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The force network of a granular assembly, defined by the contact network and the corresponding
contact forces, carries valuable information about the state of the packing. Simple analysis of
these networks based on the distribution of force strengths is rather insensitive to the changes in
preparation protocols or to the types of particles. In this and the companion paper (Kondic etal.,
Phys. Rev. E), we consider two dimensional simulations of tapped systems built from frictional disks
and pentagons, and study the structure of the force networks of granular packings by considering
network’s topology as force thresholds are varied. We show that the number of clusters and loops
observed in the force networks as a function of the force threshold are markedly different for disks
and pentagons if the tangential contact forces are considered, whereas they are surprisingly similar
for the network defined by the normal forces. In particular, the results indicate that, overall, the
force network is more heterogeneous for disks than for pentagons. Such differences in network
properties are expected to lead to different macro-scale response of the considered systems, despite
the fact that averaged measures (such as force probability density function) do not show any obvious
differences. Additionally, we show that the states obtained by tapping with different intensities that
display similar packing fraction are difficult to distinguish based on simple topological invariants.

PACS numbers: 45.70.-n, 83.10.Rs

I. INTRODUCTION

Particulate systems are very common in nature and in
a variety of technologically relevant applications. Many
of these systems are composed of particles that remain in
contact for relatively long periods. These contacts form a
network, whose properties are important for the purpose
of understanding the system as a whole. However, the
contact network provides only partial information about
the interaction between the particles. In order to ob-
tain a deeper understanding of a particulate system, the
strength of the contacts needs to be considered. This nat-
urally leads to the concept of force networks. The prop-
erties of these meso-scale structures are of fundamental
importance for the purpose of revealing the underlying
physical causes of many phenomena. For example, the
electrical conductivity of a granular bed strongly depends
not only on the actual strength of the contacts [1], but
also on the structure of the contact network and the pres-
ence of paths of strong contacts [2]. Similarly, the elastic
properties of these systems are very sensitive to the char-
acteristic of underlying force network [3, 4], to the degree
that different packing structures can be distinguished by
their response to sound propagation [5].

Due to their importance, both contact and force net-
works have been analyzed extensively in recent years.
While earlier research focused mostly on basic statisti-

cal properties of these networks by computing probabil-
ity density functions (PDFs) of the contact forces, see,
e.g., [6, 7], during the last few years a variety of other
approaches have been considered. These approaches in-
clude, among others, network-type of analysis [8–11], ex-
ploration of the properties of the cycles (loops) formed
by the force [12] and contact [13, 14] networks, and the
force tiling approach [15]. Regarding the connection (or
the lack of it) between force and contact networks, it is
worth mentioning recent works [16, 17] that illustrated
that the properties of ‘force chains’ (defined appropri-
ately) differ significantly from the dominant geometrical
features (bridges/arches) arising in the contact network.
The analysis of topological properties of force and contact
networks [18–21] has quantified the differences between
these networks in much more detail, and has generally
shown that the properties of the force networks depend
strongly on the force level (threshold) considered.

Particulate systems consisting of circular/spherical
particles have been intensively studied by theoretical,
computational and experimental approaches. The simple
shape of these particles makes the study easier compared
to the systems consisting of particles of other shapes.
However, the particles relevant to applications are typ-
ically not circular. Therefore, it is important to under-
stand similarities, as well as differences, between the sys-
tems consisting of circular/spherical particles and parti-
cles of other shapes. This problem appears to be rather
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complex, and the number of works considering in de-
tail the influence of the particle shape is rather limited,
with focus on probability density functions (PDFs) of
the inter-particle forces [22, 23], contact networks [24],
anisotropy of force networks under shear [25–27], and
influence of particle shape on shear strength of the ma-
terial [28]. Connectivity properties were also discussed
in the context of experiments carried out with photoe-
lastic particles [29]. Considering the force PDF for a
moment, we note that this measure only provides infor-
mation about the strength of the forces and does not
shed much light on the local and global properties of the
underlying force network. We will show that physical
systems with similar PDFs can give rise to very differ-
ent force networks and therefore could exhibit different
response to external perturbation.

In this and the companion paper [30], we focus on
quantifying force networks in tapped systems of disks and
pentagons in two spatial dimensions. Figure 1 shows ex-
amples of the force networks that we will consider. In
addition to quantifying the influence of particle shape
on the properties of force networks, we also consider the
spatial heterogeneity induced by gravity, as well as the
effect of the preparation protocol on seemingly equivalent
states. For this purpose, we use the techniques based on
computational topology that have been already used to
analyze systems exposed to compression [18–21]. In the
present paper, we will consider simple measures, based
on analyzing the components (clusters) and the loops
(holes) formed by the force networks at different force
thresholds. We focus on the Betti numbers β0 and β1,
that correspond to the number of components and loops,
respectively. Additional more complex measures based
on persistence homology are discussed in [30].

One interesting feature of granular columns subjected
to vibration (or taps) is that they reach steady states
that may have the same packing fraction, φ, even if the
intensity of the taps differ significantly [31–33]. This is
the case also for polygonal grains [34]. Hence, a natural
question is what distinguishes two states with same φ.
Here, we will go beyond some preliminary findings [14]
on the distinctive contact network of these same-φ steady
states and look into the associated force network.

After presenting the computational methods in Sec. II,
we compare force networks in different settings. In
Sec. III A, we show that the gravitational compaction
influences the structure of the force networks beyond a
simple change in the average force level. In Sec. III B we
turn our attention to comparing the force networks of a
system characterized by the same packing fraction ob-
tained with different tap intensities. Then, in Sec. III C,
we identify similarities and differences between force net-
works corresponding to the systems built out of disks and
pentagons. Section IV is devoted to conclusions and fu-
ture outlook.

FIG. 1. (Color online) Sample snapshots of the disks (a) and
(b), and pentagons (c) and (d) prepared by tapping at low
tapping intensity, Γ = 3.83

√
dg (see Sect. II). The contact

forces are indicated by segments connecting the touching par-
ticles colored according to the strength of the normal (a) and
(c), or tangential (b) and (d) components of the force. The
color scale indicates the force in units of mg, with m the mass
of a particle and g the acceleration of gravity.
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II. METHODS

A. Simulation

We carried out discrete element method (DEM) simu-
lations of two-dimensional (2D) systems of particles. The
simulations were implemented by means of the Box2D li-
brary [35]. Box2D uses a constraint solver to handle hard
bodies. At each time step of the dynamics a series of iter-
ations (typically 20) are used to resolve overlaps between
bodies through a Lagrange multiplier scheme [36]. After
resolving overlaps, the inelastic collision at each contact
is solved and new linear and angular velocities are as-
signed. The equations of motion are integrated through
a symplectic Euler algorithm. Solid friction is also han-
dled by means of a Lagrange multiplier scheme that im-
plements the Coulomb criterion. This library achieves
a high performance when handling complex bodies such
as polygons. The approach yields realistic dynamics for
granular complex bodies and has been successfully used
to study grains under tapping [34, 37] and also under
vigorous vibration [38].

The systems consist of 500 monosized particles (either
disks or regular pentagons). Both type of particles have
the same area and material density. The diameter, d, of
the disks is set to 1.0. Pentagons have a radius (center-to-
vertex distance) of 0.57474d; this choice ensures that they
have the same mass as disks. The particles are placed in
a rectangular box 14.4d wide which is confined to move in
the vertical direction. This box is high enough to avoid
particles contacts with the ceiling.

We set the particle–particle interactions to yield a low
normal restitution coefficient ε = 0.058. This ensures
that the grains come to rest after each tap in a relatively
short simulation time. The static, µs, and dynamic,
µd, friction coefficients are set to 0.5. The particle–
wall restitution coefficient is as in the particle–particle
interaction. The particle–wall friction coefficients are
µs = µd = 0.005. These low values lead to a reduced
Janssen-like effect. We define m as the mass of a particle
and g as the acceleration of gravity. The time step δt
used to integrate the equations of motion is 0.015

√
d/g.

Particles, initially placed at random, without overlaps
in the box, are let to settle until they come to rest in order
to prepare the initial packing. Then, 600 taps are applied
to each sample. After each tap, we wait for the particles
to equilibrate. The new static configuration after each
tap is saved for the force network analysis. This includes
the particle positions and orientations along with the con-
tact forces. In the case of pentagons, Box2D represents
side-to-side contacts as two effective point contacts that
define a segment along the shared side. We add these
two forces on both point contacts to represent the total
force exerted on the face-to-face contact. The initial 100
taps are discarded and only the final 500 ones are used
in the analysis. In previous works [32, 33], we found that
hundred taps was sufficient to reach a well defined steady
state for the tap intensities used.
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FIG. 2. (Color online) Steady state packing fraction, φ, as a
function of Γ for disks and pentagons. The error bars indicate
the standard error on the mean φ, which is averaged over 30
taps after reaching the steady state.

Tapping itself is simulated by hitting the containing
box upwards so it flies and falls back due to gravity on
a solid base. To achieve this, while the box is at rest on
the solid base, we reset the velocity, v0, of the box to a
given positive value and restart the dynamics. The box–
base restitution coefficient is set to zero. While the box
dissipate all its kinetic energy when contacting the base,
particles inside the box bounce against the box walls and
floor until settling. After all particles come to rest, a new
tap is applied. The intensity, Γ, of the taps is measured
by the initial velocity imposed to the confining box at
each tap (i.e. Γ = v0).

Figure 2 shows the steady state φ as a function of
Γ. Although pentagons display much lower packing frac-
tions, both systems reach a minimum in φ, as discussed
in [34]. The minimum packing fraction results from
the competition between arch formation and breakage.
At high tap intensities, particles deposit mostly sequen-
tially since they are separated by large distances during
the tap, preventing arch formation (a cooperative phe-
nomenon) and leading to relatively high φ. At low tap
intensities, any arch formed can be slowly rearranged and
broken after a number of taps; however it can hardly be
rebuilt due to the little free volume created by the small
taps, which also leads to high packing fractions. The min-
imum in φ is observed at intermediate tapping intensity,
where the system attains a dynamic equilibrium between
arch formation and breakage with a maximum number
and size of arches (see [31]). In this paper, we consider
two values of Γ, Γ = 3.83

√
dg (low tapping intensity), and

Γ = 12.14
√
dg (high tapping intensity). The low tapping

intensity is low enough to warrant that for both particle
shapes the minimum φ has not been reached, yet large
enough to avoid the ergodicity breaking observed at very
low tap intensities [39, 40]. Due to ergodicity breaking, at
lower tap intensities, two independent realizations of the
tapping protocol may lead to different, distinguishable,
steady states.
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Figure 1 shows few snapshots of disks and pentagons
(particles and force networks). Since, based on visual
inspection, the geometrical arrangement and the forces
changes dramatically from tap to tap, all our results are
computed by averaging over a large number (500) of taps.
This number of realizations is sufficient to decrease the
statistical fluctuations significantly, and will allow us to
identify the differences between the considered networks
that are robust with respect to statistical fluctuations.
We consider only the particle–particle contacts in our
analysis; the contacts with the walls and floor of the con-
tainer are disregarded.

B. Betti numbers

The force network is represented by a scalar function,
f , from the contact network to the real numbers. Values
of this function at the edges of the network (i.e., the
connecting lines between contacting particles) are given
by the magnitude of the normal (tangential) force. The
function f is normalized by the average force level in the
system. So, an edge in the network with the value 1
represents a contact between two particles with a force
value equal to the average force 〈f〉.

We are interested in the structural properties of the
part of the force network on which f exceeds a given
threshold F . We study the properties of those parts of
the network for different values of F . For simplicity, we
restrict our attention to the number of connected com-
ponents (just ‘components’ or ‘clusters’ in what follows)
and the number of loops present in the networks. In
particular, the function β0(F ) measures the number of
components for the part of the force network exceeding
the force level F . For F > 1 these components can be
thought of as ‘force chains’. Additional insight into the
properties of a force network can be obtained by con-
sidering the number of loops, β1(F ), inside of the part
of the network exceeding the force level F . A loop in
the network is a closed path of the edges connecting cen-
ters of the particles. If not indicated otherwise, we do
not consider the trivial loops (i.e., loops made by three
contacting particles); furthermore, all the results for β0
and β1 are normalized by the number of particles in the
domain used to define the force network under consider-
ation.

A more detailed description of Betti numbers can be
found in [18] while in depth discussion of computational
homology in the context of particular matter is given
in [21]. General treatment of computational algebraic
topology can be found in [41, 42].
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FIG. 3. (Color online) Probability density functions (PDF)
(disks, low tapping).

III. RESULTS

A. Heterogeneity of force networks in
gravitationally compacted systems

We start by investigating the influence of gravity on the
structural properties of the force networks corresponding
to the steady states of the tapped disk-based systems.
The average contact force, 〈f〉, increases with depth as
long as Janssen’s saturation is not achieved. As shown
in [43], achieving this saturation is difficult in 2D. There-
fore, the average force as well as the structure of the
force network might change with depth. In order to un-
derstand the influence of the depth on the network struc-
ture, we compare two distinct horizontal slices of the sys-
tem. The thickness of both slices is 10d and the forces in
each slice are normalized by 〈f〉 inside of the slice. We
consider only the particles whose centers are inside the
slice and the interactions between these particles. The
contacts with other particles or walls are not taken into
account. Each slice contains roughly 140 particles, with
some variation from tap to tap and from disk-based to
pentagon-based systems. The top slice is centered at 27d
from the box floor, which ensures that the upper bound-
ary of this slice is about 4d below the free surface. To
minimize the boundary effects, the bottom slice is cen-
tered at 7d from the bottom of the box. Thus, approxi-
mately three bottom layers of grains are excluded.

Figure 3 shows PDFs of normal and tangential forces
for the top and the bottom slice of the disk-based sys-
tem. The comparison of the PDFs for different slices
does not reveal any prominent differences on a statistical
level. The only noticeable difference can be found at low
normal forces where the PDF of the bottom slice shows a
plateau. This behavior is expected since gravity leads to
compression, and it is known that the PDFs for granular
systems exposed to stronger compression show a plateau
at small forces, see e.g., [20].

Now we turn our attention to structural properties of
the force networks for the two slices. We investigate
changes in the number of components, present in the
force network, as we change the force threshold. Fig-
ure 4 shows β0, as a function of force threshold for the
top and bottom slices. For small force threshold, F , all
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FIG. 4. (Color online) β0 (disks, low tapping). Error bars

correspond to the standard error estimated as std/
√
N with

std the standard deviation and N = 500, the number of real-
izations considered.

particles are connected and β0 = 1. If F is large, then
there are very few contacts experiencing a force larger
than F . This leads to a small number of clusters (small
value of β0). As shown in Fig. 4, the number of com-
ponents reaches the maximum for an intermediate value
of F . This value is similar for the top and bottom slices
(F ≈ 2). However, the maxima differ significantly. For
normal forces there is a much larger number of compo-
nents in the bottom slice for F ∈ [1, 2]. For the tangential
forces this is true even for a wider range of F .

Due to gravitational compaction, the average pressure
is larger in the bottom slice. We conclude that this in-
crease in the pressure leads to the formation of a larger
number of isolated components and increases the ramifi-
cation of the force network. This finding is consistent
with the results obtained for isotropically compressed
systems, where the peak of β0 curves was shown to in-
crease with compression [18].

While additional information could be extracted from
other measures, the number of components as a function
of force threshold already shows that the properties of
force networks are depth-dependent. Therefore, in the
rest of this paper, we focus only on the bottom slices,
so that various comparisons are not obscured by hetero-
geneity.

B. Structural differences in force networks for the
systems exposed to different tap intensities

In this section, we attempt to distinguish properties
of the force networks corresponding to different Γs that
lead to the same steady state packing fractions for disks.
The mean stress tensor in the bottom slice of the system
differs slightly for the steady states at different Γ [32]. In
particular, the mean pressure p = (σ1 + σ2)/2 (where σ1
and σ2 are the principal components of the stress tensor)
is (24.5±0.4) mg/d for low taps and (25.7±0.4) mg/d for
high taps. (Note that in 2D the stress has units of force
per unit length). The deviatoric stress q = (σ1 − σ2)/2,
normalized by the mean pressure p is q/p = 0.14 ± 0.01
for low tap intensity and q/p = 0.08 ± 0.01 for high
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FIG. 5. (Color online) PDFs (disks, bottom slice).

tapping. Hence, the states are distinguishable through
macroscopic properties. However, our goal is to distin-
guish the force networks after normalizing by the average
force.

Figure 5 shows the PDFs for the systems composed
of disks, for both normal and tangential forces. Note
that they do not show any significant differences. This is
consistent with the results of similar simulations reported
in [17]. The PDFs are unaffected by the value of Γ at least
as long as they lead to the same φ.

We note that for low tap intensity, the particles barely
move, while for high tapping intensity the particles com-
pletely rearrange between the consecutive taps. Re-
calling further that we are considering monodisperse
disks, one could expect that a certain degree of order-
ing/crystallization occurs in the system tapped at low
intensity. This may lead to long-range correlation in the
contact forces that may complicate the comparison with
disordered structures such as the ones observed in poly-
disperse systems or in packings of non-circular grains.

Figure 6 shows the contact–contact pair correlation
function, g(r). The g(r) is calculated as usual, see
e.g. [44], but using the position of contact points instead
of the centers of the particles. To avoid boundary effects
on g(r) due to the empty spaces outside the containing
box, we only average over particles in a central area of
the slice, away from the walls. Figure 6 shows that there
are indeed long-range correlations in the disk packings,
and these correlations are, as expected, much stronger
for low intensity taps. The first three peaks in the g(r)
correspond to the three typical distances between the six
contacts of a circular grain in a triangular lattice arrange-
ment.

To asses the impact of spatial ordering on the proper-
ties of force distribution, we consider the correlation of
the contact forces by calculating the force–force correla-
tion function, f(r), defined as

f(r) =
1

ρc

∑ ∑
i,j>i

δ(r − ri,j)fifj ,

where ρc is the density of contact points, δ is the Dirac
delta distribution, ri,j is the contact-to-contact distance
and fi is the force experienced at the contact i, normal-
ized by the average force 〈f〉. The sum runs over all pairs
of contacts.
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Figure 7 shows f(r) for disks for the low tap inten-
sity. The overall shape of f(r) agrees with g(r) since the
main correlation comes from the positional order of the
contact points. To highlight the contribution due to the
strength of the forces, we consider the ratio f(r)/g(r),
shown in Fig. 8, for both low and high tap intensities.
There is much less structure in the force correlation if
the positional correlations are eliminated. Besides, there
is no substantial difference between the considered low
and high tap intensities. Therefore, positional ordering
(crystallization) does not reflect itself in an ordering of
the force strengths. The only strong peak in f(r)/g(r),
at r/d = 1, indicates that two contacts on a single grain
that are acting from opposite sides have a large prob-
ability of having strong forces. However, this is only a
short-range correlation.

Now we compare structural differences of the force net-
works corresponding to the systems prepared with differ-
ent tap intensities. As can be seen in Fig. 9, counting
the number of components, β0, and the number of loops,
β1, present in different networks, does not reveal any re-
markable difference between these regimes. For brevity,
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FIG. 9. (Color online) (a) and (b) β0, and (c) and (d) β1
(disks, bottom slice). Error bars are as in Fig. 4.

we show only the count of non-trivial loops. However,
including the trivial, three-particle loops does not distin-
guish the systems either (figures not shown for brevity).

In summary, strong correlations of particle positions
do not necessarily lead to correlations of the forces be-
tween the particles. Furthermore, none of the measures
considered (PDFs, force correlation functions, β0, β1) un-
cover any significant differences between the networks of
steady states characterized by the same φ but obtained
using different tap intensities. It is worth mentioning
that previous simulations and experiments [14, 45] have
found some differences in the contact networks (i.e., the
force network with F = 0) by considering the different
loop sizes (trivial loops seem to be numerous in the high
tap states). We notice that in the current work walls
present virtually zero friction whereas previous studies
were done with frictional walls. Also, we focus on the
properties of a horizontal layer of grains in contrast with
the analysis of the entire column done previously. Based
on our results, we conclude that a more careful analysis
of the structure of the force networks is needed for the
purpose of finding the differences between these equal-φ
states. Such analysis is presented in [30].
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C. Structural differences of the force networks for
disks and pentagons

Understanding differences between force networks in
the systems composed of particles of different shapes is
important to asses to what extent simple models based
on circular/spherical grains capture the properties of re-
alistic systems. In the following, we will discuss the dif-
ferences between the systems built from disks and pen-
tagons; for brevity, we consider only the low tapping
regime.

In addition to the discussion of force PDFs and struc-
tural properties of force networks, we have also con-
sidered the stress tensor for the considered systems,
to find that the disks lead to a higher mean pressure,
p = (24.5 ± 0.4) mg/d, compared to the pentagons,
p = (22.8±0.4)mg/d. Also, we note that the earlier stud-
ies of the contact forces for elongated particles [25, 26],
pentagons [27] and irregular polyhedral particles [22] re-
vealed that the orientational distribution of the contact
forces was more anisotropic than for circular or spheri-
cal grains. For the considered systems, we find that the
mean deviatoric stress normalized by the mean pressure
is q/p = 0.14 ± 0.01 for disks and q/p = 0.24 ± 0.01 for
pentagons. This indicates a more anisotropic stress for
pentagons, consistent with results on isotropically com-
pressed systems [27]. Again, these results reveal that
there are some differences between the systems, yet pro-
vide no information about the connectivity of the force
network.

We start by considering the PDFs for disks and pen-
tagons, shown in Fig. 10. Note that the distributions of
the tangential forces are indistinguishable. On the other
hand, there is a faster decay at large normal forces for
pentagons. Disks contain a larger number of contacts
than pentagons at normal forces around F = 1. This
is in agreement with the results for similar systems ex-
posed to isotropic compression [27]. Let us now consider
the behavior of the PDF of the normal forces for F > 1.
For pentagons, the decay is consistent with Gaussian be-
havior while for the disks the decay is exponential. A
Gaussian decay has been shown to be connected with
the presence of arches in the structure [17]. This is con-
sistent with the intuition that pentagons are more prone
to form arches than circular grains. However, the dif-
ferences in PDF are rather subtle. Moreover, disk pack-
ings can also show Gaussian-like PDF depending on the
preparation protocol [46]; hence a Gaussian PDF is not a
signature of non-circular particles. In the rest of this sec-
tion, we show that more significant differences between
the systems can be identified by considering the global
geometry of the force networks.

Figure 11 shows β0 as a function of the force thresh-
old, F , for disks and pentagons. For normal forces, β0
is rather similar for both types of particles. In the range
2 < F < 4, the number of components is slightly larger
for pentagons. This shows a correlation with the PDFs
given in Fig. 10(a) where pentagons show a larger number

(a) Normal forces (b) Tangential forces
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FIG. 10. (Color online) PDFs (bottom slice, low tapping).

of contacts in the same range. Note that these features
do not need to be correlated since β0 depends not only
on the number of contacts at a particular force level, but
also on how these contacts (edges) connect with the edges
in the portion of the force network that corresponds to
larger F . In general, β0 is larger for tangential than for
normal forces [compare Figs. 11(a) and (b)]. This indi-
cates that the edges of the normal force network corre-
sponding to the contacts characterized by strong forces
tend to be more connected and form less clusters than
for the tangential force network. Hence, for the normal
force network, the edges with lower force values are more
likely to be connected to the components present in the
force network for larger force threshold. This effect is
observed in Fig. 1, where force chains (corresponding in
the loose sense to the components at high F ) are larger
for the normal than for the tangential forces.

Restricting our attention to the tangential forces,
Fig. 11(b) indicates that β0 is significantly larger for the
pentagons than for disks. This means that, as we re-
duce the threshold F from a large initial value, the new
contacts that come into play in the tangential force net-
work tend to be more disconnected from the previous
high force contacts for pentagons, in comparison to disks.

In order to highlight further differences between the
systems composed of pentagons and disks, we focus on
the tangential force networks, since these show clearer
contrasts. We start by investigating the size of the com-
ponents at different force thresholds. Figure 12 shows the
average number of components, per particle, as a func-
tion of component size for four different values of F . The
shape of the curves changes significantly around F = 2.
Around this point, the total number of components, β0,
for both systems reaches its maximum [see Fig. 11(b)].
For F ≥ 2, the pentagon-base system tends to have a
larger number of small clusters, consisting of less than
approximately 10 particles (see Fig. 12), while the disk-
based system contains a larger number of larger clusters.
This suggests that for the disks, the contacts with high
forces tend to aggregate (in larger clusters). These high
force contacts are more scattered for the pentagons.

As the value of F is lowered below 2, the components
start merging together. Naturally, the number of small
clusters decreases as they merge and create larger ones.
However, there is a substantial difference between disks
and pentagons. For F = 1, pentagon packings do not
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FIG. 11. (Color online) β0 (bottom slice, low tapping).

(a) F = 3.0 (b) F = 2.0

(c) F = 1.0 (d) F = 0.5
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FIG. 12. (Color online) Average number of components (clus-
ters) per particle for disks and pentagons in the tangential
force network as a function of cluster size for various force
thresholds, F . (a) F = 3, (b) F = 2.0, (c) F = 1.0 and (d)
F = 0.5 (bottom slice, low tapping).

contain any clusters composed of more than ≈ 50 par-
ticles while for the disks a cluster of size comparable to
the number of particles in the slice can be formed, viz.
Fig. 12(c). Again, the number of small clusters is larger
for pentagons. Finally, for F = 0.5 the disks do not form
any clusters of intermediate sizes. This is not the case
for pentagons which exhibit clusters of all possible sizes.

We conclude that disks have a more heterogeneous
structure of the tangential force network than pentagons.
In disks packings, contacts with large tangential forces
tend to appear spatially clustered and these clusters
merge together for relatively larges value of F . On the
other hand, pentagons form a large number of small spa-
tially scattered clusters of high tangential forces. These
scattered clusters grow and merge together without span-
ning the system until F reaches a very low value.

Let us now consider the number of loops in the force
networks described by the first Betti number, β1. Fig-
ure 13(a) - (b) show the number of all loops as a function
of F . Figure 13(c) - (d) presents similar data, but here

(a) Normal forces 
with trivial loops

(b) Tangential forces 
with trivial loops

(c) Normal forces 
without trivial loops

(d) Tangential forces 
without trivial loops
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FIG. 13. (Color online) β1 as a function of the force threshold
F for disks and pentagons. The trivial loops are included in
(a) and (b) and omitted in (c) and (d) (bottom slice, low
tapping).

the trivial loops formed by three particles in contact are
not included. In all the cases β1 decays rather fast and
there are only few loops for F > 2. This is as expected
since for F > 2 the clusters tend to be too small to con-
tain a loop.

Disk packings contain a larger number of loops than
pentagons for both normal and tangential force. The
number of trivial loops is significantly larger for the disks
because of their tendency to form crystalline regions. The
larger number of loops observed in the tangential force
network for disks even at F > 2 is connected with the fact
that these networks typically contain larger clusters that
support a larger number of loops. The number and sizes
of the clusters in the normal force network are similar
for both disks and pentagons, and thus, the reason for a
larger number of loops in the normal force network for the
disks is less clear. We note that the differences in the loop
structure of the force networks for disks and pentagons
are consistent with the intuition that pentagons tend to
form long arches that create large loops (loops of many
edges) in the force network. Due to the large size of
the loops their number tends to be smaller. Finally, for
F = 0, the number of loops in both normal and tangential
force networks equals the number of loops in the contact
network. We note that the number of loops present in
the contact network for disks is consistent with an earlier
study [14].
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IV. CONCLUSIONS

We have studied the force network of static packings
under gravity by averaging properties over a collection of
realizations obtained by tapping. We focus on exploring
significant differences of the force network when particles
of different shapes (disks versus pentagons) are consid-
ered, but have also explored difference between states
obtained by using different tap intensities.

We have shown that the topology of the force network
changes with depth. To some degree, this can be inferred
from the PDFs of the contact forces. However, the de-
tailed analysis of components sheds further light on this
phenomena. The differences are not only in the average
pressure, but also in the structural properties of the net-
work. Therefore, in this paper we analyze slices of the
column to avoid artifacts due to the vertical heterogene-
ity of the network.

We also compare realizations obtained using very dif-
ferent tap intensities that nevertheless have the same av-
erage packing fractions. These steady states have been
shown previously to present distinguishable mean stress
[32] and distinguishable number of trivial loops in the
contact network [14, 45], albeit by using a different pro-
tocol and frictional walls. For the present system, our
results for the PDFs of the contact forces, force–force
correlations, number of clusters and loops, cannot set
apart in any significant way these equal-density states.

Comparison of packings of particles of different shape
have revealed that pentagons tend to exhibit a more ho-
mogeneous tangential force network than disks. For the
pentagon packings, the edges in the force network, corre-
sponding to the strong contacts, are more spatially scat-
tered and less connected to each other. In contrast, for
the disks, the edges with smaller force value tend to be di-
rectly connected to the edges with larger values. Hence,
the part of the tangential force network exceeding any
given force threshold, contains a larger number of small
components for pentagons than for disks. In particular,
pentagon packings contain many scattered ‘hot spots’ in
the tangential force network. On the other hand, for the
disk packings, the part of the tangential force network
exceeding larger values of F consists of smaller number
of larger components.

These clear differences in the tangential force network
do not have a matching effect in the normal force net-
work. Differences in the normal force network between
disks and pentagons are hard to detect. Interestingly,
shorter force chains, consistent with smaller clusters have
been observed for pentagons in comparison with disks in
experiments involving shearing (see [29], Fig. 26). No-
tice however that in this experimental study only normal
forces are considered.

One significant difference between disk and pentagon
packings is the number of loops. The existence of a larger
number of trivial loops (formed by three grains in mutual
contact) in the case of disks is not particularly surpris-
ing. However, pentagons also display a smaller number

of non-trivial loops. This suggests that pentagons tend
to form rather large loops, particularly when tangential
force networks are considered.

One obvious question is what the presented results say
about macro-scale response of the various systems consid-
ered. A general answer here is that differences on meso-
scale clearly influence macro-scale behavior; we provided
few standard examples of this connection in the introduc-
tion. Our results suggest that differences on meso-scale
between the considered systems are present, but are not
always obvious. For example, the listed differences be-
tween disks and pentagons are, based on the results pre-
sented in the current paper, mostly limited to the tan-
gential forces, and therefore one would expect that fric-
tion (that to some degree determines the strength on the
tangential forces relative to the normal ones) may play
an important role. The connectivity of these tangential
force networks is significantly different between disks and
pentagons, suggesting that any material response that is
influenced by force networks connectivity (such as acous-
tic propagation, or elastic response) will be different as
well. Understanding how different this response may be
will require considering and correlating force networks
and macro-scale properties of the systems considered in
the setup of relevance. In the present work we focus pre-
dominantly on identifying these differences.

While the approach used in the present paper has
uncovered a number of properties of force networks, it
should be pointed out that counting of the number of
(connected) components and loops as a function of force
threshold does not contain the whole picture: knowing
Betti numbers does not tell us how the connections of
the features (components, loops) evolve as force thresh-
old is varied. For this purpose, we need to consider ad-
ditional measures, based on persistent homology. As we
will see in [30], this approach uncovers significant addi-
tional features of force networks, and in particular allows
to quantify the differences between the systems exposed
to different tap intensities that lead to the same packing
fraction. In addition, persistent homology will allow us
to describe and even measure the differences in the force
networks from one realization/tap to the next.

In the present work, we have focused on the influence
of gravitational compaction, tapping intensities leading
to similar packing fraction, and particle shape on the
properties of the force networks. However, we have not
studied the effects of boundary conditions or system size,
and have not systematically explored the general influ-
ence of the tapping intensity on the properties of force
networks. These directions of research will guide our fur-
ther investigations.

ACKNOWLEDGMENTS

KM and MK were partially supported by NSF grants
No. DMS-0915019, 1125174, 1248071, and contracts
from AFOSR and DARPA. LK acknowledges support by



10

the NSF grants No. DMS-0835611 and DMS-1521717.

[1] E. Falcon, B. Castaing, and M. Creyssels, Euro. Phys. J.
B 38, 475 (2004).

[2] S. Dorbolo and N. Vandewalle, Physica A 311, 307
(2002).

[3] X. Jia, C. Caroli, and B. Velicky, Phys. Rev. Lett. 82,
1863 (1999).

[4] H. A. Makse, N. Gland, D. J. Johnson, and L. M.
Schwartz, Phys. Rev. E. 70, 061302 (2004).

[5] S. Lherminier, R. Planet, G. Simon, L. Vanel, and
O. Ramos, Phys. Rev. Lett. 113, 098001 (2014).

[6] F. Radjai, M. Jean, J. J. Moreau, and S. Roux, Phys.
Rev. Lett. 77, 274 (1996).

[7] T. S. Majmudar and R. P. Behringer, Nature 435, 1079
(2005).

[8] D. S. Bassett, E. T. Owens, K. E. Daniels, and M. A.
Porter, Phys. Rev. E 86, 041306 (2012).

[9] M. Herrera, S. McCarthy, S. Sotterbeck, E. Cephas,
W. Losert, and M. Girvan, Phys. Rev. E 83, 061303
(2011).

[10] D. Walker and A. Tordesillas, Phys. Rev. E 85, 011304
(2012).

[11] D. S. Bassett, E. T. Owens, M. A. Porter, M. L. Manning,
and K. E. Daniels, Soft Matter 11, 2731 (2015).

[12] A. Tordesillas, D. M. Walker, and Q. Lin, Phys. Rev. E
81, 011302 (2010).
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