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Our prior work has shown that high quality (Q) factor whispering gallery modes (WGMs) in liquid
microdroplets can potentially induce single-photon-level nonlinear effects through radiation pressure
on the interface. However, little is known about the nonlinear effects of other processes involving
scattering force and thermocapillarity. In this study, we establish a numerical framework that can
calculate the fluid motion and the resultant nonlinearity induced by the optical scattering force
and thermocapillarity. Then, we compare the magnitude of various nonlinear optofluidic processes
induced by the radiation pressure, the thermocapillary effect, the scattering-induced optical force
and the Kerr effect. Using realistic fluid parameters, we show that the radiation pressure due to the
WGM produces the strongest nonlinear optofluidic effect.

I. INTRODUCTION

Optofluidics was originally developed for important
applications such as lasing [1], sensing [2, 3], and dis-
play [4–6]. The mechanical interplay between light and
liquid, however, has not been thoroughly investigated,
even though the first demonstration of liquid motion ac-
tuated by a focused laser beam was reported as early as
1973 [7]. Since the classic work by Ashkin and Dziedzic,
the distortion of a liquid system induced by a high inten-
sity laser beam has been studied in [4, 8–16], where both
flat and spherical fluid interfaces were considered.

Recently, in Ref. [17, 18], we analyzed a highly non-
linear optofluidic system that is comprised of light circu-
lating in a liquid droplet in the form of a high quality
(Q) factor whispering gallery mode (WGM). In such a
system, the radiation pressure of the high-Q WGM can
push the droplet surface outwards and form the bulge
depicted in Fig. 1. Perhaps the most interesting result
of our theoretical analysis is that the strength of the ra-
diation pressure induced nonlinearity exceeds that of the
Kerr nonlinearity by up to six orders of magnitude. As a
result, the radiation pressure induced nonlinear optoflu-
idics may ultimately produce nonlinear effects at single
photon energy level. Our prior work only considered non-
linear effects due to radiation pressure. Yet besides ra-
diation pressure, optical fields can also actuate fluid mo-
tions through scattering force [13] and thermocapillary
force [19]. In this paper, we compare the magnitude of
nonlinear effects induced by the scattering force and the
thermocapillary force, as well as radiation pressure in-
duced nonlinearity and other nonlinear effects.

When light is elastically scattered by inhomogeneities
in the fluid (e.g., suspended particles or density fluctua-
tions), the light momentum can be changed, which results
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in a scattering force that may induce fluid motion in the
volume. For example, a cylindrical dripping liquid jet
was produced by light scattering in a microemulsion and
the dripping rate was theoretically predicted [20]. The
fluid motion due to the light scattering was also observed
in a fluid layer with a flat interface [21], where a toroidal
fluid recirculation was produced by a vertically incident
laser beam. The scattering force induced an interface de-
formation that was found to be on the same order of mag-
nitude as the deformation induced by the radiation pres-
sure. The effects of light scattering in a similar setup were
simulated numerically by the boundary element method
in [14], which showed good agreement with experimental
observations. In these studies, the scattering force in the
fluid has been modeled as a body force that depends on
the light intensity. Similarly, in the case of WGMs cir-
culating in a liquid droplet, the effect of light scattering
should also produce a body force in liquid resonators in
the same direction of the WGM propagation. For exper-
imental studies of nonlinear effects in microdroplets, it is
highly relevant to theoretically estimate the magnitude
of interfacial deformation due to the scattering force.

Another potentially relevant factor is the thermocapil-
lary force. The localized light heating in the liquid may
result in a temperature gradient, which leads to ther-
mocapillary stresses on the fluid interface. The thermo-
capillary effect of laser heating has been applied in drop
sorting, merging and microfluidic valve [19, 22, 23], etc.
Baroud et al. [19] demonstrated that the thermocapillary
force could induce a circulation of fluid in a droplet and
thus control the motion of the droplet. In our work on
microdroplets as whispering gallery resonators [18], we
computed the temperature increase due to the WGM en-
ergy absorption, from which the volume expansion and
refractive index change were estimated. Since the tem-
perature varies along the fluid interface, the thermocap-
illary effect may arise and induce interfacial flow on the
droplets. Such effect can therefore lead to another class of
nonlinear optofluidic processes, which was not analyzed
quantitatively in our previous publication [18].
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FIG. 1. (a) Schematics of a high-Q WGM circulating along
the equator of a droplet induced by the laser propagating in
a nearby fiber. The yellow arrows indicate light propagation
directions. A cylindrical coordinate (x, r, φ) and a spherical
coordinate (R, θ, φ) are defined to assist further analysis. (b)
The electric field intensity |E|2 of the WGM in a a = 100µm
droplet within the x-z plane. The white curve indicates the
droplet interface. (c) The |E|2 distribution along the radial
direction within the x = 0 plane. The |E|2 field shown in (b)
and (c) has been normalized by its maximum value on the
interface.

The objective of this work is to develop a boundary
element model to evaluate the nonlinear optofluidic ef-
fects induced by the light scattering and the thermocap-
illary force associated with the WGMs in microdroplets.
We quantify the magnitudes of these two nonlinear pro-
cesses, and compare them with nonlinearities induced by
the radiation pressure as well as the thermal and Kerr
effects. Specifically, in Sect. II, the boundary element
formulations for Stokes equations with scattering force
and thermocapillary force are derived in an axisymmetric
domain. The fluid motion induced by various optofluidic
processes are analyzed and compared in Sect. III. The
nonlinearities associated with the interfacial deformation
are also compared with purely thermal effects such as
volume expansion and refractive index changes induced
by temperature changes, as well as the Kerr nonlinearity.

II. OPTICAL FIELD INDUCED FLUID
MOTION

We consider a system of a high-index liquid micro-
droplet (core) immersed in a low-index immiscible fluid
(cladding). Such a system can support a high-Q WGM
circulating along the equator of the droplet, as illustrated
in Fig. 1. By assuming a transverse electric (TE) mode,
the optical field in the resonator has been calculated an-
alytically in [17, 24], the derivations of which will not be
repeated here. In this paper, we denote variables asso-
ciated with the core phase with subscript “co” and the
cladding phase with subscript “cl”.

In this section, we derive boundary element models
to quantitatively calculate the fluid motion actuated by

the scattering force, thermocapillary force and radiation
pressure induced by the WGM in the droplet.

A. Effect of light scattering

Due to the fluid inhomogeneity, the optical field in the
droplet can induce a scattering force in the same direction
as the light propagation [14, 20],

F = $
nco
c
Sφeφ, (1)

where $ is the forward light momentum attenuation co-
efficient (or turbidity), nco is the refractive index of the
core phase, c is the speed of light and Sφ is the φ com-
ponent of the Poynting vector, which represents the light
intensity. Note that Sφ (and thus F ) is independent of
φ. Due to its direction, the scattering force F may cause
a circulational motion of the fluid. With known force
magnitude, it is possible to compute the fluid velocity
numerically.

The motions of the fluid interface and volume are
governed by the Navier-Stokes equations. For a typi-
cal drop with radius a ∼ 100µm, characteristic veloc-
ity U ∼ 10−3 m/s, density difference ρ ∼ 200 kg/m3 and
fluid viscosity µ ∼ 13 mPa ·s, the Reynolds number is ap-
proximately Re = ρUa/µ ∼ 10−2. As a consequence of
the low Reynolds number, the Stokes assumption is valid
for our system. In the presence of the scattering force,
the Stokes equations and incompressibility condition can
be written as,

−∇pd + µ∇2u + F = 0,∇ · u = 0, (2)

where the dynamic pressure pd is defined as the sum of
actual fluid pressure and centrifugal effect of the fluid
motion pd = p+ ρu2φ/2.

The Boundary Element Method (BEM) has been
widely used to solve the stokes equations numerically [25–
27]. For a two-phase fluid system with a sharp interface
in the three-dimensional domain, the interfacial velocity
and pressure are related by the following boundary inte-
gral equations (BIE),

uj(x0) = b1

∫
S

Gji(x0,x)fi(x) dS(x)

+ b2

∫
S

ui(x)Kijm(x0,x)nm(x) dS(x)

+ b1

∫
V

Gji(x0,x)Fi(x) dV (x), (3)

where b1 = −1/(4πµcl(1 + λ)), b2 = (1− λ)/(4π(1 + λ)),
λ = µco/µcl is the viscosity ratio of the core and cladding
phases; f is the total stress on the interface; “S” denotes
the interface of the droplet; position vectors x and x0 are
located on the fluid interface. Indices i, j,m take values
of 1, 2, 3 and repeated indices are summed. The Green’s



3

functions Gij and Kijm for Stokes flow in free space take
the form,

Gij(x,y) =
1

s
δij +

1

s3
sisj , Kijm(x,y) = − 6

s5
sisjsm,

(4)
with si = xi − yi, s = |s|, and δij is the identity tensor.

Due to the axial symmetry of the droplet geometry,
boundary conditions, as well as the WGM-induced scat-
tering force, all the velocity and force variables in Eq. (3)
should be independent of the coordinate φ. Therefore,
we can integrate Eq. (3) over the φ direction analytically
to lower the dimension of numerical discretization and
integration. We can show that the integration over φ di-
rection results in the decomposition of Eq. (3) into the
following x-r and φ components,

uα(x0) = b1

∫
C

Mαβ(x0,x)fβ(x)dl(x)

+ b2

∫
C

Qαβγ(x0,x)uβ(x)nγ(x)dl(x), (5a)

uφ(x0) = b2

∫
C

uφ(x)Qφφγ(x0,x)nγ(x)dl(x)

+ b1

∫
A

Fφ(x)Mφφ(x0,x)dA(x). (5b)

In Eq. (5), indices α, β, γ take the value of 1 and 2, rep-
resenting the x- and r-directions, respectively. “C” and
“A” represent the interface and the volume of the fluid
domain intercepted with a φ = constant plane. Note that
Eq. (5a) is the same as the BIE in axisymmetric domain
with no φ component of velocity or force derived in liter-
ature [26], whereas Eq. (5b) is the new BIE that governs
the swirling motion of the fluid induced by the azimuthal
component of the scattering force. As shown by Eq. (5),
the φ component of the velocity field is decoupled from
ux and ur. However, the centrifugal effect of uφ can pro-
duce an interface force that subsequently induces fluid
motion in x- and r-directions. This is evidenced by the
expression of the total force on the interface,

f = (2σκm −∆ρu2φ/2)n, (6)

where κm is the mean curvature of the interface. The
detailed derivations of Eq. (5) are shown in Appendix A.

In our simulations, the fluid interface on the φ =
constant plane is discretized into N circular arc elements,
and x0 is located at the center of each element. On each
element, the surface velocity and pressure are assumed to
be constant, and the axisymmetric Green’s functions are
integrated numerically using Gauss Quadrature. Note
that Green’s functions may exhibit logarithmic singular-
ities as x → x0, and special treatment is need needed
to ensure the accuracy of numerical integration. The de-
tailed derivations of the singularity behaviors and their
numerical integration schemes are shown in Appendix B.

Equation (5) can then be discretized and written as lin-
ear systems relating the unknown interface velocity vec-
tor ({vxr} , {vφ}) with the interface force vector ({f}) or

the volume force integral (
{
IF
}

),

[A] {vxr} = [B] {f} , (7a)

[H]
{
vφ
}

=
{
IFi
}
, (7b)

where [A], [B] and [H] are matrices whose entries are re-
lated to the integrals of Mαβ and Qαβγnγ on the interface
elements.

In the simulation, the linear system Eq. (7b) is solved
first and the uφ distribution is obtained. The total in-
terface force including the centrifugal effect of uφ is then
computed and used in Eq. (7a), the solution to which re-
sults in the velocity components within the φ =constant
plane. The solution to the above linear systems gives the
velocity at the center of each element on the interface.
Velocity values at the end points of each element are in-
terpolated by a cubic spline with vanishing derivatives
at x = ±a. The element edges and center displacements
are integrated over a time step ∆t by the explicit Euler
scheme, i.e., ∆x = u∆t, and a new interface shape is
produced for the following time step. At each time step,
a new linear system Eq. (7) is generated based on the
updated interface shape. The time step size is chosen
by the criteria ∆t ≤ τm = (µco + µcl)δ/(2σ), where δ is
the element size [28]. This process is iterated until the
maximum velocity magnitude |u| is 1000 times smaller
than the initial velocity magnitude. In our simulations,
we find that N = 128 elements can provide results with
adequate accuracy.

B. Thermocapillary effect

As shown in [18], the absorption of the WGM energy
by the droplet may result in the temperature change in
the fluid, which should increase the droplet volume and
change its refractive index. In addition, the temperature
gradient on the fluid interface can also induce the ther-
mocapillary effect, i.e., a shear stress along the interface.
Using the well-known Eötvös rule [29], the interfacial ten-
sion of the fluid system at a given temperature T is,

σ = k̄V̄ −2/3(Tc − T ), (8)

where k̄ and V̄ are material properties and Tc is the crit-
ical temperature of the fluid. Assuming that the interfa-
cial tension at room temperature T0 is σ0, the value of σ
can then be derived as,

σ = σ0
Tc − T
Tc − T0

. (9)

With known temperature distribution on the fluid inter-
face, the gradient of the interfacial tension, ∂σ/∂s, can
be calculated and the total stress on the interface is,

f = (2σκm)n− (∂σ/∂s)t. (10)

The fluid velocity induced by the thermocapillary effect
can then be computed by Eqs. (5a) and (7a).
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Note that as modeled in Ref. [18], the fluid mo-
tion induced by the optical radiation pressure, popt =
1
2ε0
(
n2co − n2cl

)
|Esurf|2 [9, 17], is also governed by

Eqs. (5a) and (7a) with the total stress on the interface
f = (2σκm − popt)n.

So far, we have developed BEM models that can sim-
ulate the fluid motion and interface dynamics of the
droplets under scattering force, thermocapillary and ra-
diation pressure effects. In the following section, the
fluid motion and the interface deformation induced by
the aforementioned nonlinear optofluidic processes will
be computed and their magnitudes will be compared.

III. WGM INDUCED NONLINEAR PROCESSES
IN LIQUID DROPLETS

In this study, we choose a liquid system based on an
oil droplet immersed in water, which has the same prop-
erties as the system analyzed in [18]. Fluid viscosities
of the core and cladding media are µco = 13 mPa · s and
µcl = 1 mPa·s. The forward light momentum attenuation
coefficient of the core fluid is assumed to be $ = 70 m−1.
(For a transparent liquid with low attenuation, such as
an index matching fluid, the value of $ = 70 m−1 is likely
an overestimate. However, as will be shown later, a more
accurate estimate for $ is unnecessary. ) The oil-water
interfacial tension at room temperature is σ = 30 mPa·s
σ = 30 mN/m. The properties of the WGMs depend
on the liquid refractive indices as well as the geometry
of the resonator. This liquid droplet can possess high-
Q factor in the visible wavelength range. For simplicity,
we choose the WGM wavelength to be λ ≈ 700 nm, with
the effective refractive indices of the core and cladding
phases nco = 1.44 and ncl = 1.33, respectively. The
mode numbers and resonance wavelengths of the funda-
mental WGMs |l, l〉 are provided by [18] and shown in
Table I. The electric field E and the Poynting vector
φ-component (Sφ) distribution are computed following
the formula provided in Ref. [18]. The circulating WGM
power is assumed to be 1 W for all calculations in this
work.

TABLE I. Angular Mode Number l and Resonance Wave-
length λ of WGMs in Liquid Droplets [18].

a(µm) 400 300 250 200 150 120
l 5145 3847 3204 2569 1918 1529

λ(nm) 699.35 700.66 700.45 698.05 699.95 701.26

a(µm) 100 80 70 60 50 40
l 1275 1018 889 761 632 504

λ(nm) 699.75 699.65 700.05 699.75 700.55 700.59

In this section, the fluid motion in the droplet as a re-
sult of the radiation pressure, light scattering and ther-
mocapillarity are calculated following the numerical pro-
cedure described in Sect. II. The optofluidic nonlineari-
ties due to the interface deformation are computed and
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FIG. 2. Velocity uφ component distribution induced by light
scattering in the volume of the a = 100µm droplet on a φ =
constant plane.

compared.

A. WGM induced Fluid Motion

We first look at the fluid motion due to the light scat-
tering force Eq. (1) in the volume of the droplet. The
rotational velocity (uφ) of the droplet is shown in Fig. 2.
The rotational motion of the droplet leads to an centrifu-
gal force on the interface, which results in a velocity field
on the x-r plane. This velocity field at t = 0 is shown in
Fig. 4(a).

The fluid motion induced by the radiation pressure has
been studied in [18], which is also shown in Fig. 4(b).
To calculate the thermocapillary effect, the temperature
distribution on the droplet interface is also computed by
the BEM. The detailed BEM formulations are available
in [18] and the steady state temperature increase on the
droplet interface is shown in Fig. 3. With the shear stress
due to the interfacial tension gradient given by Eqs. (9)
and (10), the fluid motion in the droplet can be pro-
duced by the BIE (5a), which is shown in Fig. 4(c). As
evidenced in Fig. 4, the velocity field in the x-r plane
due to the droplet rotation is several orders of magni-
tude smaller than the velocity induced by the radiation
pressure and thermocapillarity.

The droplet interface deforms under nonzero ux and ur
distribution on the interface. The interface forces under
the effect of centrifugal force and radiation pressure are
eventually balanced by the surface tension force resulting
from the interface deformation. On the other hand, the
shear stress due to thermocapillarity would still actuate
fluid motion on a balanced droplet. The velocity filed
field in a balanced droplet due to thermocapillarity is
shown in Fig. 5. Similar to the fluid motion reported in
other systems [19], Fig. 5 shows that fluid circulations
are also present in our system.

Under the velocity field shown in Fig. 4, the balanced
interface shape can be obtained by time integration of
the interface position until the normal component of the
interface velocity vanishes. The droplet interface defor-
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illary effect in a droplet with balanced interface shape. The
radius of the droplet is a = 100µm.

mation for all the twelve cases shown in Table I under the
effects of radiation pressure, light scattering and thermo-
capillarity are shown in Fig. 6. Since the overall shapes
of the interface deformation are self-similar, when nor-
malized by the interface displacement at θ = π/2, each
curve shown in Fig. 6 is in fact a collection of results for
the twelve microdroplets listed in Table I, each with a
different radius. We also observed that the interface de-
formation induced by the light scattering is several orders
of magnitude smaller than the radiation pressure effect.
This phenomenon is different from the results reported
on a flat fluid interface [14], where micron-scale deforma-
tion was induced by the scattering of a vertically incident
laser beam. On a flat fluid interface, the scattering force
and the radiation pressure were in parallel directions and
were observed to induce the interface deformation on the
same order of magnitude. However, in our system, the
interface deformation is in an orthogonal direction to the
scattering force and is induced indirectly by the weakly
coupled centrifugal effect.

In order to estimate the rate at which the experiments
can be repeated, we calculate the characteristic time
scales associated with the deformation and heat transfer
of the system. For the dynamic response of the droplet
with a = 100µm, the time for the interface to reach equi-
librium is around τ = µa/σ ≈ 4 × 10−5 s. The time to
reach the steady temperature is τ = L2/α ≈ 3 × 10−5 s,
where L ≈ 1.5µm is the size of the WGM mode vol-
ume, and α ≈ 8 × 10−8 m2/s is the thermal diffusivity
of the resonator. Therefore, with different droplet radii
assumed in our analysis, the response time of the system
is estimated to be below 10−3 s.

B. Comparison of nonlinear effects

In this section, we compare the magnitude of nonlinear
effects associated with the fundamental WGM |l, l〉, with
the mode number l given by Table I. As discussed in
Ref. [17, 18], the droplet interface deformation may in-
duce a WGM resonance frequency shift, which is similar
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to the Kerr effect. In addition, the increase of tempera-
ture in the droplet leads to the volume expansion as well
as refractive index changes, which also result in WGM
resonance frequency shifts. The refractive index change
and the droplet radius expansion have been estimated in
Ref. [18] as, ∆nT = (dn/dT )Tmax and ∆RT = αTTmax/3,
respectively, where Tmax is the maximum temperature
increase in the droplet, dn/dT = −3.9 × 10−4 K−1 is
the thermal coefficient of refractive index and αT =
8 × 10−4 K−1 is the thermal expansion coefficient of the
proposed system.

Due to the Kerr effect, the refractive index of the liq-
uid depends linearly on the optical field intensity. The
maximum refractive index change can be estimated as
∆n ≈ χ(3)|E|2max, where χ(3) is the third order nonlin-
ear optical susceptibility, and |E|max is the maximum
electric field intensity in the droplet. We use the suscep-

tibilities of water and carbon disulfide (CS2) (χ
(3)
water =

2.5 × 10−22 m2/V2 and χ
(3)
CS2

= 3.1 × 10−20 m2/V2 ) to
provide an order of magnitude estimate of the Kerr effect.

We now compare the magnitude of various nonlinear
processes due to the radiation pressure, temperature in-
duced droplet expansion and index change, thermocap-
illary force, Kerr effect and optical scattering force in
liquid droplets. Let us define the interface deforma-
tion at the equator (∆R(θ = π/2)/a) under radiation
pressure, thermocapillary and light scattering effects as
∆Rrad, ∆Rcap and ∆Rscatt, respectively. As shown in
Fig. 7, interface deformation induced by the radiation
pressure (∆Rrad) is higher than other nonlinear effects.
Additionally, nonlinearities associated with the thermo-
capillarity, volume expansion and index change due to
the temperature increase are also much stronger than

10
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FIG. 7. Comparison of nonlinearities associated the the radia-
tion pressure, thermal effects, Kerr effect and light scattering.
The |∆Rcap| and ∆Rscatt curves are computed by the algo-
rithm developed in Sect. II, all other curves are the same as
shown in Fig. 6 of Ref. [18]. The power of the WGM in the
droplet is assumed to be 1 W.

the Kerr effect. The interface deformation induced by
the light scattering, on the other hand, is smaller than
the Kerr effect and thus should not play significant roles
in droplets with diameter less than 1 mm. Finally, we
point out that in order to support high-Q WGMs, the
liquid that forms the microdroplet must possess low at-
tenuation, which means that the value for $ should not
exceed 100 m−1. Therefore, for sub-mm-scale droplets
that support high-Q WGMs, the nonlinearity induced by
the scattering force can be safely ignored. Note that for
large droplets with radii close to 1 mm, the interface de-
formation caused by the thermocapillary effect and the
radiation pressure effect are of the same orders of mag-
nitude and are in opposite directions. Therefore, liquid
resonators with sizes on the scale of 100µm or smaller
should be used in the experiments in order to distinguish
these two effects.

In addition to the optofluidic effects discussed in this
work, the optical wave can also excite acoustic WGMs
in resonators containing liquids [30, 31]. Acoustic modes
with frequencies up to 11 GHz and Q-factors of the order
of 103 were produced by forward and backward stim-
ulated Brillouin scattering (SBS) in a microfluidic op-
tomechanical resonator [31]. Such effect is also expected
to exist in our system of liquid resonators. However, in-
vestigating SBS and acoustic WGMs in liquid resonators
are beyond the scope of this work.

IV. CONCLUSION

In this paper, we develop boundary element models to
calculate the fluid motion and droplet deformation due to
the scattering force and thermocapillary force produced
by a high-Q WGM in liquid droplets. The BIEs are de-
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rived in an axisymmetric domain that incorporate the
effect of radiation pressure, scattering force and ther-
mocapillary effect. We show that for droplets smaller
than a = 400µm, the radiation pressure on the droplet
interface should induce the highest velocity magnitude
and the largest interface deformation, and thus lead to
the strongest nonlinearity compared to the thermal ef-
fects, Kerr effect and light scattering. Due to the weak-
ness of the centrifugal effect, the scattering force non-
linearity is several orders of magnitude smaller than the
Kerr effect and thus can be safely neglected. The results
presented here can guide future experimental studies of
WGM-induced nonlinear optofluidic processes in liquid
droplets.
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Appendix A: Derivation of the Greens functions in
axisymmetric domain

We start by writing all the position, velocity and force
variables in Eq. (3) in terms of their x, r and φ compo-
nents. Without loss of generality, we assume x0 is located
on the φ = 0 plane, then the left-hand-side of Eq. (3) can
be expressed as u(x0) = (ux, ur, uφ). Similarly, variables
on the right-hand-side can be written as,

x = (x, r cosφ, r sinφ)

x0 = (x0, r0, 0)

n = (nx, nr cosφ, nr sinφ)

f = (fx, fr cosφ, fr sinφ)

F = (0,−Fφ sinφ, Fφ cosφ)

u = (ux, ur cosφ, ur sinφ) + (0,−uφ sinφ, uφ cosφ)

s = (x− x0, r cosφ− r0, r sinφ)

s = |s| = [(x− x0)2 + r2 + r20 − 2rr0 cosφ]1/2. (A1)

Note that in Eq. (A1), all the velocity and force compo-
nents (ux, ur, uφ, fx, fr, Fφ) are functions of (x, r) only.
The only terms that are φ-dependent are the Green’s
functions, which are pre-determined. We can thus inte-
grate the Green’s functions in Eq. (3) along the φ direc-
tion analytically to reduce the dimension of numerical
integration.

The single layer integral in Eq. (3) can be calculate as,∫
S

Gji(x0,x)fi(x) dS =

∫
S

(Gjxfx +Gjyfy +Gjzfz) dS

=

∫
S

[Gjxfx + (Gjy cosφ+Gjz sinφ)fr] dS

=

∫
C

 Mxx Mxr

Mrx Mrr

Mφx Mφr

{ fx
fr

}
dl, (A2)

where

 Mxx Mxr

Mrx Mrr

Mφx Mφr

 (x0,x)

= r

∫ 2π

0

 Gxx Gxy cosφ+Gxz sinφ
Gyx Gyy cosφ+Gyz sinφ
Gzx Gzy cosφ+Gzz sinφ

dφ. (A3)

The integral of the Green’s function over φ can be con-
verted to elliptic integrals. For example,

Mxx = r

∫ 2π

0

Gxxdφ = r

∫ 2π

0

(
1

s
+
dx

2

s3
)dφ

= r[I10 + d2xI30], (A4)

where dx = x− x0, and [26]

Imn(dx, r, r0) = cm

∫ π/2

0

(2cos2ω − 1)
n

(1− k2cos2ω)
m/2

dω, (A5)

with

cm =
4km

(4rr0)
m/2

, k2 =
4rr0

dx
2 + (r + r0)

2 . (A6)

The integral in Eq. (A5) can be expressed by complete
elliptic integrals of the first and second kind (F (k) and
E(k), respectively) with the help of integral tables [32].
The values of Mαβ for α, β = 1, 2 are the same as those
derived in literature [26]. We can also show that Mφx =
Mφr = 0.

The double layer integral in Eq. (3) can be calculate
as,

∫
S

ui(x)Kijm(x,x0)nm(x) dS(x)

=

∫
S

[uxKxjmnm + uσ(Kyjmnm cosφ+Kzjmnm sinφ)

+ uφ(−Kyjmnm sinφ+Kzjmnm cosφ)] dS

=

∫
C

Qjβγuβnγ dl, (A7)

where in the last integral indices j, β, γ = 1, 2, 3, repre-
senting x, r, φ components. The value of Qjβγ in Eq. (A7)
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can be expressed as (note nφ = 0),

Qjxx = r

∫ π/2

0

Kxjx dφ

Qjxr = r

∫ π/2

0

(Kxjy cosφ+Kxjz sinφ) dφ

Qjrx = Qjxr

Qjrr = r

∫ π/2

0

(Kyjy cos2 φ+ 2Kyjz sinφ cosφ

+Kzjz sin2 φ) dφ

Qjφx = r

∫ π/2

0

(−Kyjx sinφ+Kzjx cosφ) dφ

Qjφr = r

∫ π/2

0

(−Kyjy sinφ cosφ

+Kzjy(cos2 φ− sin2 φ) +Kzjz sinφ cosφ) dφ.
(A8)

By substituting the Green’s function Eq. (4) into
Eq. (A8) and with the help of Eq. (A5), we can show
that for j, β, γ = 1, 2, the expressions of Qjβγ are the
same as derived in literature. We can also show that for
the new terms associated with the φ component (j = 3
or β = 3),

Qφxγ = Qφrγ = Qxφγ = Qrφγ = 0, (γ = 1, 2) (A9)

and

Qφφx = 6r2r0dx(I52 − I50)

Qφφr = −6r2r0[r0(I53 − I51) + r(I50 − I52)]. (A10)

Similarly, the volume integral in Eq. (3) can be simpli-
fied as, ∫

V

Gji(x0,x)Fi(x) dV (x)

=

∫
A

[
r

∫ 2π

0

Gji(x0,x)Fi(x) dφ

]
dA(x)

=

∫
A

rMjφ(x0,x)Fφ dA(x), (A11)

where we have defined

Mjφ(x0,x)

=r

∫ 2π

0

[−Gj2(x0,x) sinφ+Gj3(x0,x) cosφ] dφ.

(A12)

It is easy to show that

Mxφ = Mrφ = 0, (A13)

and

Mφφ(x0,x)

=r

∫ 2π

0

[−G32(x0,x) sinφ+G33(x0,x) cosφ] dφ

=r

∫ 2π

0

[−r(r cosφ− r0)

s3
sin2 φ

+

(
1

s
+
r2 sin2 φ

s3

)
cosφ] dφ

=r[I11 + rr0(I30 − I32)]. (A14)

It is obvious now that Eqs. (A2), (A7) and (A11) lead to
Eq. (5), and all the Green’s functions in the axisymmetric
domain are explicitly determined in this section.

Appendix B: Singularity of Green’s functions

Let us define the distance between x and x0 on a
φ = constant plane as d = (dx, dr) = (x − x0, r − r0)
and d = ((x− x0)2 + (r − r0)2)1/2. It has been shown in
literature [26, 33] that as x→ x0, Mxx,Mrr → −2 ln(d),
while Mxr, Mrx and Qαβγnγ are finitely bounded, for
α, β, γ = 1, 2. We now show that the newly derived non-
trivial terms in this work, Mφφ and Qφφγnγ , also exhibit
O(ln(d)) type singularity.

From Eq. (A5) and with the help of [32], we can show
that

I11 =
c1
k2

[−2E − (k2 − 2)F ]

I30 − I32 =
4c3
k4

[−2E − (k2 − 2)F ], (B1)

where F and E are complete elliptic integrals of the first
and second kind, whose definition and asymptotic behav-
iors are,

F (k) =

∫ π/2

0

1

(1− k2 cos2 ξ)
dξ → − ln(d),

E(k) =

∫ π/2

0

(1− k2 cos2 ξ) dξ → 1, (B2)

Therefore, Eq. (A14) leads to

Mφφ = −4

k

√
r

r0
[2E + (k2 − 2)F ]→ −4 ln(d). (B3)

Similarly, we can show

I52 − I50 = c5

[
8

3k4
F +

4(k2 − 2)

3k4k′
E

]
,

I53 − I51 =
4c5

3k6k′2
[−8k′2(k2 − 2)F

− (k4 − 16k2 + 16)E], (B4)

with k′2 = 1 − k2. The values of Qφφγ(γ = 1, 2) exhibit
strong singularities (∼ 1/d2). However, the product of
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Qφφγ and nγ , i.e., q33 = Qφφγnγ , may exhibit weaker
singularity. Here we compute q33 explicitly,

q33 = Qφφxnx +Qφφrnr

= 6r2r0[(dxnx + rny)(I52 − I50) + r0ny(I51 − I53)]

=
8r2r0c5
k6

[gF (k)F + gE(k)E], (B5)

where gF and gE are functions k, which can be simplified

as,

gF (k) = 2[(dxnx + rny + 4r0ny)k2 − 8r0ny]

→ 2(dnx − 3r0)ny (x→ x0)

gE(k) =
1

k′2
[(dxnx + rny + r0ny)k4

− (dxnx + rny + r0ny)k2 + 16r0ny]

=
1

k′2
[−(dxnx + drny)k2 + 16r0nyk

′2 − 2r0nyk
2k′2].

(B6)

Note that in the last equation of Eq. (B6), d becomes
orthogonal to n as x → x0, and d · n ∼ d2. Therefore
gE is non-singular. Combining Eqs. (B2), (B5) and (B6),
and note d ln(d)→ 0 as d→ 0, we have,

q33 →
8r30c5
k6

(6r0ny ln(d))→ 6ny
r0

ln(d). (B7)

In the present work x and x0 are located on a circle with
unit radius; in this case we have q33 → 6 ln(d).

The presence of ψ ln(d) (ψ = −2,−4 or 6) singularities
may cause large numerical integration error. To reduce
the numerical error, the singularity can be subtracted
from the singular Green’s functions to make the integra-
tion non-singular. The analytic integral of ψ ln(d) should
then be added back to the non-singular integral. This
technique has also been used in literature and proved to
be highly accurate [25–27, 33].
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