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We present an approximation for calculating the equation of state (EOS) of warm and hot dense
matter that is built on the previously published Pseudoatom Molecular Dynamics (PAMD) model
of dense plasmas [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. While the EOS calculation with
PAMD was previously limited to orbital-free density functional theory (DFT), the new approxima-
tion presented here allows a Kohn-Sham DFT treatment of the electrons. The resulting EOS thus
includes a quantum mechanical treatment of the electrons with a self-consistent model of the ionic
structure, while remaining tractable at high temperatures. The method is validated by comparisons
with pressures from ab initio simulations of Be, Al, Si and Fe. The EOS in the Thomas-Fermi
approximation shows remarkable thermodynamic consistency over a wide range of temperature for
aluminum. We calculate the principal Hugoniots of aluminum and silicon up to 500 eV. We find
that the ionic structure of the plasma has a modest effect that peaks at temperatures of a few eV
and that the features arising from the electronic structure agree well with ab initio simulations.

PACS numbers: 52.25.Kn, 52.27.Gr, 52.65.Yy

I. INTRODUCTION

In the interiors of giant planets, the envelopes of white
dwarf stars and in inertial confinement fusion experi-
ments, material conditions referred to as warm and hot
dense matter are encountered [1–3]. Such conditions are
characterized by electron-electron, ion-electron and ion-
ion correlations of comparable importance. Atoms in
these plasmas are partially ionized and the ionic fluid can
range from strongly to weakly coupled. A self-consistent
treatment of all these physical effects is therefore chal-
lenging.

For relatively low temperatures the method of choice
for simulating warm dense matter is Kohn-Sham (KS)
density functional theory molecular dynamics (DFT-
MD)1 [4]. While this method is thought to be accurate
for equation of state (EOS) calculations, it quickly be-
comes prohibitively expensive with increasing tempera-
tures [5]. The computational cost of Orbital-Free DFT-
MD [6] 2 has a more manageable temperature scaling at
the cost of physical accuracy, but it remains expensive.
A modified version of the high-temperature method of
Path Integral Monte Carlo (PIMC) has enabled its ap-
plication to elements beyond helium [7]; currently up to
silicon [8].

Recently [9] we have developed a new method for mod-
eling the properties of warm and hot dense matter that
we call pseudoatom molecular dynamics (PAMD). This
can be characterized as an approximate version of Kohn-
Sham or orbital free molecular dynamics (both versions
of PAMD have been developed) that combines an aver-

∗Electronic address: starrett@lanl.gov
1 Here we refer to KS-DFT-MD as quantum molecular dynamics
(QMD).

2 We refer to OF-DFT-MD simply as OFMD.

age atom model of the electronic structure with molec-
ular dynamics for the ionic structure. In the Thomas-
Fermi orbital free version, the equation of state and the
self-diffusion coefficient are of an accuracy comparable
to the corresponding OFMD simulations [9]. In this pa-
per we describe the formulation of the thermodynamics
of PAMD. We evaluate the thermodynamic consistency
of the PAMD-TF method and show that it is remark-
ably consistent for a wide range of temperatures for an
aluminum plasma. We then develop and validate an ap-
proximation for equation of state calculations with the
Kohn-Sham version of PAMD, finding good to excellent
agreement with QMD and Path Integral Monte Carlo
(PIMC) simulations. We compare the pressures from
PAMD (both Kohn-Sham and Orbital Free) to corre-
sponding average atom models, showing the influence of
a self-consistent treatment of ionic structure. We also
directly compare pressures from Kohn-Sham and orbital
free PAMD. Finally we use PAMD to calculate the prin-
cipal Hugoniots of aluminum up to 500 eV, and of silicon
up to 1 keV, far beyond the temperature range accessi-
ble to QMD simulations. Unless otherwise stated we use
Hartree atomic units in which h̄ = me = e = 1, where
the symbols have their usual meaning.

II. THERMODYNAMICS WITH PSEUDOATOM

MOLECULAR DYNAMICS

A. Summary of the Pseudoatom Molecular

Dynamics model

Central to PAMD is the superposition approximation
for the total electron density. We assume that the plasma
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is an ensemble of identical pseudoatoms3 that are con-
structed numerically by solving an average atom model
[11, 12]. On the basis of the superposition approxima-
tion, one can show that by using the pseudoatom electron
density as a closure relation for the quantum Ornstein-
Zernike equations, an effective ionic pair interaction po-
tential can be uniquely determined [11]. This potential
can be used in the Ornstein-Zernike equation to solve for
the static ionic structure. Alternatively the same poten-
tial can be used in classical molecular dynamics simula-
tions [9] which allows the calculation of dynamical ion
properties (also see [13, 14]) as well as the equation of
state of the plasma.
The physical motivation for expecting the plasma elec-

tron density to be reasonably represented by an ensemble
of identical pseudoatoms is based on to two observations.
The first is that for deeply bound electrons the separa-
tion into pseudoatoms is clearly accurate. For continuum
electrons, the separation is exact in the linear response
regime [12]. The combination of these observations sug-
gests that the pseudoatom approximation is reasonable,
and becomes exact where continuum electrons respond
linearly to the ionic potential. This is borne out by ex-
tensive validation of the model (see below).
Each pseudoatom has a nuclear charge Z and electron

density nPA

e (r), where
∫

d3r nPA

e (r) = Z. (1)

The electron density of the (infinite) plasma is then

ne(r) =
∞
∑

i=1

nPA

e (|Ri − r|) (2)

where {Ri} is the set of position vectors of the nuclei. For
all the calculations in this paper we use nPA

e (r) as gen-
erated by the ion-sphere average atom model presented
in [12]. The average atom model is based on density
functional theory. Both orbital free (here we use the
Thomas-Fermi (PAMD-TF) approximation) and Kohn-
Sham (PAMD-KS) treatments of the electrons have been
developed. The nuclear positions {Ri} are generated
with classical molecular dynamics [9]. The pseudoatom
pair interaction potential V (r) that is input to the
molecular dynamics simulations is generated from nPA

e (r).
Once the contribution of the valence electrons to nPA

e (r)
has been defined as nscr

e (k) [12], the potential V (r) is
given by (in Fourier space)

V (k) =
4π

k2
Z̄2 +

(nscr
e (k))

2

χe(k)
, (3)

where Z̄ =
∫

d3r nscr
e (r) is the ion charge and χe(k) is

the response function of the electrons (see equation (17)

3 For plasma mixtures there are different pseudoatoms for each
species [10].

of [12]). The potential V (r) has no assumed functional
form or adjustable parameters and is easily calculated
once nPA

e (r) is determined.

The PAMD model contains unconstrained approxima-
tions whose limit of validity in terms of the physical pa-
rameters of the system is a priori unknown. To establish
the range of applicability of the model, we have carried
out a large amount of validation in the warm and hot
dense matter regimes, primarily by comparison with ab
initio simulations. In the interest of brevity, we simply
list these comparisons below, noting that in every case
the agreement is very good to excellent unless otherwise
indicated. In reference [11], where the pseudoatom model
was first introduced, ion-ion pair distribution functions
were presented for hydrogen, aluminum, and iron, and for
the high-Z element tungsten in [12]. In reference [10] the
model was extended to mixtures, with a study of the ion-
ion pair distribution functions of carbon/hydrogen mix-
tures in both the Thomas-Fermi and Kohn-Sham models
of the electrons. In the latter case, we found poor agree-
ment with simulations at temperatures below a few eV
and solid density where C-C bonds appear in the simula-
tions, a phenomenon that is not captured by the PAMD
model. In [15] the X-ray elastic scattering feature, which
is closely related to the ion structure factor, is compared
to an accurate experimental measurement of warm dense
aluminum [16]. The introduction of molecular dynam-
ics for the ions in PAMD allowed the calculation of the
equation of state, ionic diffusion coefficients and viscos-
ity with PAMD, with applications to aluminum and a
iron/helium mixture (EOS), and hydrogen, deuterium,
boron, aluminum, iron, copper (self-diffusion) [9, 13].

This extensive validation has shown that PAMD be-
comes inaccurate in the solid or liquid regimes (i.e. nor-
mal densities and temperatures below 1 eV), but is accu-
rate at these densities and higher, at temperatures such
that the ion fluid is not too strongly coupled ( i.e. ef-
fective ion-ion coupling parameter [17] Γeff

<∼ 55). On
the basis of the physical underpinning of the model, the
inability of the pseudoatom model to model bonds is ob-
vious, while the breakdown at very low temperatures
is likely due to the inaccurate treatment of long range
Friedel oscillations that occur when free electrons are
strongly degenerate (see below). The method has not
been developed to model lower density plasmas, since
in the current implementation the ion-ion interaction is
mediated by the ionized electrons, and at low densities
and temperatures the ionization fraction can become very
small, leading to an unreliable ion-ion potential. The
present contribution extends the model’s capability to
the calculation of the EOS with the Kohn-Sham model
of the electrons.
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B. Thermodynamics in the superposition

approximation

The electrostatic energy of a plasma can be written

Eel = Eii + Eie + Eee (4)

where

Eii =
1

2

∞
∑

i=1

∞
∑

j=1

j 6=i

Z2

|Ri −Rj |
(5)

Eie = −
∞
∑

j=1

∫

d3r
Zne(r)

|Rj − r| (6)

Eee =
1

2

∫

d3r

∫

d3r′
ne(r)ne(r

′)

|r′ − r| (7)

Using the superposition approximation (Eq. (2)), equa-
tions (5) to (7) can be written for a subset of N pseu-
doatoms in a periodically repeating cell

Eii =
1

2

N
∑

i=1

∞
∑

j=1

j 6=i

Z2

|Ri −Rj |
(8)

Eie = −
N
∑

i=1

∞
∑

j=1

∫

d3r
ZnPA

e (|Rj − r|)
|Ri − r| (9)

Eee =
1

2

N
∑

i=1

∞
∑

j=1

∫

d3r

∫

d3r′
nPA

e (|Ri − r|)nPA

e (|Rj − r
′|)

|r′ − r|
(10)

On combining equations (8) to (10) the electrostatic en-
ergy separates into a term that does not explicitly depend
on the ionic structure (the non-structural term ENS) and
a term that does (the structural term ES)

Eel = ENS + ES (11)

where

ENS =
N

2

∫

d3r nPA

e (r)

[−Z

r
+ V PA(r)

]

(12)

and

ES =
1

2

N
∑

i=1

∞
∑

j=1

j 6=i

{−ZV PA(|Ri −Rj |)

+F−1
[

ñPA

e (k)Ṽ PA(k)
]

(|Ri −Rj |)
}

(13)

where

V PA(r) ≡ −Z

r
+

∫

d3r′
nPA

e (r′)

|r′ − r| , (14)

the tilde indicates a Fourier transformed function and
F−1 is the inverse Fourier transform operator. This form
of Eel (equations 11–13) is suitable for evaluation with
molecular dynamics.
The structural term (Eq. (13)) can be further simpli-

fied as follows. The Fourier transform of the microscopic
density ρk is defined as [18]

ρk =

N
∑

i=1

e−ık·Ri (15)

and its relation to the ionic structure factor [18] is

Sii(k) =
1

N
〈ρkρ−k〉 (16)

where the angular brackets indicate that the configura-
tional average has been taken. Using Eqs. (15) and (16),
ES can be written in terms of the ionic structure factor.
Since [18]

Sii(k) = 1 + n0
I
(2π)3δ(k) + n0

I
hii(k), (17)

where n0
I
is the particle density of the nuclei, hii(k) the

pair correlation function, and δ(k) the δ-function, the
configurational average of the structural contribution be-
comes

〈

ES
〉

=
N

2

(

−ZV ext
Ne (r = 0) +

∫

d3r nPA

e (r)V ext
Ne (r)

)

(18)
where

V ext
Ne (r) ≡ n0

I

∫

d3r′ gii(|r′ − r|)V PA(r′) (19)

Therefore, with knowledge of the pseudoatom electron
density nPA

e (r) and the ionic structure factor (or equiva-
lently the pair distribution function gii(r) = hii(r) + 1),
the electrostatic free energy

F el = ENS +
〈

ES
〉

(20)

can be calculated without further approximation. If gii(r)
is determined using the Ornstein-Zernike equations as in
reference [12], then Eqs. (12) and (18) are used. For
MD simulations we use equation (13) for the structural
term, averaged over a number of ionic configurations to
get

〈

ES
〉

.
In the Thomas-Fermi (TF) approximation the kinetic

energy of the electrons in a plasma of volume V contain-
ing N nuclei can be written

KTF

e =
1

β

∫

V

d3r cTFI3/2 [η(r))] (21)

and the free energy is given by

FTF =
1

β

∫

V

d3r

(

ne(r)η(r)−
2

3
cTFI3/2 [η(r))]

)

(22)
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where β = 1/T is the inverse temperature, Ij is the Fermi
integral of order j (see [11]) and

cTF ≡
√
2

π2β3/2
. (23)

The electron density in this approximation is

ne(r) = cTF I1/2 [η(r))] (24)

Given the electron density in the superposition approx-
imation (Eq. (2)), the function η(r) is obtained by in-
verting equation (24) which can then be substituted into
equations (21) and (22). An important point to real-
ize here is that the electron density ne(r) in equation
(2) cannot be obtained from nPA

e (r) and gii(r) without
further approximation and therefore cannot be directly
calculated from the model presented in [11, 12]. In turn,
while F el can be calculated from nPA

e (r) and gii(r), F
TF

and the exchange-correlation free energy F xc
ee (see below),

cannot. One must have access to the set of ionic posi-
tions {Ri} to allow construction of the electron density
ne(r) via Eq. (2). Fortunately {Ri} can be generated
using classical MD. This makes it possible to calculate
the other components of the total free energy for a given
MD snapshot. The configurational average can then be
generated in the usual way by averaging MD snapshots
under the ergodic hypothesis [19].

The free energy of the electron exchange and corre-
lation energy is handled in a similar way. In the local
density approximation (LDA),

F xc
ee =

∫

V

d3r fxc
ee [ne(r)] , (25)

which can be calculated directly from nPA

e (r) and {Ri}.
The total the free energy is given by

F = FTF + F I + F el + F xc
ee . (26)

where F I is the free energy of an ideal gas of ions. The
internal energy per atom is

U =
1

N
(KTF

e +KI + F el + Uxc) (27)

where Uxc is the contribution to the internal energy from
exchange and correlations

Uxc = F xc
ee − T

∂F xc
ee

∂T
(28)

and KI is the ion kinetic energy

KI =
3

2
N T. (29)
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FIG. 1: Percent difference in the virial and thermodynamic
pressures (see text) for aluminum. A positive difference indi-
cates that P th > P vir. This is a stringent test of the accu-
racy of the superposition approximation (equation 2). In the
limit of perfect physical and numerical accuracy the difference
would be zero.

C. Calculation of the pressure

To calculate the pressure we use the Virial theorem,
which can be derived [20–22] by assuming that the super-
position approximation Eq. (2) is exact. The expression
to evaluate is

P vir V =
2

3
KTF

e +
2

3
KI +

1

3
F el + Cxc (30)

and Cxc is the contribution from exchange and correla-
tion,

Cxc = −F xc
ee +

∫

V

d3r ne(r)
δF xc

ee

δne(r)
. (31)

An alternative route to calculate the pressure (which
we call the thermodynamic pressure P th) is to take a
numerical derivative of the free energy F with respect to
the volume V

P th = − ∂F

∂V

∣

∣

∣

∣

T

. (32)

P vir and P th are identical if the calculated ne(r) min-
imizes the free energy [23, 24]. In PAMD ne(r) is given
by the superposition approximation, not by the mini-
mization of the free energy. A comparison of the two
pressures offers a internal check of the accuracy of this
approximation. In figure 1 we compare P vir and P th

for aluminum as a function of temperature. The virial
pressure P vir (equation (30)) converges quickly with re-
spect to number of particles and time steps. For P th we
found it necessary to use rather large MD simulations
(40 000 particles) to perform accurate numerical differ-
entiation of the free energy. For the higher temperatures
it was also necessary to extend the length of the simu-
lations to 20 000 time steps. Even so, some numerical
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FIG. 2: Pressures from PAMD-KS compared to QMD [26] for
beryllium. Also shown are pressures from an average atom
model (AA-KS). PAMD-KS agrees significantly better with
the QMD calculations.

T [eV] ρ [g/cm3] QMD PAMD-KS TFMD PAMD-TF

5 18.71 16.1 15.60 25.64

10 22.5 32.4 36.72 51.3 48.25

100 34.5 663.6 683.3 672.8

1000 39.65 14568 14765 14818

TABLE I: A comparison of total pressure (Mbar) for iron
between PAMD and corresponding DFT-MD simulations [27,
28] for a range of temperatures (T ) and densities (ρ).

noise persists in P th at the 1% level. For the higher tem-
peratures shown the relative difference in the pressures
is 2 − 3%. This represents a very stringent test on the
numerics of the implementation. For lower temperatures
we see larger differences, approaching ∼ 15% at 2 eV
and 2.7 g cm−3. This indicates that the superposition
approximation becomes poorer at these lower tempera-
tures and density, though still quite reasonable. This
deviation from thermodynamic consistency is similar to
the trend caused by the variational inconsistency of two
Kohn-Sham AA models (INFERNO [25], and a neutral
Wigner-Seitz (NWS) sphere atom-in-jellium model), as
discussed in ref. [22]. In the latter two models, the incon-
sistency is attributed to the handling of the long-range
Friedel oscillations that occur in the electron density at
low temperatures. The error in thermodynamic consis-
tency of the PAMD model (figure 1) likely arises from
the linear superposition of the Friedel oscillations being
a poor approximation to the actual effect 4. In summary,
the superposition approximation is accurate over a wide
range of temperatures, which validates this core assump-

4 For an example of Friedel oscillations in the pseudoatom electron
density see figure 1 of reference [9].
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FIG. 3: Pressures from PAMD-KS compared to QMD [27] for
aluminum. Also shown are pressures from an average atom
model (AA-KS). Both PAMD-KS and AA-KS agree well with
the QMD calculations.
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FIG. 4: Isochores of the total pressure for silicon from PAMD-
KS compared to the QMD/PIMC results of Militzer and
Driver [8]. The isochores shown are in multiples of the nor-
mal solid density of ρ0 = 2.33 g/cm3, from ρ0 (bottom) to
6ρ0 (top). The differences remain below 9% everywhere and
a generally below 5%.

tion of the PAMD model.

D. Numerical evaluation of the free energy

Given the set of ion positions {Ri} from MD, the elec-
trostatic energy Eel is evaluated directly using equations
(11–13). In general the magnitude of the non-structural
term (equation (12)) dominates that of the structural
term. However both terms must be accurately evaluated
for pressure calculations.
To numerically evaluate the volume integrals for the

kinetic and exchange and correlation energies (equations
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(21) and (25)) one could discretize the simulation volume
with a non-uniform grid that allows an accurate integra-
tion for a given set of {Ri}. However, the divergence of
the TF electron density as r−3/2 near each nuclear site5

presents a numerical difficulty. This can be circumvented
with a computational trick. Using the kinetic free energy
(Eq. 21) as an example, we define a pseudoatom kinetic
energy density kTF,PA

e (r):

kTF,PA

e (r) ≡ kTF,full
e (r) − kTF,ext

e (r) (33)

where

kTF,full
e (r) ≡ 1

β
cTFI3/2

[

β(µid
e − V eff

Ne (r))
]

(34)

and

kTF,ext
e (r) ≡ 1

β
cTFI3/2

[

β(µid
e − V eff,ext

e (r))
]

(35)

The terms in these equations are defined in equations (4)
and (7) of Ref. [12]. This definition of kTF,PA

e is the ana-
logue of the definition of the pseudoatom electron density
nPA

e (r) (equation (8) of ref. [12]). We then construct the
kinetic energy density in the superposition approxima-
tion (in analogy with Eq. (2))

kTF,super
e (r) =

∞
∑

i=1

kTF,PA

e (|Ri − r|) (36)

Numerically we then calculate the kinetic energy (Eq.
(21)) in the form

KTF

e = KTF,S

e +N KTF,PA

e (37)

where

KTF,S

e =

∫

V

d3r

(

1

β
cTFI3/2 [η(r))]− kTF,super

e (r)

)

(38)

and

KTF,PA

e ≡
∫

d3r kTF,PA

e (r). (39)

Equations (37) to (39) give an exact representation of
KTF

e . The integral in equation (39) can be rapidly evalu-
ated on a non-uniform grid and only needs to be carried
out once for a given equation of state point. The inte-
grand in Eq. (38) is slowly varying as the singularities
have been removed; it can be evaluated efficiently on a
uniformly spaced grid. KTF,S

e is generally small in mag-
nitude relative to the N KTF,PA

e term, but nevertheless
cannot be ignored for pressure calculations. The other
volume integrals can be evaluated in the same way. We
note here that the same trick could be used in OFMD
simulations, obviating the need for a pseudo-potential
and allowing all-electron simulations.

5 In Cartesian coordinates, the integrand for the kinetic energy
integral diverges as r

−5/2 near nuclear sites.

E. An approximation for thermodynamics with the

Kohn-Sham functional

As explained in [9], equations (30) and (27) can also be
used in Kohn-Sham (KS) calculations if KTF

e is replaced
by the KS quantity KKS

e . However, to evaluate KKS

e one
needs not the electron density (as in the Thomas-Fermi
case) but rather the multi-center electronic wavefunc-
tions which are not provided by PAMD. Nevertheless,
we can develop an approximate method based on the
discussion of the previous section.
In analogy with equation (33) we define a KS pseudo-

atom kinetic energy density

kKS,PA

e (r) ≡ kKS,full
e (r)− kKS,ext

e (r) (40)

where

kKS,full
e (r) ≡

∫ ∞

−∞

dǫ gǫ ǫ χ
full(ǫ, r)− nfull

e (r)V eff
Ne (r) (41)

and

χfull(ǫ, r) ≡
∞
∑

l=0

2(2l + 1)

4π

∣

∣

∣

∣

yǫ,l(r)

r

∣

∣

∣

∣

2

(42)

and similarly for kKS,ext
e (r). An explanation of the terms

in these equations is provided in appendix A of reference
[12]. Defining

kKS,super
e (r) =

∞
∑

i=1

kKS,PA

e (|Ri − r|) (43)

we can then approximate KKS

e as

KKS

e ≈ KTF,S

e +N KKS,PA

e (44)

where

KKS,PA

e =

∫

V

d3r kKS,PA

e (r) (45)

Whereas in the TF case equation (44) is just a numerical
trick (see equation (37)), here it is actually a physical
approximation: In the regions where kKS,super

e (r) is sig-
nificantly different from the full orbital-based value, the
electron kinetic energy density is approximated by the
TF model. This is reasonable since for electrons moving
in a constant potential the KS and TF treatments are
identical, and the physical regions where such a differ-
ences exists are the interstitial regions (i.e. not near the
nuclei), where the potential is relatively weak and slowly
varying.
In figures 2–3 we compare PAMD results for pressure

using this approximation for the Kohn-Sham functional
(PAMD-KS) to QMD results [26]. We also plot the pres-
sure from KS-based AA atom calculations (see the ap-
pendix). For beryllium PAMD-KS (figure 2) improves
the agreement with the QMD data relative to the AA
model, though differences up to ∼ 10% remain at high
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FIG. 5: Principal Hugoniot of aluminum from the PAMD-
KS model for different choices of the initial internal energy
U0 (indicated in parentheses) in Hartree. The curve labeled
“AA” uses the initial internal energy calculated using the KS
average atom model. The experimental data are from refs.
[29–31]. The Hugoniot is shown as a function of the compres-
sion ratio ρ/ρ0 where ρ0 = 2.7 g/cm3 is the initial density.
All PAMD curves cover a temperature range of 1 to 500 eV.
The structure seen at high compression ratios is caused by
the electronic shell structure of the bound states of Al.

temperatures and densities. For aluminum (figure 3)
both AA and PAMD give similar pressures, and both
agree quite well with the QMD results.
By combining QMD simulations at low temperatures

and PIMC simulations at high temperatures, it has re-
cently been possible to generate a wide-ranging ab initio
EOS table for silicon [8] that covers temperatures from
4.3 eV to 11.2 keV. A comparison of pressure isochores
with our PAMD-KS calculation is shown in Figure 4.
The agreement is excellent over the full temperature and
density range shown. The differences in pressure gener-
ally remain below 5% and at worst reach 9%.
In table I we compare QMD, OFMD in the TF approx-

imation (TFMD) to PAMD-KS and PAMD-TF results
for iron. For the higher temperatures PAMD-TF and
PAMD-KS give similar results for the pressure. For the
lower temperatures the QMD and TFMD results differ
significantly. PAMD-KS tracks the QMD result nicely,
while PAMD-TF agrees well with the TFMD calcula-
tion. This demonstrates that our approximation to the
KS kinetic energy (equation (44)) does not mask the KS
character of the calculation.

F. Hugoniot calculations

In this section we use the PAMD model to assess the
impact of a self-consistent treatment of ionic correlations
on calculated shock compression curves. Given an equa-
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FIG. 6: Principal Hugoniot of aluminum from several models.
The experimental data are from refs. [29–31]. The range
of temperatures for the calculated Hugoniots is 1–500 eV.
The QMD Hugoniot is from [32]. The top panel shows the
full range of compression ration ρ/ρ0, while the lower panel
focuses on the smaller compression region only. Results from
the VAAQP [22] model are also shown. The initial density is
ρ0 = 2.7 g/cm3.

tion of state, the Hugoniot is the solution to the Rankine-
Hugoniot jump condition across the shock front

U − U0 +
1

2
(V − V0)(P − P0) = 0 (46)

where P is the pressure (for which we use P vir), V is
the volume per atom and U is the internal energy per
atom. The subscript “0” indicates the initial state (i.e.
pre-shock) value.
In figure 5 we show the Hugoniot for aluminum us-

ing the equation of state from PAMD-KS, for several
values of U0, including that calculated with the AA-KS
model. We take the initial temperature and density to be
T0 = 0.025 eV and ρ0 = 2.7 g/cm3. In principle, we could
solve the PAMD-KS model under these conditions to ob-
tain the initial energy, however, we were unable to obtain
converged results for these conditions due to the pres-
ence of very long range Friedel oscillations in the pseu-
doatom electron densities. While the Hugoniot curve is
not very sensitive to the initial pressure P0 (since gener-
ally P >> P0) it is sensitive to the initial state internal
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FIG. 7: Percent difference in the total pressure of aluminum
calculated with the PAMD-TF and AA-TF models. The solid
white line is the temperature-density path of the PAMD-TF
Hugoniot. The dashed white line marks Γeff = 30. The refer-
ence density is ρ0 = 2.7 g/cm3.

energy U0 (figure 5). For figure 6, which also shows the
principal Hugoniot of Al, we have chosen the curve that
best fits the experimental data of Knudson et al. [29]
(U0 = −240.27Eh). We also show Hugoniots calculated
with PAMD-TF, AA-TF and AA-KS. For these models
numerical convergence was possible at the initial condi-
tions. At the larger compression ratios (ρ/ρ0), the data
has large error bars and do not discriminate among the
models (top panel of figure 6). At low compressions, the
Hugoniots from the Thomas-Fermi based models are sig-
nificantly softer than the data. The PAMD-KS curve
also agrees with the QMD calculations of [32], better
than the average atom calculation (AA-KS). However,
this agreement is partly due to the fact that we have
chosen U0 for PAMD-KS to agree with the experimental
data, which is reproduced very well by the QMD data.
At high compression the structure in the Hugoniot curve
(figures 5 and 6) due to quantum shell effects is preserved
in PAMD-KS [22, 33, 34]. As an additional comparison
we also show the VAAQP Hugoniot curve from ref. [22].
VAAQP is a variationally consistent Kohn-Sham average
atom model. At the higher compressions it agrees very
well with PAMD-KS (top panel), while at lower compres-
sions it is somewhat softer than the data and closer to
AA-KS. However, this may in part be due to the U0 value
which was calculated using VAAQP, despite those condi-
tions being beyond the regime of validity of that model
[22].

Comparison of AA to PAMD results allow us to isolate
the effects of a realistic treatment of ionic structure on
the principal Hugoniot. Comparing PAMD-TF to AA-
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FIG. 8: Percent difference in total pressure of aluminum cal-
culated with the PAMD-KS and AA-KS models. The solid
white line is the temperature-density path of the PAMD-KS
Hugoniot. The dashed white line marks Γeff = 30. The ref-
erence density is ρ0 = 2.7 g/cm3 is the density of solid Al at
room temperature.
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FIG. 9: Percent difference in total pressure of aluminum be-
tween the PAMD-TF and PAMD-KS. Here ρ0 = 2.7 g/cm3 is
the density of solid Al at room temperature.

TF (figure 6) we see a modest effect on the Hugoniot that
remains below 10% for ρ/ρ0 ∼> 3. In figure 7 we show a
contour plot of the percentage difference in pressure pre-
dicted by the AA-TF and PAMD-TF models as a func-
tion of temperature and density. The largest differences
along the Hugoniot path (solid white line) are ∼15%. In
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FIG. 10: Principal Hugoniot of silicon from PAMD-KS com-
pared to the DFT-MD/PIMC results of Militzer and Driver
[8]. The initial density is ρ0 = 2.33 g/cm3. Ionization of
first the 2s22p6 and second the 1s2 electronic shells cause the
structure seen at compressions ρ/ρ0 > 4.5.

general the average atom model provides a remarkably
good estimate of the pressure except at low temperature
and density where the difference grows to ∼ 25%. We
find that the maximum difference between the models
occurs when the effective one component plasma ion-ion
coupling parameter is Γeff ≈ 30 [17]. The comparison be-
tween the AA and PAMD pressures along the Hugoniot
for the KS calculation is quite similar (figure 8). The dif-
ference in pressure peaks at ∼ 15% at low temperature
and decreases steadily as the temperature rises along the
Hugoniot. The Γeff = 30 curve still approximates the
ridge formed by the largest pressure differences.

The relative differences between the AA and PAMD
pressures in figures 7 and 8 can be explained by two
competing effects. The total pressure is the sum of four
contributions (equation (30)), two of which (the electron
kinetic (2/3V )Ke and the electrostatic (1/3V )F el) are
large and of opposite sign. While they mostly cancel each
other they dominate the trends seen in the figures. On
the one hand, while the ionization fraction is by construc-
tion the same in PAMD and AA (but different in TF or
KS) the spatial distribution of the free (screening) elec-
trons is different. In the AA models the screening takes
place entirely inside the ion sphere radius, while this is
not a constraint in PAMD. In general this leads to more
screening electrons being further from the nucleus in the
PAMD model, resulting in a larger electron kinetic pres-
sure, which is positive. On the other hand, strong ionic
correlations (as measured by the height of the first peak
of gii(r)) correspond to a larger negative contribution to
the pressure. At high temperatures the screening elec-
trons become essentially free, which is well modeled by
the average atom model, and their kinetic contribution
dominates the total pressure. The net result is that at

high temperature the PAMD and AA pressures are simi-
lar, at intermediate ion coupling (∼ 10 eV in the figures)
the PAMD pressure is larger than that of AA, and at
the lowest temperatures the negative effect of increased
ion correlations partially cancels the positive effect from
the increased electron density further from the nuclei. At
conditions corresponding to the bottom left of figures 7
and 8, the PAMD-KS gii(r) is more strongly peaked than
that of PAMD-TF, leading to a stronger negative effect.
At the top left of the figures, the situation is reversed,
with gii(r) from PAMD-TF being more strongly peaked
than that of PAMD-KS. This switch is due to the larger
ionization in the TF models relative to the KS models.
The ionization fraction in the KS models is relatively sta-
ble due the quantum shell effect, and remains close to 3
as we transition from the bottom left to top left of fig-
ure 8. In the TF models the ionizion fraction steadily
increases from approximately 3 to 6 over the same range,
leading to increased ion-ion coupling.

Figure 9 addresses the question of the accuracy of a
TF EOS model compared to a KS calculation. The most
striking feature is a ridge that runs almost vertically at
T ∼ 20-30 eV where the PAMD-TF pressure can be as
much as 15% higher than the PAMD-KS pressure. This
is caused by the electronic shell structure in the PAMD-
KS model, and is located where first the 2p and then the
2s electrons are ionizing. We find that above ∼ 10 eV,
the differences in pressure are caused by the differences in
the electronic structure model as embodied in the TF and
KS AA models. At lower temperatures new structures
appear in figure 9 that generally reflect the strength of
the ion coupling in the plasma, as discussed above.

For Al, ionization of the 1s2 electrons occurs at T ∼>
300 eV. It does not result in a large effect on the pres-
sure but the Hugoniot shows a second turn to higher
compressibility that is smaller than the one due to the
2s2 2p6 ionization (figure 5). This smaller effect is due to
the large contribution from kinetic degrees of freedom at
this high temperature, as well as the fact that the frac-
tional change in the number of particles per nucleus and
of the ion charge is much smaller than for the L shell
ionization. We expect that the equation of state of tran-
sition metals such as Fe will show a significant feature
associated with the ionization of 3d electrons, in addi-
tion to the 2s22p6 feature seen in Al [34].

Since silicon is next to aluminum in the periodic ta-
ble, we expect their respective EOS in the dense plasma
phase to be fairly similar. This is borne out by a com-
parison of their principal Hugoniots that both show the
same structure due to the ionization of the n = 2 and
n = 1 shells, at nearly the same values of pressure and
compression ratio (Figures 5 and 10). The correspond-
ing PAMD-KS Hugoniot (Figure 10) is in generally very
good agreement with the QMD/PIMC Hugoniot except
around the maximum compression due to the ionization
of the 2s22p6 electrons. The PAMD-KS Hugoniot reaches
a compression of 5.25 while the PIMC Hugoniot peaks at
5.0. Note that we have taken the initial state internal en-
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ergy for the PAMD-KS Hugoniot be be equal to the AA-
KS value (-287.16 Eh), and that the curve is not strongly
affected by small changes to this value (not shown). This
comparison shows for the first time that the structure
in principal Hugoniots associated with the ionization of
electronic shells that are a prediction of average atom
models [33, 34] are also found in state-of-the-art ab ini-
tio simulations. Furthermore, the PAMD-KS model puts
those features in the same pressure ranges and predict
compressibilities that are close to the ab initio results. It
is reasonable to expect these features to manifest them-
selves in experimental data once accurate Hugoniot mea-
surements can be achieved at these extreme pressures.

III. CONCLUSIONS

The PAMD model of warm and hot dense matter
has found successful applications in the calculation of
pair distribution functions [11, 12], transport coefficients
[13, 35], and dynamic structure factors [14]. In this con-
tribution, we present how the equation of state can be
calculated with the PAMD model, both for the Thomas-
Fermi and the Kohn-Sham treatments of the electrons.
A key assumption of the PAMD model is that the to-

tal electron density is given by the linear superposition of
identical, nucleus-centered electron densities. The accu-
racy of this approximation is reflected in the consistency
between the virial and thermodynamic paths to calcu-
late the pressure. We found that for a dense aluminum
plasma, the consistency is typically < 3% over a broad
range of temperatures and densities. However, the incon-
sistency rises rapidly at temperatures below 7 eV at low
(solid) density.
We have developed a formally exact numerical trick

to efficiently and accurately evaluate volume integrals of
the electron density that diverge near each nucleus in the
Thomas-Fermi model. This trick could also be applied in
Orbital Free Molecular Dynamics simulations, allowing
all-electron calculations without the need for a pseudo-
potential.
We have developed an approximation inspired by this

numerical trick that permits the calculation of the equa-
tion of state using PAMD with a Kohn-Sham treatment
of the electrons. Calculations based on this approxi-
mation were found to agree well with state-of-the-art
Quantum Molecular Dynamics and Path Integral Monte
Carlo simulations for beryllium, aluminum, silicon and
iron. Generally, the pressures computed with the PAMD
model over a wide range of elements, densities and tem-
peratures, – both in the TF and KS versions – agree with
ab initio simulations to within a few percent and rarely
differ by as much as 10%.
We present the principal Hugoniot of aluminum com-

puted with the Kohn-Sham version of PAMD up to
T = 500 eV, which agrees well with the experimental
data. As expected, structure in the Hugoniot reflects the
electronic shell structure of aluminum at pressures above

several tens of Mbar but the ultra-high pressure data are
not accurate enough to reveal this behavior. A compar-
ison with a Hugoniot calculated with a simple average
atom model shows that the self-consistent treatment of
the electronic and ionic structures has only a modest ef-
fect on the Hugoniot. The difference reaches ∼ 15% on
the lower part of the Hugoniot, for compression ratios

∼< 3 and shrink below 5% for compression ratios> 4. The
PAMD-KS principal Hugoniot of silicon is very similar to
that of aluminum and can be compared to an ab initio
Hugoniot up to very high temperatures. Both show the
signature of the ionization of electronic shells and agree
well with each other. This indicates that such features
as predicted by the PAMD model (and KS average atom
models as well) are not model artifacts and should be
pursued experimentally.
In modeling warm and hot dense matter, ab initio

molecular dynamics must switch from the Kohn-Sham
to the Thomas-Fermi electron model at an intermedi-
ate temperature at the cost of neglecting shell structure
at the higher temperatures. Alternatively, Path Inte-
gral Monte Carlo can be used to complement Kohn-Sham
molecular dynamics, but the method is limited to low-Z
elements and remains costly. A significant advantage of
PAMD is that it can accurately model both warm and
hot dense matter with the Kohn-Sham model of the elec-
trons, accounting for shell structure even at keV temper-
atures. However, the electronic structure in Kohn-Sham
PAMD is approximated by the superposition of single-
center calculations. Therefore multiple scattering effects
are neglected in the same way as in average atom models.
The advantage of PAMD over such average atom models
is an accurate accounting of the ionic disorder.
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Appendix A: Equation of state with the average

atom model

In this appendix we describe the average atom models
(AA-TF and AA-KS) used for comparison to the PAMD
calculations. AA-TF is the usual Thomas-Fermi-Dirac
model with the T = 0 Dirac exchange [36–38]. The
AA-KS model is essentially the same as the NWS model
of [22], and has been summarized in section 2 of refer-
ence [9]. We have used the virial pressure P vir from this
model, where

P vir V ion =
2

3
KKS

e +
2

3
KI +

1

3
F el + Cxc (A1)
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Here V ion is the volume of the ion-sphere,

KKS

e =

∫

V ion

d3r

∫ ∞

−∞

dǫ gǫ ǫ χ(ǫ, r)−
∫

V ion

d3r ne(r)V
eff(r)

(A2)
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χ(ǫ, r) =

∞
∑

l=0

2(2l+ 1)

4π

∣

∣

∣

∣

yǫ,l(r)

r

∣

∣

∣

∣

2

, (A3)

(see appendix A of reference [12])

F el =
1

2

∫∫

V ion

d3r d3r′
ne(r)ne(r

′)

|r − r′| (A4)

−
∫

V ion

d3r
Zne(r)

r
,

Cxc = −F xc
ee +

∫

V ion

d3r ne(r)
δF xc

ee

δne(r)
(A5)

and

KI =
3

2
T. (A6)

The internal energy per atom is

U = KKS

e +KI + F el + Uxc. (A7)

where Uxc is defined in equation (28).

The average atom models thus have no knowledge of
the ionic structure, the electron density is simply calcu-
lated inside a charge-neutral ion sphere with a nucleus
at the origin. In contrast, in PAMD a pseudoatom is
placed at each nuclear position (which are determined by
molecular dynamics simulations) and the electron density
is thus constructed via the superposition approximation
(equation (2)).

This method of calculating the equation of state with
AA-KS is qualitatively similar to the method we have
used for PAMD. Thus the comparison presented in figures
7 to 9 should reflect the physical differences between the
models, and not the method of calculation of the EOS.
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