated.
Local pseudopotentials (LPPs) [34, 40, 42, 43] devel-

oped for OFDFT and also transferable to high compres-
sions were used in the OFDFT calculations. For Hydro-
gen and Deuterium, the LPP only regularizes the bare
Coulomb electron-nuclear interaction singularity, hence
does not pose any possible transferability limitations for
high-T such as those for systems with core electrons, as
just discussed.
The plane-wave energy cutoff was 500 eV for Al, and

1000 eV for Hydrogen and Deuterium. Further pertinent

details are in Sec. III B.
For conductivities, we did KS-AIMD simulations for

T = 5, 10 and in some cases for 15 kK with Γ-point-only
sampling of the Brillouin zone, the PZ XC functional, and
the PAW data set. At elevated temperatures, T = 15, 20,
and 30 kK, and the low material densities of primary in-
terest (see below), such KS-AIMD calculations proved
to be unaffordable. In those circumstances, we used
AIMD driven by OFDFT forces from a semi-empirical
Fs parametrized (“tuned”) to extrapolate KS pressure
behavior into the low material density region. The ref-
erence for parametrization was KS pressure data for fcc
Al at T = 8 kK and material densities 0.6 ≤ ρAl ≤ 2
g/cm3. Procedural details will be published elsewhere
[37]. The essential point here is that the AIMD gen-
erated a sequence of ionic configurations from which a
sample set was selected (so-called “snapshotting”) for use
in standard Kubo-Greenwood calculations [44, 45]. The
OFDFT AIMD was performed using an LDA model LPP
[42, 43], again with the Profess@Q-Espresso interface
[30, 31]. Depending on the particular material density,
the AIMD was done with 16 or 32 atoms in the simu-
lation cell such that the finite system size effects were
small [11]. Conductivities were calculated as averages
over two to ten well-separated AIMD snapshots using a
2×2×2 sampling of the Brillouin zone. The calculations
used the PAW formalism and were done with a locally
modified version of Abinit [46–48] which included the
KSDT XC free energy functional. We used a 3-electron
PAW generated as prescribed in Ref. 38.
To gain insight and illustrate the origin of the XC-

dependent differences in the Al DC conductivity results,
a series of KS band structure calculations was done with
the same PAW data set for fcc Al with density 0.2 g/cm3

and T = 5, 10, and 20 kK. Those include 16, 28, and
80 bands respectively. Those calculations were highly
converged for the fcc primitive unit cell with a 12×12×12
Monkhorst-Pack k-grid [49].
The Hydrogen Hugoniot was studied with KS-AIMD

forces up to T ≤ 30 kK, with 64 atoms in the simulation
cell and a 3× 3× 3 Monkhorst-Pack k-grid [49]. Because
of computational demand issues, for T ≥ 30 kK, the KS-
AIMD calculations used the Baldereschi mean value BZ
point [50].
Finally, the various HEG stability and electron heat

capacity calculations were performed with static back-
ground (or lattice) using KS and OFDFT respectively.

C. Validation of approximate functionals for

entropy positivity

Previously, we addressed [40] positivity of the entropy
in OFDFT for a few generalized gradient approximation
(GGA) non-interacting free-energy functionals FGGA

s .
The entropy density in some cases was contaminated by
local negative contributions. Such contamination typi-
cally leads to a small-magnitude contribution to the free
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FIG. 2: The total free-energy, internal energy, internal XC
energy and entropic component (per particle) magnitudes for
the spin-unpolarized HEG for rs = 20 bohr calculated with
the KSDT XC free-energy parametrization [14].

energy compared to the total TSs value. More critically,
the global entropy value in all calculations was positive,
consistent with the positivity constraint being on the en-
tropy, not on the entropy density.
In the present work we monitored the sign of the to-

tal entropic contribution. For the orbital-free case, that
consists of the non-interacting component

Ss[n, T ] = −∂Fs[n, T ]

∂T

∣

∣

∣

N,V
, (3)

and the XC component (defined as a difference between
the entropies of the interacting and non-interacting sys-
tem Sxc = S − Ss)

Sxc[n, T ] = −∂Fxc[n, T ]

∂T

∣

∣

∣

N,V

=
1

T

∫

drn(r)(ǫuxc(rs, t)− fu
xc(rs, t)) . (4)

In our experience, the total entropy is always positive.
For the KSDT XC free-energy parametrization in Eq.

(1), recently it was found [13] that the HEG total en-
tropy becomes negative at very large rs values and small
temperatures (approximately rs > 10 and t < 0.1). Prac-
tically that regime is irrelevant to real systems. Analysis
of the corresponding entropic contribution to the free-
energy confirms that. Fig. 2 shows that for rs = 20 bohr
the negative entropic contribution has a maximum am-
plitude of order 0.0001 hartree per electron. This error is
negligible, since it is at or below the typical accuracy of
finite-temperature Kohn-Sham and orbital-free codes. It
is also negligibly small in comparison to the total free en-
ergy or total internal energy. The situation is quite sim-
ilar for other large-rs. The violation is inconsequential,
hence seems to be primarily of an aesthetic character.
After-the-fact validation of the thermal Kohn-Sham

and orbital-free calculations in combination with the

KSDT XC free-energy parametrization Eq. (1) show
that the total entropy is positive for all materials and
all WDM conditions probed in the present work.

III. RESULTS

A. Aluminum conductivity and band structure

Experimental study of the electrical conductivity of
warm dense Al was reported in Ref. 51. Theoretical
treatment via AIMD and the Kubo-Greenwood formula
[44, 45] is found in Refs. 10, 11 and 20. That latter study
found the influence of the finite-T XC functional on the
DC electrical resistivity (the inverse of electrical conduc-
tivity) to be small at material densities ρAl = 1.0 and
1.4 g/cm3 (rs = 2.89 and 2.58 bohr respectively, assum-
ing the usual three free electrons) and T = 5 → 20 kK.
The earlier studies [10, 11] found that DC conductivi-
ties depend weakly upon T in the range 6 − 30 kK for
material densities between roughly 0.5 and 2.0 g/cm3.
Since the total T -dependence in general is dominated by
the non-interacting free-energy contribution and the XC
contribution is comparatively small in magnitude (recall
discussion of Fig. 1), those findings mean that for this
density range XC thermal effects should be small as well.

However, the results of Refs. 10, 11 also suggest that
XC thermal effects might be noticeable at low material
densities (between 0.025 and 0.3 g/cm3). In that region,
the DC conductivity has strong T -dependence. Figure 1
also suggests that XC thermal effects should be impor-
tant at such low material densities (large-rs) for temper-
atures between about 10 and 500 kK. (At T = 15 kK
the reduced temperature is t ≈ 1.0 and 0.6 for ρAl = 0.1
and 0.2 g/cm3 respectively.) These considerations mo-
tivated our AIMD calculations of the DC conductivities
for three densities in that range, ρAl = 0.1, 0.2, and
0.3 g/cm3 (rs = 6.22, 4.94, and 4.21 bohr respectively).
(Note that the foregoing rs values are calculated with
the conventional total number of valence electrons, 3, for
Al. However, that could underestimate an effective free-
electron rs and thereby diminish the validity of correla-
tion between XC thermal effects on a particular property
(e.g., conductivity) and Fig. 1. Insight from that Figure
depends to some extent on how rs for a physical system
is calculated.)

The average of the Kubo-Greenwood optical conduc-
tivity over a number of snapshots or configurations
(Nconfig) as a function of frequency ω is given in atomic
units by

σ(ω) =
1

Nconfig

Nconfig
∑

I=1

∑

k

wkσk(ω; {R}I), (5)
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with

σk(ω; {R}I) =
2π

3ωΩ

Nb
∑

i,j

3
∑

ν=1

(fi,k,I − fj,k,I)

×|〈ϕj,k,I |∇ν |ϕi,k,I〉|2δ(ǫj,k,I − ǫi,k,I − ω) .(6)

Here Ω is the system volume, wk is the weight of BZ point
k, and fi,k,I are Fermi-Dirac occupations of KS orbitals
ϕi,k,I . Those orbitals and associated eigenvalues ǫj,k,I
are indexed as band, BZ vector, and lattice configuration
snapshot at lattice coordinates {R}I .
The DC conductivity is the limit of σ(ω) as ω → 0.

Because of the frequency-difference delta-function, com-
putational convergence to that limit with respect to the
number of KS bands (Nb) is known to be rapid [11].
Consequences of the numerical implementation of the δ-
function are a complicating factor. Gaussian broadening
of the δ-function [10] ∆ = 0.2 eV was used. Increasingly
severe local oscillations in σ(ω) appear rapidly as ∆ is
decreased below that value, especially at lower tempera-
tures. As a consequence, the DC conductivity does not
converge as ∆ → 0. See the discussion in Ref. [52]. The
chosen value of ∆ is close to being optimal according to
the criterion of Ref. [10] for the system size and density-
temperature range relevant here. Admittedly, however,
the results are sensitive to that choice. A better proce-
dure would determine the optimal ∆ at each density and
temperature.
To ensure convergence with Nb, our calculations used

a minimum occupation number threshold of order 10−6−
10−7, such that the number of bands included for ρAl =
0.1 g/cm3 was Nb = 208, 672, 1184, 1920, and 3096 at
T=5, 10, 15, 20, and 30 kK respectively. The number of
bands required decreases rapidly with increasing material
density, but increases rapidly with increasing numbers of
atoms in the simulation cell. The effect of these depen-
dencies can be checked by testing for satisfaction of the
f-sum rule[44]. It was satisfied to 90− 92% at T = 5 kK,
and to 95− 97% at higher temperatures.
Results are shown in Fig. 3. The standard deviations

shown there as error bars correspond to averaging over
the snapshots. Note first that for all T , the explicitly
T -dependent XC functional lowers the DC conductivity.
Beginning at T = 5 kK, the effect increases with increas-
ing T and is largest near T=15 kK, then decreases. Fig.
4 shows the relative error in using the ground-state XC
functional

| ∆σ |
σPZ

:=
| σKSDT

DC − σPZ
DC |

σPZ
DC

. (7)

That error is 0.5%, 13%, 15% , 11%, and 7% for ρAl = 0.1
g/cm3 at T = 5, 10, 15, 20 and 30 kK respectively.
An important aspect is that the relative error is not
amenable to correction by some simple, rule-of-thumb
shift.
The number of snapshots at the lowest temperature,

T = 5 kK, is ten. Nevertheless the standard deviation at

0.01 0.1 0.5
ρ

Al
 (g/cm

3
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FIG. 3: Aluminum DC conductivity as a function of density
from calculations with T -dependent KSDT (dot-dashed) and
ground state PZ (dashed) XC functionals for five isotherms.
From bottom to top T = 5 kK (circles), 10 kK (triangles
up), 15 kK (diamonds), 20 kK (squares) and 30 kK (triangles
down). Experimental data [51] correspond to 10 kK (triangles
up) and 30 kK (triangles down).
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FIG. 4: Relative error in DC conductivity for Al as function
of density for five different temperatures.

that T is large. To decrease it would require increasing
the number of snapshots or the simulation cell size or
both. Such sensitivity to the nuclear configuration may
be explained by transient formation and dissociation of
small Al clusters at that T , a process seen in the snap-
shots. Crucially, however, the difference between KSDT
and PZ conductivities for each snapshot depends very
weakly on nuclear configuration. Those differences, as
shown in Figs. 3 and 4, are negligible at T = 5 kK. As
T increases, the standard deviation decreases as the sys-
tem becomes more nearly uniform (10, 8 and 4 snapshots
were used for T = 10, 15 and 20 kK respectively) and the
difference attributable to the two functionals becomes
clearly discernible. Averaging over only two snapshots in
fact provides very small error bars at the highest T = 30
kK.

There exists also an implicit influence of T -dependent
XC on DC conductivities via nuclear configurations.
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FIG. 5: Comparison of fcc Al KS band structures for ρ =
0.2g/cm3 from KSDT T -dependent XC and PZ ground-state
XC for T = 5, 10, and 20kK (bottom to top). Fermi level
ǫF set to zero. The right-hand panels display the density of
states D(ǫ) and Fermi-Dirac occupation f(ǫ).

That arises because a snapshot sequence from AIMD
performed with the KSDT functional will differ from
the sequence from the PZ functional (with T -dependent
density of course). To identify only the explicit depen-
dence, we deliberately used the same snapshots for both

KSDT and PZ conductivity calculations. Evaluation of
the implicit influence would require calculations of aver-
ages over much longer snapshot sequences generated by
AIMD with each XC functional. Given that it is almost
certain that the implicit effects are small compared to the
explicit ones, and given the cost of doing the AIMD cal-
culations and snapshot conductivities (even with the cost
effectiveness of OFDFT AIMD), we opted not to pursue
the implicit influence.
Since the KS eigenvalues and orbitals are inputs to

the Kubo-Greenwood calculations, direct examination
of thermal XC effects upon the rather unfamiliar low-
density KS band-structure therefore is of interest. Fig.
5 provides comparison of the fcc Al band structure at
ρ = 0.2 g/cm3 at three temperatures. Overall there is a
T -dependent shifting upwards of the bands above ǫF as
they become increasingly occupied. For energies nearest
ǫF on either side, the KSDT bands lie below the PZ ones,
whereas that ordering is reversed for the bands next up-
ward. In those bands, at T = 20 kK the shift is about 0.2
eV, about 10% of the electronic temperature. That is also
the amount of relative increase in inter-band separation
between the band at the Fermi level and the next higher
conduction band. The separation increase shows up as
a lowering of σ(ω) for small ω induced by the lowering
of Fermi-Dirac occupations and their derivatives (occu-
pation number difference) in Eq. (6). D(ǫ) clearly shows
not only the general shift upward that accompanies in-
creasing T , but also that the bandwidth nevertheless is
essentially unchanged.

B. Equation of state of warm dense Deuterium

To explore XC thermal effects upon bulk thermo-
dynamics, we did KS and OFDFT AIMD calculations
on Deuterium at material densities between 0.2 and 10
g/cm3 for T = 2 → 1000 kK. The familiar unfavorable
computational cost scaling with T limited our KS-AIMD
results to below T ≈ 125 - 180 kK for higher material
densities (ρD ≥ 2 g/cm3), and up to T ≈ 60 - 90 kK for
ρD = 0.2 and 0.506 g/cm3. Depending on the material
density, the simulation cells had 64, 128, or 216 atoms.
For some KS-AIMD cases, the number of atoms in the
simulation cell was decreased with increasing T . Most of
the KS calculations were performed at the Γ-point only,
though for ρD = 0.506 g/cm3 a 2 × 2 × 2 Monkhorst-
Pack Brillouin zone grid [49] was used at the two lowest
temperatures.
The pressure converges slowly with respect to the num-

ber of MD steps, but pressure differences (between simu-
lations with two different XC functionals) typically con-
verge more rapidly. At each density-temperature point,
the system first was equilibrated for at least 1500 MD
steps, followed by 4500 steps for data gathering. The
first 500 of those steps were considered to be an addi-
tional equilibration, hence were discarded during calcu-
lation of statistic averages. For ρD = 0.506 g/cm3 at
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FIG. 7: As in Fig. (6) for Deuterium, ρD = 0.506 g/cm3

(rs = 2.2 bohr).

several temperatures, we also did 8500 step simulations
to test pressure convergence. The time step was scaled
with increasing T by a factor proportional to 1/

√
T .

Figures 6 - 10 compare the electronic pressure (that is,
without the ionic ideal gas contribution) from the KS and
OFDFT calculations done in conjunction with the finite-
T KSDT and ground-state PZ XC functionals. Error bars
shown in those figures correspond to the standard devia-
tion for the average electronic pressure. The insets show
the percentage relative difference for the calculated total

pressures (i.e., including the thermal ionic contribution),
namely

∆Ptot/Ptot ≡ (PPZ
tot − PKSDT

tot )/PPZ
tot × 100% . (8)

That quantity measures the XC thermal effects upon the
total pressure in the system.
Note first that the relative difference ∆Ptot is of both

signs, so no simple offset can be used as a correction.
Sjostrom and Daligault [21] found pressure differences of
both signs as well, whereas Ref. [22] did not. We at-
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FIG. 8: As in Fig. (6) for Deuterium, ρD = 1.964 g/cm3
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FIG. 9: As in Fig. (6) for Deuterium, ρD = 4.04819 g/cm3

(rs = 1.10 bohr).

tribute the difference to the limitations of the Fxc func-
tional used in the latter work. ∆Ptot is largest at the
lowest densities, with a range of about 6% for both 0.20
and 0.506 g/cm3. That range decreases to about 3% (still
with both signs) at ρD = 1.9631 g/cm3, then it continues
down to about 2% at ρD = 4.04819 g/cm3 and is 1% at
most for ρD = 10.0 g/cm3. (For reference, the equilib-
rium simple cubic density at T ≈ 0K is about 1 g/cm3.)
Of course, the relative pressure shift is practically negli-
gible at low T because the low-T limit of KSDT was de-
signed to recover the ground-state LDA. (Ref. [14] gives
a comparison of the KSDT and PZ correlation energies
at T = 0 K.)
The overall behavior is clear. T -dependent XC first

raises the pressure, then, as T increases, it lowers the
pressure compared to that generated by a ground state
XC before both go to a common high-T limit. That limit
occurs at much higher T than what is shown in Figs. 6-
10. That limiting behavior occurs even though the two
approximate functionals, KSDT and PZ, have different
high-T limits. But the XC contribution becomes negli-
gible compared to the non-interacting free-energy contri-
bution at high-T , so the effect of those different limits is



8

50 100 150 200 250
T (kK)

70

80

90

100

110

120

130

P
el

 (
M

B
ar

)
KS (PZ)
KS (KSDT)
OFDFT (VT84F+PZ)
OFDFT (VT84F+KSDT)
PIMC

10 100 1000
T (kK)

-1

0

1

∆P
to

t/P
to

t (
%

)

KS
OFDFT

ρ
D

=10.0 g/cm
3ρ

D
=10.0 g/cm

3ρ
D

=10.0 g/cm
3ρ

D
=10.0 g/cm

3ρ
D

=10.0 g/cm
3ρ

D
=10.0 g/cm

3ρ
D

=10.0 g/cm
3ρ

D
=10.0 g/cm

3

FIG. 10: As in Fig. (6) for Deuterium, ρD = 10.0 g/cm3

(rs = 0.81373 bohr).

suppressed. There is some intermediate T at which there
is no shift between the two functionals (see discussion of
Fig. 15 below; also see Ref. 39). The well-defined max-
ima of the total pressure relative differences occur near
T ≈ 40 kK, 60 kK, 100 kK, 125 kK, and 200 kK for
rs = 3, 2.20, 1.40, 1.10, and 0.81373 bohr respectively,
with corresponding values of about 3, 4, 2.5, 2 and 1
%. Note also the nice correlation of the XC thermal ef-
fect upon the pressure with Fig. 1. The maximum effect
occurs approximately along the lower edge of the yellow-
orange band and the maximummagnitude decreases with
decreasing rs.
We note also that the OFDFT finite T results at high

T are in good overall agreement with PIMC simulation
data [5]. The PIMC calculations should describe the T -
dependence of all free-energy terms correctly, including
the electron-electron interaction and therefore, the XC
free energy. Figs. 6 - 10 demonstrate that inclusion of
the T -dependent XC provides overall better agreement
between the KS and PIMC data than does use of ground-
state XC. The exception is points where PIMC clearly ex-
hibits irregular behavior. That occurs at low-T for some
material densities, with the PIMC pressures seeming to
be significant overestimates relative to the KS results for
rs = 3 bohr (see Fig. 6), rs = 2.20 bohr (see Fig. 7),
and rs = 1.40 bohr (see Fig. 8). For rs = 0.81373 bohr
the PIMC pressure is low relative to KS at the lowest
available temperature T = 125 kK.

C. Hugoniot of liquid Hydrogen

Experimentally the EOS at high compressions is ac-
cessible via shock-wave techniques and the Hugoniot re-
lation

E − E0 − 1
2
(P + P0)

(1

ρ
− 1

ρ0

)

= 0 , (9)

where E , P , and ρ are the specific internal energy, pres-
sure, and bulk density of a state derived by shock com-
pression from an initial state at ρ0, E0, and P0.

TABLE I: Pressure (kBar), atomization energy De

(eV/molecule), and corresponding ZPE-corrected E0 (in
kJ/g) obtained from MD simulations for Hydrogen at ρ0 =
0.0855 g/cm3, T = 20 K with different codes/functionals.
“QE” is Quantum Espresso. All cases used PAWs.

Code XC P0 De
a

E0

QE PZ -2.2 -6.7370 -310.0b

QE KSDT -2.3 -6.7264 -309.5b

QE PBE 0.25 -6.7703 -311.3c

VASP PBE 0.21 -6.7756 -311.5c

VASP PBE -314d

aDe = (Enp(H64)− 64Enp(H))/32.
bZPE correction Evib = ωLDA

e /2 = 0.260 eV.
cZPE correction Evib = ωPBE

e /2 = 0.267 eV .
dRef. 12.

The initial state presents some technical challenges for
computation. To enable a meaningful comparison be-
tween energies of states calculated from different codes
(and possibly with different pseudopotentials), E0 and E

usually are calculated as effective atomization energies of
the system. Doing so provides some error cancellation,
especially for approximate treatment of core electronic
states. Additionally, zero-point vibrational energy (ZPE)
corrections are needed. For Hydrogen, the result is that
the initial state specific energy takes the form

E0 =
E(HN ) +NEvib/2−NE(H)

NmH

, (10)

where Evib is the ZPE for the H2 diatomic molecule,
E(HN ) is the energy of theN -atom system corresponding
to the initial conditions at material density ρ0 and tem-
perature T0, E(H) is the energy of an isolated H atom of
masmH . Note that E(H) can be from a spin-polarized or
non-spin-polarized calculation, because eventually these
terms cancel in Eq. (9). Table I shows atomization en-
ergies (De = 2{Enp(HN )−NEnp(H)}/N) from the non-
spin-polarized calculation (Enp), and values of pressure
and energy E0 corresponding to the initial state with
ρ0 = 0.0855 g/cm3 at T0 = 20 K (essentially equilib-
rium bulk H2). In terms of De, the specific energy of
the initial state is given by E0 = (De + Evib)/2mH. The
vibrational correction is from the theoretical ZPE ob-
tained from DFT vibrational frequency calculations for
the H2 molecule with the aug-cc-pVQZ basis set [53], us-
ing the Vosko-Wilk-Nusair LDA [54] and Perdew-Burke-
Ernzerhof (PBE)[55] GGA functionals. We remark that
E0 values in Table I are shifted by Enp(H)/mH with re-
spect both to E(H64)/64mH (see Eq. (10)) and to the
value reported in Ref. [56] and used in Ref. [22]. For
example, for 32 H2 molecules at initial conditions used
here, our QuantumEspresso calculation with PZ XC gives
-31.009 eV/molecule or -15.505 eV/atom. Correcting
by the 0.260 eV/molecule ZPE gives -15.375 eV/atom,
equivalent to E0 = −1472 kJ/g unshifted value.
Figure 11 compares the Hydrogen principal Hugoniot

from the simulations with the KSDT and PZ XC func-
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FIG. 11: Hydrogen principal Hugoniot. Initial density ρ0 =
0.0855 g/cm3.

tionals. Results for the PBE GGA XC (also with T -
dependent density) are shown to provide an alternative
perspective on the effects of changing only the XC ap-
proximation. For T < 30 kK, there is little XC thermal
effect. For example, the maximum compression is 4.41
for KSDT versus 4.43 for PZ at P ≈ 35 GPa. Shifting
from LDA to GGA (both ground-state functionals, PZ
vs. PBE) changes the result only to 4.44 (PBE) but at
notably higher pressure, P ≈ 46 GPa. For T ≥ 30kK
(P ≥ 120 GPa), P and T increase practically at con-
stant compression for all three curves. The T -dependent
XC predicts slightly lower pressures than those from PZ,
in agreement with the results shown in Sec. III B. This
can be seen in the upper panel of Fig. 12, which displays
P (T ) along the Hugoniot. At T = 30 kK the effects on
P of T -dependence in XC versus shifting to gradient cor-
rections in XC are comparable. As T increases, gradient
corrections diminish in importance and the PZ and PBE
curves become closer. In contrast, the effect of explicit
T -dependence continues to increase. The lower panel of
Fig. 12 shows the same comparison for the specific in-

ternal energy (relative to the reference state). At low T ,
the KSDT internal energy is slightly higher than the PZ
result whereas at high T the reverse is true. Overall the
two yield nearly identical values. That helps explain why
the Hugoniot curve, Fig. 11, is insensitive to the use of
KSDT rather than PZ XC. In the region of primary in-
terest, KSDT lowers both quantities on the LHS of Eq.
9, P and E , relative to PZ XC values, such that the solu-
tion, the material density ρ, remains almost unchanged
as compared to PZ XC results. This insensitivity of the
Hugoniot to T -dependence in XC agrees with the find-
ings of Ref. 57, namely that the Hugoniot is determined
mainly by the statistics of nuclear configurations, not by
the electronic T .
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FIG. 12: Pressure (upper panel) and specific internal energy
difference (lower panel) along the Hydrogen Hugoniot as func-
tions of T .

D. Homogeneous and in-homogeneous electron gas

at finite T

Insight into the behaviors discussed in the preceding
sections may be gained by going back to basics, namely
the HEG. The KSDT functional Eq. (1) is itself an
accurate parametrization of RPIMC simulation data for
the finite-T HEG. Closely related to the HEG is static
bulk atomic H, a hypothetical system we have used to
test OFDFT non-interacting free-energy functionals.
The system is an abstraction of the experimental coexis-
tence of hot electrons and cold ions that can occur with
femtosecond laser pulses [3].

For the HEG, consider first its bulk equilibrium
density as a function of T , i.e., that value of rs for which
the HEG free energy per particle is minimum. Figure
13 shows this free energy per particle (f = fs + fxc)
as a function of rs for selected temperatures calculated
with the KSDT functional. The upper panel of Fig. 14
shows the difference for equilibrium rs between KSDT
and PZ. At T = 0 K the equilibrium rs,equilib = 4.19
bohr for both XC functionals (see also Ref. 41). The
value remains almost constant up to T ≈ 1000 K. The
ground-state PZ result starts to deviate from the finite-T
KSDT values at T ≈ 4000 K. The HEG explodes, in
the sense that the rs,equilib increases drastically at about
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FIG. 13: HEG total free-energy per electron as a function of
rs for selected temperatures calculated with the KSDT XC
functional.

Tc ≈ 7200K for the finite-T XC. Use of the ground-state
PZ XC approximation lowers that substantially, to about
6200K. What may be construed as the HEG binding
energy is shown in the lower panel of Fig. 14. The
quantity ∆f shown there is the depth of the minimum
of the total free-energy per particle (see Fig. 13) relative
to the maximum at lower density (higher rs). As Fig. 13
shows, one may also construe ∆f as a barrier height. For
both KSDT and PZ XC, ∆f decreases with increasing T
starting from 1 eV at T=0 K and plunging to essentially
zero at the same critical values of T as before, about
7200 K for KSDT vs. 6200 K for PZ, a 14% shift. Given
the structureless nature of the HEG, these comparisons
drive home the point that the low density regime is
rather sensitive to XC thermal effects.

Effects of reduction in translational invariance to pe-
riodic are illuminated by considering simple cubic bulk
atomic Hydrogen (“sc-H” hereafter). In essence, it is an
inhomogeneous electron gas with the simplest conceiv-
able point charge compensating background. Figure 15
shows the equilibrium rs as a function of T . The behav-
ior is similar to that for the HEG, namely a monotonic
increase of the equilibrium rs with increasing T and sub-
stantially lower values of the equilibrium rs from the T -
dependent KSDT XC than from PZ XC at high-T (20
kK < T < 30 kK). For 5 kK < T < 15 kK the situa-
tion reverses, with KSDT giving slightly larger rs values
than PZ. Thus either the pressures or the equilibrium rs
values from the two XC approximations will coincide at
some intermediate T . Such behavior was observed previ-
ously for bcc-Li (see Fig. 11 in Ref. 39) and is consistent
with the AIMD results discussed above (recall Section
III B). For T > 30kK the sc-H model becomes unsta-
ble. Replacement of the uniform background in the case
of HEG with compensating point charges in sc-H makes
the average equilibrium density at T = 0 K of the sc-H
much higher than for the HEG (rs,equilib = 4.19 bohr for
the HEG vs. 1.70 bohr for sc-H ), hence sc-H is stable to
much higher T (Tc,sc−H ≈ 30 000 K vs. Tc,HEG ≈ 7200
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FIG. 14: Upper panel: value of equilibrium rs corresponding
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HEG as a function of T . Lower panel: HEG barrier height
(binding energy; see Fig. 13 and see text) as function of T .
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K). Compare Figs. 14 and 15.
Finally, we consider the sc-H electronic heat capacity

at constant volume as a function of electronic tempera-
ture T .

Cel
V = (∂Eel/∂T )V . (11)

It obviously is a measure of the T -dependence of the
electronic internal energy Eel, which of course has an XC
contribution Exc. That T -dependence is qualitatively
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V .

different for the zero-T and finite-T XC functionals
(see Refs. 14, 39). Cel

V therefore provides a different
direct measure of XC thermal effects from that pro-
vided by quantities considered thus far. Figure 16
compares Cel

V obtained from the KSDT and PZ XC
functionals for sc-H. These were done with OFDFT
using the VT84F non-interacting free-energy func-
tional [36]. The maximum magnitude of the difference

∆Cel
V = Cel,PZ

V − Cel,KSDT
V for ρH = 0.60 g/cm3 is 0.4

hartree/MK at T ≈ 30 kK. That corresponds to about
a 40% relative difference. In the zero-T and high-T
limits the difference between the KSDT and PZ XC
results vanishes as expected. Notice how those limits
lead to broad consistency of behavior with respect to
other quantities discussed above. XC thermal effects
relative to a ground-state functional are quite variable
in magnitude. For Cel

V the difference is manifested
both as a maximum and as two other extrema of lesser
magnitude.

IV. CONCLUDING REMARKS

The increase in resistivity of Al at 0.1 g/cm3 found
in Ref. 18 upon going from the VWN ground-state XC
functional [54] to the Perrot-Dharma-wardana (PDW) T -
dependent functional [25] is qualitatively consistent with
our finding of the lowered DC conductivity of low-density
Al. Quantitatively, however, the results are quite differ-
ent. In particular, the low-T behavior of the resistivity
calculated from the PDW functional is drastically differ-
ent from our KSDT result, their VWN result, and Perrot
and Dharma-wardana’s earlier calculation [58]. We sus-
pect methodological differences but can not say more.
Ref. 59 included an analysis suggesting that intrin-

sic T -dependence in Fxc did not necessarily mean there

would be a corresponding impact on the T -dependence
of the Kubo-Greenwood optical conductivity. The nub
of that argument was that the conductivity depends on
the KS eigenvalues and orbitals, which are determined
by the KS potential (for which the XC contribution is
vxc = δFxc/δn). Sums of matrix elements over such KS
quantities do not necessarily have a strong sensitivity to
T -dependence of Fxc.

Such arguments tend to overlook state conditions.
Here, we have given an example of a system for which
σDC has a stronger sensitivity (in the sense of percent-
age shift) to XC thermal effects in a pertinent range of
thermodynamic conditions than does the EOS of a dif-
ferent system over a different but also pertinent range of
thermodynamic conditions. This shows that both system
definition and state conditions are essential for proper as-
sessment of the GSA.

For the DC conductivity of low-density Al, XC ther-
mal effects incoporated in the KSDT functional increase
inter-band separations relative to GSA above the Fermi
level, hence decrease the Fermi-Dirac occupations rel-
ative to GSA. That lowers the calculated conductivity
(see Eq. (6)), and thereby yields better agreement with
the experimental data. We remark that the ground-
state functionals underestimate band gaps, while hybrid
functionals (which incorporate a fraction of exact single-
determinant exchange, thus take into account a part of
exchange thermal effects) enlarge such intervals. There-
fore one expects that a hybrid functional would lower
the conductivity. Notice that in the case of thermal
Hartree-Fock, thermal occupation at temperatures of 1
or 2 eV reduces the spuriously large inter-band separa-
tions of ground-state HF states [39]. That, in turn, would
drive the opposite trend, increasing the conductivity. In-
terestingly, the overall XC thermal effect upon the DC
conductivity of low density Al is to reduce the range of
the T -variation at fixed bulk density. In contrast, at
higher material density the Al DC conductivity is essen-
tially insensitive to the XC T -dependence.

The Deuterium EOS calculations show that XC ther-
mal effects must be taken into account in thermodynamic
conditions corresponding approximately to the reduced
temperature t ≈ 0.5. However, because the principal
Hugoniot characterizes the difference of two states sep-
arated by a shock, there is a cancellation that is famil-
iar in other uses of KS-DFT (e.g., atomization energies)
which substantially suppresses the XC thermal effects.
As noted above, this cancellation is consistent with the
findings of Tubman et al. [57] and with Danel et al. [22].
We suspect therefore that the XC thermal effects on the
Al Hugoniot found in Ref. 17 and on the Be Hugoniot in
Ref. 19 are consequences of the techniques they used. In
the former work T -dependence was introduced by adding
jellium shifts to the energy and pressure at rs corre-
sponding to the density at hand. The second used an
average atom. Nevertheless the XC thermal effects on
the pressure P (T ) (recall upper panel of Fig. 12) are
not negligible. Rather the pressure effect is about the
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same magnitude as the shift from gradient-independent
to gradient-dependent XC. This also is consistent with
what is reported by Danel et al. [22]. More accurate
predictions (for all properties affected by the XC ther-
mal effects) will require both explicit T -dependence and
gradient contributions in the XC functional, at least.
Even at the LDA level of refinement, however, it is

clear that the GSA (use of a ground-state XC functional
as an approximate free-energy XC functional) is not an
unequivocally valid prescription [13]. That assessment is
consistent with earlier demonstrations of the non-trivial
T -dependence of the XC free-energy [14, 39, 60]. It also
confirms what one knows in principle, namely that con-
sistent study of WDM requires an approximateFxc which
has a proper high-T limit, a correct small-rs limit, a
correct small-Γ (the dimensionless Coulomb coupling pa-
rameter) limit, and delivers a properly positive entropy.
The KSDT functional is built with the first three included
explicitly and is found to satisfy the last a posteriori in
every case considered.
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