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We report measurements of the modification of turbulence far from any walls by small concen-
trations of long-chain polymers. We consider a range of statistical properties of the flow, including
Eulerian and Lagrangian velocity structure functions, Eulerian acceleration correlation functions,
and the relative dispersion of particle pairs. In all cases, we find that the polymer concentration
has a strong effect on the extent to which the statistical properties are changed compared to their
values in pure water. These effects can be captured by the recently proposed energy flux balance
model (when suitably extended into the time domain for Lagrangian statistics). However, unlike
previous measurements, which found that the concentration effect could be completely scaled out,
we consistently find that our data collapses onto two different master curves, one for small concen-
tration and one for larger concentration. We suggest that the difference between the two may be
related to the onset of interactions among polymer chains, which is likely to be more easily observed
at the small Weissenberg numbers we consider here.

PACS numbers: 47.27.Gs, 47.57.Ng, 47.50.-d

I. INTRODUCTION

Both the material and flow properties of fluids can be
changed by adding mesoscale structure. Such complex
fluids display a vast range of behaviors, from shear thin-
ning or thickening to viscoelasticity and more. In the
context of turbulent flows, it has been known since the pi-
oneering work of Toms [1] that additives can dramatically
reduce the skin-friction drag in turbulent wall-bounded
flows [2]. Toms worked with long-chain polymers, and we
focus on polymers here; however, macroscopically simi-
lar turbulent drag reduction has also been demonstrated
for other kinds of additives such as surfactants [3], rigid
fibers [4], or microbubbles [5, 6]. Rather remarkably, this
drag reduction can be observed with only a tiny amount
of additive (on the order of parts per million by weight),
well below the limit where material properties such as
the shear viscosity are modified significantly from their
Newtonian values.
The essential physics underlying skin-friction drag re-

duction appears to be a thickening of the buffer layer
and an associated modification of the near-wall turbu-
lent structures, which in turn disrupts the turbulence re-
generation cycle in the boundary layer [2, 7]. However,
experimental observations over the past few decades have
demonstrated that the statistical properties of isotropic
turbulence far from any boundaries can also be modi-
fied by polymers [8–17]. Thus, the presence of a wall
and the turbulent structures it produces are not a nec-
essary condition for turbulence modification, although it
remains possible that the mechanisms responsible for the
flow modifications may be qualitatively different in the
wall-bounded and isotropic cases.
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Qualitatively, the addition of polymers to the flow has
been observed to lead to an effective attenuation of the
usual Richardson–Kolmogorov energy cascade at small
scales. The signature of this attenuation is usually a
reduction in the mean-field energy dissipation rate per
unit mass ǫ at a length scale near the lower end of the
cascade but still within the inertial range [16, 17]. In
some previous experiments, the turbulence was driven
via boundary-layer interactions, such as in grid-generated
turbulence [8, 12], Taylor–Couette turbulence [9], or in
a counter-rotating-disc von Kármán swirling flow with
smooth discs [10]. In these cases, the reduction in the
energy dissipation may partially be attributable to a de-
crease in the energy injection into the turbulence via
standard skin-friction drag reduction. However, experi-
ments that drove the flow inertially and therefore roughly
maintained the energy injection rate when polymers were
added [11] have also seen changes to the effective small-
scale energy dissipation [14, 16, 17]. Numerical simula-
tions of isotropic turbulence in polymer solutions, where
the polymers are modeled by a continuum field that cou-
ples to the turbulence, have also found modifications of
the energy cascade, where polymers can extract turbu-
lent kinetic energy from the flow and at least partially
dissipate it directly [18].

Here, we focus on the role played by the polymer
concentration in modifying the statistics of a turbulent
counter-rotating disc flow. We consider a wide range of
turbulence statistics, including Eulerian and Lagrangian
velocity structure functions, the spatial correlation func-
tions of acceleration, and the relative dispersion of parti-
cle pairs. In all cases, we find that the recently proposed
elastic energy flux balance model [17] captures the essen-
tial effect of the polymer concentration, when appropri-
ately extended into the time domain. However, unlike in
previous work that found that this model could collapse
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data from a broad range of polymer concentrations and
flow conditions onto a single master curve [17], our re-
sults show two clearly distinguishable families of curves.
Although a complete understanding of this behavior re-
mains elusive, we argue that the different behavior we see
may be due to the onset of possible interactions between
polymer molecules as they are stretched by the turbulent
velocity gradients.
We begin below by outlining the essential aspects of

the interplay between polymers and turbulence in Sec. II.
We then describe our experimental apparatus and data
acquisition methods in Sec. III. Our results for Eulerian
statistics are presented in Sec. IV, followed by measure-
ments of Lagrangian statistics in Sec. V. Finally, we
discuss the implications of our measurements in Sec. VI.

II. BACKGROUND

Long-chain polymer molecules can be thought of as
entropic springs. In equilibrium, they coil into tightly
packed conformations, maximizing their entropy. Under
applied stresses, however, they can be stretched out into
elongated configurations, at the cost of a stored elastic
energy. Once the applied stress is removed, they will
tend to re-coil on a characteristic relaxation time scale
τp. For polymers suspended in a fluid, the ratio of τp to
the inverse of the shear rate, known as the Weissenberg
number Wi, will determine whether the polymers tend
to be elongated (when Wi > 1 and shearing occurs more
quickly than relaxation) or coiled (when Wi < 1). In
turbulence, the Weissenberg number is typically defined
as Wi = τp/τη, where τη is the Kolmogorov time scale,
since the inverse of the shear rate is of order τη.
Various aspects of this picture of polymers as springs

have been used to suggest mechanisms for how polymers
affect turbulence, and in particular to estimate at what
scale the energy cascade is likely to be modified. Lumley
[19] focused on the temporal behavior of the polymers
and chose the relaxation time τp to be the most impor-
tant parameter characterizing the polymers. Applying
Kolmogorov-style arguments, he then argued that the
cascade should be modified beginning at a length scale
r∗ = (ǫτ3p )

1/2, at which the local scale-dependent Weis-
senberg number exceeds unity and the polymers will be
stretched by the action of the turbulent eddies faster than
they can relax. This argument, however, leaves no room
for the effects of varying polymer concentration, and its
predictions have not been verified by experiments outside
the boundary layer [16, 17].
A different picture based on the polymer energetics

was proposed by Tabor & De Gennes [20, 21]. They
argued that it is not the change in polymer conforma-
tion per se that modifies the turbulence; rather, it is
the the fact that stretched polymer molecules store elas-
tic energy that is the more fundamental mechanism for
flow modification. The only source for this elastic en-
ergy is the kinetic energy of the turbulent fluctuations,

which must therefore be damped by the addition of poly-
mers. Indeed, numerical simulations have demonstrated
that polymers can effectively siphon kinetic energy from
the turbulence [18]. Thus, although Tabor & De Gennes
agreed with Lumley [19] that the polymers are stretched
by the flow beginning at a scale r∗, they introduced a
new (smaller) length scale r∗∗ to characterize the onset
of the polymer back-reaction on the flow. r∗∗ is defined
to be the length scale at which the elastic energy stored in
the polymer molecules balances the scale-dependent tur-
bulent kinetic energy, determined by Kolmogorov-style
arguments. Specifically, r∗∗ is defined implicitly by

1

2
cpkBT

(

r∗

r∗∗

)5n/2

=
1

2
ρu2

r∗∗ =
1

2
ρ (ǫT r

∗∗)
2/3

(1)

The left-hand side of this equation is the elastic energy
(per unit mass) stored by the polymers; cp is the number
of polymer molecules per unit volume, kB is Boltzmann’s
constant, and T is the temperature. Together, cpkBT is
an estimate of the net elastic modulus of the polymer
phase. n is an exponent that depends on the charac-
teristics of local flow deformation that stretches; n = 1
corresponds to the case of two stretching directions and
one compressive, as is typically found in turbulent flows
[17]. The right-hand side of this equation is the turbulent
kinetic energy (per unit mass) at the scale r∗∗. ρ is the
mass density of the fluid, and standard Kolmogorov scal-
ing is used to re-express the scale-dependent velocity in
terms of the length scale r∗∗ and the rate of energy trans-
fer per unit mass through the inertial range ǫT . We note
that this notation is somewhat non-standard; typically, ǫ
with no subscript is used. In non-Newtonian turbulence,
however, it is necessary to distinguish the rate of energy
injection into the turbulent cascade, which we denote by
ǫI , the rate of energy transfer through the inertial range
ǫT , and the rate of energy dissipation by viscosity ǫD
[16, 17]. In Newtonian turbulence, ǫI = ǫT = ǫD = ǫ,
by conservation of energy. In the polymer case, however,
these equalities need not hold, as (particularly in the Ta-
bor & De Gennes framework) the polymers can provide
a non-viscous mechanism for drawing energy out of the
turbulent cascade.
This elastic energy balance model has the appealing

feature that r∗∗ is concentration dependent, since higher
polymer concentration means more polymer molecules,
and more molecules can store more energy. This model
also introduces the possibility of a critical concentra-
tion: if r∗∗ falls below the Kolmogorov length scale η,
the polymers will no longer affect the turbulence. How-
ever, the assumptions underlying this model have been
criticized [22], and, more seriously, it is not internally
self-consistent [17]. It assumes that the polymers are
stretched at r∗, but only affect the flow at r∗∗; but at
the same time they are assumed to affect the flow be-
cause polymer stretching siphons kinetic energy from the
cascade, which should occur whenever they are stretched.
A resolution of this conundrum that keeps some of the

appealing features of the elastic energy balance model
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was recently proposed and tested experimentally by Xi
et al. [17]. They modified the Tabor & De Gennes pic-
ture by arguing that the relevant quantity that should be
balanced to determine the scale at which polymers affect
the flow is not the energy itself, but rather (as this is a
dynamically evolving system) the rate of energy transfer.
The rate of elastic energy transfer can be estimated by
dividing the Tabor & De Gennes estimate of the elastic
energy stored in the polymers by the polymer relaxation
time τp, since τp is the time scale on which the polymers
will release this stored energy, while the rate of turbulent
kinetic energy transfer is simply given by ǫT . Balancing
these quantities predicts that the polymers should affect
the cascade at a scale

rǫ = A

(

kBT

ρ

)2/(5n)

c2/(5n)p ǫ
(1/2)−(2/(5n))
T τ (3/2)−(2/(5n))

p ,

(2)
whereA is an unknown scaling constant and n is the same
exponent that appears in equation 1. By analyzing data
from an experiment similar to the one described here,
Xi et al. [17] determined that n ≈ 1 and A ≈ 100, and
were able to collapse the data from experiments over a
range of Reynolds numbers and polymer concentrations
by re-scaling by rǫ. For our purposes, the key predic-
tion of this energy flux balance model is that, for fixed
turbulence parameters and polymer properties, we would
expect lengths in the cascade to be re-scaled by a factor

of c
2/5
p . The energy flux balance model also predicts that

rǫ should vary with the energy transfer rate ǫT , which
may (weakly) change with the addition of polymers to
the flow (see, for example, fig. 1(b) below). With n = 1,

however, rǫ scales only as ǫ
1/10
T , and so we neglect it here

and only consider the (stronger) scaling with polymer
concentration.

III. APPARATUS AND DATA ACQUISITION

A. von Kármán Swirling Flow

We generated turbulence in a closed plexiglass cylin-
drical tank measuring 89 cm in height and 58 cm in di-
ameter by counter-rotating two impellers aligned axially
along the centerline of the cylinder. The impellers them-
selves have a diameter of 44 cm, so that they occupy a
large fraction of the cross-sectional area of the tank. The
distance between the impellers is 50 cm, so that the ac-
tively driven volume of the flow has a nearly unit aspect
ratio.
As discussed above, we seek a driving mechanism that

is as inertial as possible, rather than one that couples
to the fluid though boundary-layer interactions. Each
of the impellers is therefore fitted with 5 cm straight
vanes rather than being smooth. The impellers are driven
by independent AC motors that are mechanically geared
down to provide sufficient torque to drive the fluid with-
out undue rotation speed. As the injected kinetic en-

ergy is dissipated by viscous action, heat in generated
in the working fluid. To prevent the water temperature
from rising over time, we run temperature-controlled wa-
ter through double-spiral channels in the aluminum top
and bottom plates of the apparatus. Because the turbu-
lence mixes efficiently, this boundary cooling is sufficient
to maintain a roughly uniform temperature throughout
the apparatus with no mean gradients. We monitor the
temperature via four thermocouples placed inside the ap-
paratus; measurements from these thermocouples show
that the temperature is constant in time and uniform in
space to within less than 0.1 ◦C.
For the data presented here, the rotation rate of each

impeller was controlled to be 0.23 Hz. By measuring the
Eulerian velocity structure functions (see below), we find
that in pure water this rotation rate corresponds to a
Taylor-microscale Reynolds number of Rλ = 420. The
integral length scale L is measured to be 14.2 cm by es-
timating the energy dissipation rate ǫ from the structure
functions for several different rotation rates and assum-
ing that ǫ = u′3/L, where u′ is the turbulence intensity,
as is typically done in these kinds of flows [23]. The Kol-
mogorov length scale η is 124 µm, and the Kolmogorov
time scale τη is 15.2 ms, as determined from their defini-
tions.

B. Particle Tracking

To measure the flow, we use three-dimensional La-
grangian particle tracking [24]. We seed the fluid with
30 µm polystyrene microspheres that contain a fluores-
cent dye that absorbs in the green and fluoresces in the
red. We excite the particles with a Q-switched Nd:YAG
laser running at a pulse rate of 10 kHz and with an
average power of 45 W. The motion of the particles is
then recorded by three Photron Fastcam SA5 cameras
at a rate of 2000 frames per second at a resolution of
1024×1024 pixels. This frame rate corresponds to ap-
proximately 30 images per τη at this Reynolds number.
The three cameras have an angular separation of 45◦ in
the horizontal plane; the central camera is positioned 30◦

out of plane to improve the depth resolution of the sys-
tem. Using the method of Tsai [25], we calibrate the
imaging system by assuming a pinhole model for each
camera, and fix the model parameters by imaging a grid
of evenly spaced dots with a known spacing. We can
then use this model to reconstruct the three-dimensional
positions of the tracer particles using standard stereo-
imaging techniques [24]. For the data presented here, we
image a volume with a linear dimension of 2.3 cm in the
center of the apparatus.
We use a three-frame best-estimate predictive track-

ing algorithm to combine the time-resolved three-
dimensional particle positions into trajectories [24]. Ac-
curate velocities and accelerations are then computed
along the trajectories by convolving the tracks with a
smoothing and differentiating kernel [26]. Lagrangian
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statistics can be naturally computed from the raw tra-
jectories; and since we measure many particles at each
time step, Eulerian statistics can also be obtained from
the contemporaneous particle measurements.

C. Polymer Solutions

For the results presented here, we used a high-
molecular-weight (18×106 a.m.u.) polyacrylamide (Poly-
Sciences 18522) as our flow additive, at concentrations φ
ranging from 1 to 20 parts per million (ppm) by weight.
We note that cp defined above is the number density of
polymer chains, whereas φ is the weight/weight concen-
tration; one is easily obtainable from the other, given
knowledge of the solvent, and they scale linearly with
one another for any given polymer. The concentrations
we consider here are low enough (an order of magnitude
below the overlap concentration, for example) that the
change in shear viscosity due to the polymers is negligi-
ble and that the longest relaxation times of the solutions
should be independent of concentration [27].
For this polymer, the radius of gyration Rg at equilib-

rium is roughly 0.5 µm, and the fully stretched length is
about 75 µm. The relaxation time τp (calculated using
the Zimm model) is 43 ms, giving us a Weissenberg num-
ber (based on the Kolmogorov time scale) of Wi = 2.8.
To prepare the polymer solutions, we dissolve the ap-

propriate mass of dry polymer in 2 liters of deionized
water by gentle stirring over a 12-hour period to create
a high-concentration stock solution. We then gravity-
feed this stock solution into the turbulence apparatus,
avoiding any mechanical degradation that may occur if
we were to use a pump. To ensure that the polymers are
distributed homogeneously in the apparatus, we spin the
impellers at a low rotation rate (0.14 Hz) for periods of
up to a few hours before acquiring data. This procedure
has been shown in previous, similar experiments to lead
to robust, repeatable results [15].
Mechanical degradation and chain scission is always a

concern when studying polymers in turbulence: if the
turbulent strain rate is large enough to stretch poly-
mers appreciably, fluctuations in the strain rate may be
large enough to break the chains. If the chains begin to
break, the effective polymer concentration will decrease.
To check for degradation, we monitored the acceleration
variance as measured from the tracer particles as a func-
tion of time for each of our data runs, as this variance has
been shown to be quite sensitive to the polymer concen-
tration [15]. For each concentration, we acquired data
over a period of about 30 hours. Although there are
certainly fluctuations in the acceleration variance, we ob-
served that the mean value of the variance did not change
with time over the course of the experiment. We also
note that we used this test to determine the fastest im-
peller rotation rate, and therefore largest Reynolds num-
ber, we could safely study without polymer degradation;
at higher rotation rates, we did observe a change in the
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FIG. 1. (a) Root-mean-square (r.m.s.) velocity as a function
of the polymer concentration φ. Data are shown for the three
independent directions in the experiment (y is the axial di-
rection) and for the turbulence intensity u′. (b) Estimate of
the energy injection rate ǫI = u′3/L as a function of φ.

acceleration variance over time.

IV. EULERIAN STATISTICS

A. Large-scale Flow

As described above, we drive the flow with baffled discs
to minimize the impact of drag reduction at the forc-
ing element [11]. Nevertheless, some modification of the
large-scale flow is likely unavoidable, since we are not
injecting energy and momentum into the flow via a vol-
umetric body force. To estimate how much the large
scales of the flow were modified after the polymers were
added, we measured the root-mean-square (r.m.s.) veloc-
ity as a function of polymer concentration φ, as shown
in figure 1(a). We show both the three velocity compo-
nents (with 〈u2

x〉
1/2 and 〈u2

z〉
1/2 in the radial plane of the

apparatus and 〈u2
y〉

1/2 in the axial direction) as well as
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the turbulence intensity u′ =
[

(1/3)〈u2
x + u2

y + u2
z〉
]1/2

.
The trend for all the velocity components is similar, de-
creasing weakly with concentration. By φ = 20 ppm, the
r.m.s. velocities are about 10% lower than their measured
values in pure water.
Although the decrease in velocity is fairly small, it

may have a somewhat larger effect on the energy injected
into the cascade. The energy injection rate ǫI is of or-
der u′3/L, where L is the integral length scale; thus, a
small change in u′ leads to a larger change in ǫI . We
show this estimate of ǫI as a function of concentration
in figure 1(b). ǫI does indeed fall off more sharply with
concentration, particularly for φ > 5 ppm. Thus, some
of the decrease in the measured energy dissipation that
we will describe below should be attributed to a decrease
in energy injection.

B. Velocity Structure Functions

In addition to a potential global damping of turbu-
lence via a weakening of the energy injection, polymers
are also widely thought to selectively smooth the velocity
field at small scales, weakening some of the intense ve-
locity gradients that are responsible for a significant part
of the turbulent dissipation [10]. This effect is qualita-
tively apparent by simple observation of the trajectories
of tracer particles in Newtonian turbulence and in wa-
ter with a small concentration of polymers, as shown in
figure 2. However, to quantify the selective damping of
various turbulent scales, we must turn to a more precise
statistical measure.
The Eulerian velocity structure functions, defined as

the statistical moments of spatial velocity increments,
are standard tools to characterize the turbulent energy
cascade, and, as in a sense coarse-grained velocity gra-
dients, are sensitive to the spatial structure of the flow
field in the inertial range. Here, we focus on the second-
order structure functions. Given values of the velocity
field at positions x and y, we define the velocity incre-
ment to be δu(x,y) = u(y) − u(x). In homogeneous
turbulence, δu depends only on the distance between
the two points r = y − x. The second-order Eulerian
velocity structure function tensor is then defined to be
Dij(r) = 〈δui(r)δuj(r)〉. In isotropic turbulence, this
tensor can be completely characterized by the two scalar
functions DLL(r) (the longitudinal structure function,
where the velocities are taken to be parallel to r) and
DNN (r) (the transverse structure function, where the
velocities are perpendicular to r). Here, we show only
data for the transverse structure function DNN ; in ex-
periments, it is typically better resolved, since in three
dimensions there are two independent measurements of
DNN per pair of velocities.
In isotropic turbulence, one expects that

DNN (r) =
4

3
C2(ǫT r)

2/3 (3)

for η ≪ r ≪ L, where η is the Kolmogorov length scale
and L is the integral length scale. C2 is expected to be
a universal constant, with a measured value of 2.13 [28].
Although there may be some intermittency corrections to
the scaling exponents, at second order they are expected
to be very small [29]. Thus, the compensated structure
function

[

3

4

DNN(r)

C2r2/3

]3/2

= ǫT (4)

can be used to estimate the energy transfer rate through
the inertial range in Newtonian turbulence, since in the
inertial range it should be constant and equal to ǫT .
Based on previous results [16, 17], we do not expect the
scaling in eq. 3 to change in polymer solutions. Thus, we
use the compensated structure functions here to study
the details of the statistics of turbulence in polymer so-
lutions with the baseline scaling removed.
In figure 3(a), we show these compensated transverse

structure functions both for pure water and for polymer
data at varying concentrations. The polymer concentra-
tion φ clearly has a significant influence on the statistical
properties of the flow. As has been seen before [16, 17],
as the concentration goes up, two effects are apparent:
the compensated structure functions reach their plateau
values at larger length scales, and the plateau values are
different from the water data. These effects are partic-
ularly apparent in our data for φ ≥ 10 ppm. We note
that the plateau value for the φ = 1 ppm and φ = 5 ppm
data are actually slightly larger than for the pure water
case; they are likely, however, to be within the expected
uncertainty in this measurement, which can be large [30].
The horizontal axis in figure 3(a) is scaled by ηw, the

Kolmogorov length scale computed for pure water at this
impeller rotation rate. However, this scaling is expected
to be modified in the presence of polymers; Xi et al. [17],
for example, observed a collapse of data for different poly-
mer concentrations when scaling by rǫ as derived from
their energy flux balance model. As discussed above,
that model predicts that lengths should re-scale by a fac-
tor of φ2/5. Thus, in figure 3(b), we scale the horizon-
tal axis by ηwφ2/5. Like Xi et al. [17], we do observe a
collapse of the data; however, unlike Xi et al. [17], our
data collapses onto two distinctly different curves, one for
φ ≤ 5 ppm and a second for φ ≥ 10 ppm. Our results are
thus more similar to Ouellette et al. [16], who reported
a possible critical concentration of φ ≈ 7 ppm. Xi et
al. [17] ascribed the absence of a critical concentration in
their data to a re-design of the experimental apparatus,
and in particular to the lack of vanes on the sidewalls
of the their von Kármán flow (which were present in the
experiments of Ouellette et al. [16]). However, in our ap-
paratus we also do not have vanes, and yet still see what
may be a critical concentration.
It should also be noted that the critical concentration

described by Ouellette et al. [16] separated concentra-
tions for which the structure functions measured in the
polymer data reached a plateau value of ǫT (as mea-
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FIG. 2. Long-exposure (50 ms ≈ 3.3.τw
η ) images of the trajectories of tracer particles as seen by the center camera in (a) pure

water and (b) a 10 ppm polymer solution. The trajectories are noticeably smoother and more spatially coherent in the polymer
solution.

sured from pure water) from those that did not. At
first glance, we see similar behavior here. However, as
noted above in figure 1(b), we do see some decrease in
ǫI , the large-scale energy injection rate, for larger con-
centrations. When we scale the compensated structure
functions by the measured, concentration-dependent ǫI ,
as shown in figure 3(c), the peak values for all concen-
trations are similar, although the two distinct families of
collapsed curves are still evident. Therefore, the poten-
tial critical concentration we find may be distinct from
that observed by Ouellette et al. [16].
An understanding of the factors responsible for the dif-

ferences between our results, those of Ouellette et al. [16],
and those of Xi et al. [17] remains elusive. All three
experiments were performed in flows with a similar ge-
ometry, the same polymer, and the same measurement
tools; but different results were obtained. Each data set
is also internally consistent; as we show below, for exam-
ple, different statistics calculated from our data all give
consistent results. The difference between the three ex-
periments therefore suggests that there may be some as-
yet-unknown additional parameters necessary for charac-
terizing turbulence in dilute polymer solutions.

C. Acceleration Correlations

Turbulence in polymer solutions is often qualitatively
described as being more spatially smooth than Newto-
nian turbulence at the same Reynolds number. This no-
tion can be made somewhat more concrete by studying,

for example, spatial correlation functions. The velocity
correlations, however, are not necessarily a good choice
for this purpose. They fall off (by definition) on length
scales comparable to the integral length scale, which is
difficult to capture in any experiment that seeks to re-
solve the small scales of the flow and where we cannot
make use of Taylor’s frozen-flow hypothesis due to the fi-
nite number of camera pixels, and they can additionally
suffer seriously from finite-volume biases. In addition,
the velocity correlations are not local in scale, and so the
Kolmogorov hypotheses cannot be used to predict their
scaling [31].
Some of these issues can be mitigated, however, by con-

sidering the correlations of the acceleration. As predicted
by Obukhov & Yaglom [32], these correlations both decay
over shorter length scales and have a Kolmogorov scaling
form in the inertial range that agrees well with exper-
imental measurements [33]. We define the acceleration
correlation tensor as

Rij(r) = 〈ai(x)aj(x+ r)〉, (5)

where ai(x) is the ith component of the full material ac-
celeration; that is,

ai =
∂ui

∂t
+ u · ∇ui. (6)

Also, note that strictly speaking Rij is a covariance
rather than a correlation, since we are not normalizing by
the acceleration variance. Just as for the velocity struc-
ture function, assuming statistical isotropy allows one to
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FIG. 3. (color online) (a) Compensated transverse structure
function DNN (see equation 4) as a function of r/ηw, where
ηw is the Kolmogorov scale measured from the water data.
(b) The same data as in panel (a), but with length rescaled

by a factor of φ2/5, as expected from the energy flux balance
model. (c) The same data as in panel (b), but with the vertical
axis rescaled by the measured concentration-dependent values
of ǫI (see figure 1(b)).

decompose Rij into longitudinal and transverse compo-
nents RLL and RNN , respectively; and also like for the
structure functions, we report here only measurements of
RNN .
Obukhov & Yaglom [32] showed that, under some sim-

plifying assumptions, RNN can be related to the velocity
structure function DNN (via the pressure structure func-
tions), and thereby predicted that

RNN (r) =
2

3
C2

2 ǫ
5/3
T r−2/3 (7)

in the inertial range [33]. As with the velocity structure
functions, we can compensate the acceleration correlation
as

[

3

2

r2/3RNN(r)

C2
2

]3/5

= ǫT (8)

to estimate ǫT and to make a detailed comparison of the
effects of polymer concentration.
In figure 4, we show our measurements of RNN , com-

pensated according to equation 8, for pure water and
for varying polymer concentrations. In figure 4(a), we
scale the separation r by ηw, while in figure 4(b) we also
include the expected concentration dependence of φ2/5.
Although there results are less dramatic than for the ve-
locity structure functions, similar behavior is seen: once
we include the concentration scaling, we see the data col-
lapse onto two master curves, with high-concentration
data behaving differently from low-concentration data.
We also note that the plateau value, which according to
equation 8 should be ǫT , is much lower than the estimate
from the velocity structure functions, and is additionally
nearly the same for all values of φ without re-scaling by
ǫI as in figure 3(c). The most likely cause of this dis-
crepancy is under-resolution of the acceleration, since it
is very difficult to measure the enormous fluctuations of
acceleration accurately [23], particularly with the rela-
tively low frame rate we have used here. However, we
also note the possibility that, since the acceleration is
a very small-scale quantity, the plateau value of the ac-
celeration correlations may be related more strongly to
the viscous energy dissipation rate ǫD rather than the
energy transfer rate ǫT , even though the inertial-range
scaling prediction for the velocity structure function is
used in deriving equation 8. Obukhov & Yaglom [32],
of course, made no distinction between ǫD and ǫT , since
they are the same in Newtonian turbulence.

V. LAGRANGIAN STATISTICS

A. Velocity Structure Functions

Just as in the Eulerian context, velocity structures
have played a central role in characterizing the La-
grangian properties of turbulence. In the Lagrangian
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FIG. 4. (color online) (a) The transverse acceleration corre-
lation function RNN , compensated by the inertial range scale
prediction as in equation 8, with lengths scaled by ηw. (b)
The same data as in panel (a), but with lengths rescaled by

φ2/5.

framework, the structure functions are still the statisti-
cal moments of the velocity increments δu; in contrast to
the Eulerian case, however, the increments are now taken
along Lagrangian trajectories and are explicit functions
of time only. In particular, the second-order Lagrangian
structure function is given by DL

ij = 〈δui(τ)δuj(τ)〉,
where τ is the time lag separating the two velocity mea-
surements along a single trajectory. In isotropic turbu-
lence, DL

ij(τ) must be an isotropic tensor and therefore
proportional to the identity tensor δij , since τ is a scalar.
Applying Kolmogorov theory, one expects that

DL
ij(τ) = C0ǫT τδij (9)

in the Lagrangian inertial range (that is, for τη ≪ τ ≪
TL, where τη is the Kolmogorov time scale and TL is
the integral time scale). C0 is again a constant that is
expected to be universal, although there is less consensus
on its value that on the corresponding Eulerian constant
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FIG. 5. (color online) (a) The second-order Lagrangian struc-
ture function DZZ (z is in the radial plane of the experiment)
compensated by C0τ , with time scaled by τw

η , the Kolmogorov
time scale computed for the water data. (b) The same data

as in panel (a), but with time rescaled by a factor of φ4/15.

C2. In a similar flow at the Reynolds number considered,
its value was measured to be C0 ≈ 6 in the radial plane
[34], and that is the value we use here in defining the
compensated structure function. We also note that, as
is typical in von Kármán flows, the effective value C0,
as well as the velocity fluctuations themselves (see figure
1(a)), tend to be smaller in the axial direction (y, in
our convention). Here, we therefore only report one the
radial components of DL

ij , D
L
zz.

In figure 5(a), we plot DL
zz(τ) compensated by C0τ

for water and for varying polymer concentrations, with
time scaled by τwη , the Kolmogorov scale for the water
data. Several features are immediately evident. First,
the scaling range is very short even for the water data
(if indeed the Lagrangian structure functions scale at all
[35]). Additionally, as with our Eulerian results, there is
a clear concentration effect: both the peak value of the
structure functions and the position of this peak shift
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with φ.

The energy flux balance model gives us a way to cap-
ture the variation of spatial, Eulerian statistics with φ.
However, it is not obvious how to use the flux-balance
model to capture temporal re-scaling. The elastic energy
stored by the polymers is explicitly due to their stretch-
ing, and is therefore connected to length scales, not time
scales. The only natural time scale in the model is the
polymer relaxation time τp, but τp is not concentration-
dependent.

Instead, we here propose a simple physical picture to
estimate how times should re-scale in the presence of
polymers. In the energy flux balance model, the key
physics involves the stretching of the polymers by turbu-
lent eddies of scale rǫ, which is determined by balancing
the rate of turbulent energy transfer through an eddy of
scale rǫ and the rate at which polymers release the stored
elastic energy when they are stretched to a length rǫ. So,
to define a time scale from this picture, we use the Kol-
mogorov estimate of the lifetime of an eddy of size rǫ,
namely

tǫ =

(

r2ǫ
ǫT

)1/3

. (10)

Inserting rǫ from equation 2, we therefore expect that
times should rescale with concentration by a factor of
φ4/15. We note that tǫ is also the Kolmogorov estimate
for the strain rate at the scale rǫ; thus, this argument is
equivalent to requiring that the scale-local strain rate be
sufficient to stretch the polymers.

To test this scaling prediction, in figure 5(b), we plot
the compensated Lagrangian structure function with the
time axis scaled by an additional factor of φ4/15. Al-
though the collapse is not as clean as it was for the Eule-
rian structure functions (figure 3(b)), the position of the
peak does approximately overlap for the different concen-
trations. And, just as with the Eulerian structure func-
tions, we find two classes of behavior, with qualitative
differences between φ ≤ 5 ppm and φ ≥ 10 ppm.

B. Relative Dispersion

The Lagrangian description of fluid flow is intimately
connected to transport and mixing. In turbulence, one
must typically distinguish between the advection of mate-
rial away from a fixed source and the growth and spread-
ing of an initialized localized cloud of material [31]. The
former problem is dominated by the temporal velocity
correlations and can be modeled as a (turbulent) diffu-
sion process [36]; but the latter shows nontrivial turbu-
lence scaling. As first described by Richardson [37], the
simplest parameterization of the spread of a cloud is the
separation of two initially nearby fluid elements, termed
relative dispersion [38, 39].

In the inertial range, the mean-squared separation r(t)

is expected to show two distinct scalings [31]:

〈(r(t) − r0)
2〉 =

{

11
3 C2(ǫT r0)

2/3t2, τη ≪ t ≪ t0
gǫT t

3, t0 ≪ t ≪ TL
,

(11)
where r0 is the initial separation of the pair. For short
times t ≪ t0 = (r20/ǫT )

1/3 for which r0 remains an impor-
tant parameter, the separation scales ballistically in time
in the so-called Batchelor regime. In this time range, the
pair can be thought of as residing on the same turbulent
eddy of scale r0, and so their statistics are dominated
by the difference in velocity across this eddy—and there-
fore by the Eulerian velocity structure function at scale
r0. This is the origin of the coefficient (11/3)C2(ǫT r0)

2/3,
the trace of the second-order Eulerian structure function.
At longer times (but still shorter than the integral

time scale TL) for which the initial separation is forgot-
ten and the eddy the two particles initially belonged to
has broken up, the separation should enter the universal
Richardson regime; g is known as the Richardson con-
stant. Because the scale separation must be incredibly
large to observe two distinct power-law scalings in the in-
ertial range, the Reynolds number must be very high to
distinguish these two cases [40]. At our Reynolds num-
ber, therefore, we would not expect to see Richardson
dispersion even for the water case; however, we do ex-
pect robust Batchelor scaling. And, since relative dis-
persion in the Batchelor scaling regime is dominated by
the statistics of the Eulerian structure functions [41], we
would expect to observe similar polymer effects as we
have shown above.
In figure 6(a), we plot the mean-squared pair disper-

sion scaled by the Batchelor prediction, so that the curves
would plateau at ǫT if the Batchelor scaling holds (that

is, we plot 〈(r(t)− r0)
2〉3/2/

[

(11/3)C2r
2/3
0 t2

]

) for initial

pair separations lying in the range 10 mm < r0 < 11 mm.
The time axis is scaled by t0 = (r20/ǫT )

1/3. As would be
expected given the results shown above, there is a strong
polymer concentration effect; as φ increases, the effective
value of ǫT appears to decrease. Consistently, the curves
begin to deviate from the Batchelor scaling prediction (in
the expected way [40, 41]) at later times as φ increases.
In figure 6(b) and (c), we attempt to collapse the dis-

persion data by scaling time and space according to the
energy flux balance model; that is, lengths are rescaled by
φ2/5 and times by φ4/15. We note that in the Batchelor
regime, data must be considered separately for different
initial pair separations, as r0 is an explicit parameter;
thus, we must also scale the initial separations by φ2/5.
In figure 6(b), we show the compensated dispersion data
for initial separations of r0 ∈ [20, 30]ηwφ2/5, with both
axes rescaled to account for concentration effects. Just
as we have shown above, the data fall onto two distinct
families of curves, one for lower concentrations (and pure
water), and one for higher concentrations. The collapse
is not quite as clean for the larger concentrations, some
of which could be due to the small initial separations:
scales of ∼ 20ηw are only marginally in the inertial range.
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FIG. 6. (color online) (a) Mean-squared pair separation scaled
by the Batchelor prediction (see equation 11 and the text) to
obtain ǫT , as a function of time scaled by tw0 , as calculated
from the water data alone for initial pair separations r0 ∈

[10, 11] mm. (b) Similar data, but with all lengths rescaled

by φ2/5 and all times by φ4/15, for initial separations r0 ∈

[20, 30]ηwφ2/5. (c) Data scaled as in panel (b), but with r0 ∈

[50, 60]ηwφ2/5.

We therefore also consider larger initial separations with
r0 ∈ [50, 60]ηwφ2/5 in figure 6(c). The trend is very simi-
lar, but the data are again somewhat noisy. In this case,
the noise is likely statistical; at high concentrations, these
initial separations are quite large in physical units, and
so not many pairs with these initial separations remain
in our measurement volume for long times. For both
figure 6(b) and (c), however, we note that the tempo-
ral recalling (that is, rescaling the horizontal axis by a
factor of φ4/15) appears to work quite well: the curves
peel away from the Batchelor prediction at about the
same concentration-corrected time scale, at a value that
is consistent with earlier experimental findings for pure
water [40, 41].

VI. DISCUSSION AND CONCLUSIONS

We have presented here a wide range of turbulence
statistics for flow in dilute polymer solutions. Although
these metrics include both Eulerian and Langrangian
measures, and measure position, velocity, and acceler-
ation, they present a consistent picture. In all cases, the
concentration scaling predicted by the energy flux bal-
ance model [17] appears to work quite well, even when
translated into the time domain. However, unlike what
has been seen before in experiments, we also consistently
observe two families of curves that independently col-
lapse; one for small concentrations with φ ≤ 5 ppm, and
one for larger concentrations with φ ≥ 10 ppm. This
behavior is unexpected, and somewhat mysterious.
A full understanding of the effects we see will require

future detailed experimentation and testing; here, how-
ever, we offer one possible explanation for the data. The
energy flux balance model (and, indeed, most models of
turbulence modification by additives) assumes that the
polymers are very dilute, and therefore that each polymer
chain can be treated as independent. This is expected to
be a good approximation at concentrations such as those
we consider here. For this polymer, the overlap concen-
tration φ∗ at which it begins to break down has been
estimated to be in the range of 200-250 ppm [42]. How-
ever, as the polymers begin to stretch, their effective size
grows, and they may begin to interact more than would
be expected given their equilibrium size in water. φ∗

should scale as the inverse cube of the polymer radius of
gyration Rg, since it is determined by estimating when
the volumes occupied by nearby polymer chains begin to
intersect. We can use this scaling and the value of φ∗

at equilibrium to estimate that if the difference in the
two families of curves we see between φ = 5 ppm and
φ = 10 ppm were due to the stretched polymers passing
out of the dilute regime, we would expect the effective
size of the polymers to be about 3 to 4 times larger than
their equilibrium radius of gyration Rg.
Measuring the actual extension of the polymer chains

in our experiment is not possible. We can, however, es-
timate the likely mean polymer extension by comparing
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our experimental parameters to models. Numerical sim-
ulations of bead-spring models of polymer chains in tur-
bulence have suggested that a fairly sharp coil/stretch
transition occurs at a Weissenberg number (based on the
Kolmogorov scale) of about 3 [43], after which the poly-
mers are nearly fully extended. Here, however, our Weis-
senberg number is smaller (Wi = 2.8), and may be in
the narrow transitional range between fully coiled poly-
mers and fully stretched chains. At this Weissenberg
number, the simulations suggest the mean polymer ex-
tension should be about 5% of the fully stretched chain
length [43]—quite similar to our estimate above. Thus,
it is plausible that the qualitative difference between the
families of curves we see may be due to the polymers
passing out of the dilute regime, given the turbulent dy-
namics, for our higher concentrations but not our lower
concentrations. This argument would also explain why
Xi et al. [17] did not see the two families of curves we
observe here. Nearly all of their data was taken for Weis-
senberg numbers larger than the coil-stretch transition,
and so any effects due to changes in the polymer con-
formation would be frozen out; from the standpoint of
the polymer concentration, their data were all asymp-
totic. We note that a similar sensitivity to Weissenberg
number was found in numerical simulations of homoge-
neous shear turbulence in polymer solutions by Robert et
al. [44]. These authors reported a low Weissenberg num-
ber regime where the flow was very sensitive to small
changes in the polymer effects and a high Weissenberg

number regime where it was less so. Although their
mechanism may be different, both because the flow had
a strong mean shear and because the polymers were rep-
resented by a continuum field so that there were no indi-
vidual polymer chains to interact, the core physics may
be similar to what we argue here.

In summary, we conducted measurements of various
turbulence statistics, both Eulerian and Lagrangian, in a
dilute solution of long-chain polymers at high Reynolds
number but moderate Weissenberg number over a range
of concentrations. Our results are mostly consistent with
the recently proposed energy flux balance model; how-
ever, we routinely see a collapse of our data onto two
master curves, not one, when the effect of concentration
is taken into account. Although a full understanding of
this effect is still elusive, we suggest that the transition
may be due to the onset of interactions between the in-
dividual polymer chains. These results argue that the
detailed effects of polymer concentration on turbulence
are still not fully understood.
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