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While most studies of submonolayer island nucleation and growth have been based on the as-
sumption of ordinary monomer diffusion corresponding to diffusion exponent µ = 1, in some cases
either subdiffusive (µ < 1) or superdiffusive (µ > 1) behavior may occur. Here we present general
expressions for the exponents describing the flux-dependence of the island and monomer densities as
a function of critical island size i, substrate dimension d, island fractal dimension df , and diffusion
exponent µ, where 0 ≤ µ ≤ 2. Our results are compared with kinetic Monte Carlo simulations for
the case of irreversible island growth (i = 1) with 0 ≤ µ ≤ 2 and d = 2 as well as simulation results
for d = 1, 3, and 4 and excellent agreement is found.
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Because of its importance in understanding and con-
trolling thin-film growth, submonolayer island nucleation
and growth on surfaces has been extensively studied
[1, 2]. One concept of particular importance is that of
a critical island-size i [3] such that clusters larger than
the critical island-size are more likely to grow than to
shrink, while clusters of size i and below are unstable.
Standard rate equation (RE) theory [3] then predicts that
at fixed temperature, the peak island-density in the sub-
monolayer regime scales as Npk ∼ (D/F )−χ where D is
the monomer hopping rate, F is the (per site) deposition
rate, and the exponent χ depends on the critical island-
size. Similarly, one may define an exponent χ1 describing
the deposition-rate dependence of the monomer density
N1(θ) at fixed substrate coverage θ (where θ corresponds
to the fraction of the substrate covered by depositing
atoms or molecules) in the pre-coalescence regime in
which the monomer density is much smaller than the
island density, e.g. N1(θ) ∼ (D/F )−χ1 .

For substrate dimension d = 2, and assuming immobile
islands with fractal dimension df , standard RE theory
[3–5] predicts that,

χ = 1− χ1 =
2i

2i+ 2 + df
. (1)

One may also define the corresponding exponents χ′ and
χ′
1 (for which standard RE theory predicts χ′ = 1−χ′

1 =
i/(i + 2)) to describe the dependence of the island and
monomer densities on flux at fixed dose φ, where φ cor-
responds to the total coverage if all deposited particles
land on the substrate. These expressions for χ, χ′, χ1,
and χ′

1 have been confirmed in a number of theoretical
and computational studies over a wide range of values of
i and df . In addition, the expression for χ has been used
in many cases, along with the scaling of the island-size
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distribution [6] to determine the critical island-size dur-
ing growth, and thus indirectly determine the strength
of atom interactions on the surface.
While these results apply to the case of ordinary

monomer diffusion, such that the dependence of the
mean-square monomer displacement on time t satisfies
〈r2(t)〉 ∼ tµ with µ = 1, there are a number of cases
where anomalous diffusion may play an important role
[7]. For example, recently it has been argued [8, 9]
that due to the existence of relatively weak molecular-
substrate interactions as well as internal degrees of free-
dom, ballistic diffusion (corresponding to µ = 2) of
freshly deposited molecules may occur during the growth
of pentacene and hexaphenyl on sputter-deposited mica,
and that this may explain the anomalously large val-
ues of the exponent χ (χ > 1) observed experimentally
[10, 11]. A recent theoretical study [12] has also shown
that underdamped Langevin diffusion on an ordered po-
tential can give rise to superdiffusive behavior with µ > 1,
while similar behavior has also been observed in molec-
ular dynamics simulations [13] of Au140 nanoclusters on
graphite. Superdiffusive behavior has also been observed
experimentally [14–16] in the presence of turbulence or
at a fluid interface. In contrast, it is known that in some
cases of diffusion on disordered substrates, such as exci-
ton diffusion in amorphous semiconductor films [17, 18]
and the diffusion of ‘sticky’ colloidal particles [19], as well
as molecular diffusion in a porous medium [20], random
potential [12], or in biological systems [21, 22], subdif-
fusive behavior with µ < 1 may occur. Therefore, it
is of interest to extend the theory of submonolayer is-
land nucleation and growth to the more general case of
anomalous monomer diffusion.

Here we derive general expressions for the exponents χ
and χ1 (as well as χ′ and χ′

1) for the case of anomalous
diffusion with µc ≤ µ ≤ 2 (with µc = 2/d) which are
valid for arbitrary critical island-size i, substrate dimen-
sion d ≥ 1, and island fractal dimension df . As a test of
these predictions, we also present the results of extensive
kinetic Monte Carlo (KMC) simulations which were car-
ried out for the case i = 1 and d = 2 with 1 ≤ µ ≤ 2,
and excellent agreement is found. However, we also find
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that - due to the fact that for superdiffusion the aver-
age capture-number at fixed coverage increases with de-
creasing deposition flux and island density - the effective
value of the exponent χ only logarithmically approaches
the asymptotic prediction corresponding to infinite D/F .
We note that this result has important implications for
the interpretation of experiments, such as those described
in Ref. 10 and Ref. 11, in which it is believed that ballis-
tic monomer diffusion may play a role. We also present
results for normal diffusion in d = 2 which confirm the
existence of logarithmic corrections in this case.
Since the case of monomer subdiffusion with µ < 1

is also of interest, we also present general expressions
which are valid for µ ≤ µc. Excellent agreement with the
results of simulations with i = 1 and d = 2 is also found
for this case. The special case of point-islands (df =
∞) with d ≥ 3 (µc = 1) is also discussed. Our results
provide a general picture of island nucleation and growth
for the case of general substrate dimension, island fractal
dimension, and monomer diffusion exponent µ.
In order to obtain expressions for all four exponents

we use a combination of scaling arguments and REs [23].
In particular, assuming that only monomers are mobile
as well as the existence of a critical island-size i, in the
pre-coalescence regime one may write the following set of
contracted REs for the evolution of the monomer density
N1 and stable island density N (where N =

∑∞
i+1 Ns

and Ns is the density of islands of size s, where s is the
number of monomers in an island),

dN1

dφ
= Cθ −RN1σavN (2a)

dN

dφ
= RN1σiNi (2b)

where φ = Ft and R = D/F , the capture numbers σs

correspond to the propensity of an island of size s to
capture a diffusing monomer, σav ≡ 1

N

∑
s>i σsNs is the

average capture number for stable islands, and Cθ ≃ 1−
θ − 2Rσ1N

2
1 − ∑i

s=2 Ns(RN1σs − γs) where γs is the
(monomer) detachment rate for islands of size s ≤ i.
In the asymptotic limit of large D/F , one has Ns ≪

N ≪ 1 for 1 ≤ s ≤ i, which implies that Cθ ≃ 1 − θ.
Combining this with the steady-state assumption that at
late-time the rate of monomer deposition is balanced out
by the rate of monomer capture implies that dN1

dφ ≃ 0

and one may write,

N1 ≃ 1

RNσav
. (3)

If we substitute this expression for the monomer density
N1 into Eq. 2(b) and also assume that the Walton rela-
tion [5, 24] Ni ∼ N i

1 holds in the pre-coalescence regime
we obtain,

dN

dφ
= R−iσi (Nσav)

−(i+1) (4)

Since we are typically interested in the peak island-
density (which is determined by the onset of coalescence
as a function of coverage) it is desirable to re-express this
equation in terms of the effective coverage θ which may
be approximated as θ ≃ N( φ

N )d/df . Accordingly, we may
write,

dN

dθ
= θdf/d−1N1−df/d

dN

dφ
(5)

While the coverage dependence of σav is in general
complex [2, 25], here we assume that in the nucleation
regime with N ≫ N1 and in the asymptotic limit of large
D/F , for fixed φ (θ) one may write,

σav(φ;N) ∼ N−δ/df σav(θ;N) ∼ N−δ/d (6)

We note that Eq. 6 is consistent with a self-consistent
RE analysis [26] that for µ = 1 and d ≥ 3 the average
capture number in this regime is proportional to a power
of the average cluster radius Rav ∼ ( φ

N )1/df ∼ ( θ
N )1/d.

The exponent δ may be obtained using a simple scal-
ing argument based on the average monomer lifetime
τ at fixed coverage in the aggregation regime in which
N ≫ N1. In particular, in this regime the rate of
monomer deposition is balanced by the rate of island at-
tachment and so one may write N1 ≃ Fτ . In addition,
since the ratio Rav/l ∼ θ1/d (where l = N−1/d is the
average island-distance) does not depend on D/F but
only depends on θ, for finite df and fixed coverage θ the

typical distance (Dτ)µ/2 a monomer travels is propor-
tional to the typical stable island distance with a con-
stant of proportionality that is independent of D/F , i.e.
τ ∼ D−1N−2/µd. Combining these two expressions we
obtain that for finite df and fixed θ,

N1(θ) ≃ Fτ ∼ R−1N(θ)−2/µd (7)

Equating this expression for N1 with Eq. 3 and assuming
σav(θ;N) ∼ N−δ/d then leads to our main result [27],

δ = d− 2/µ (8)

This implies as expected, that for d = 2 and ordinary
diffusion (µ = 1) one has δ = 0 and so the average cap-
ture number depends only logarithmically [28, 29] on the
average island-size. It is also in agreement with the re-
sult obtained in Ref. 26 that δ = 1 for ordinary diffusion
in d = 3. The result δ = d − 1 for µ = 2 is also consis-
tent with an intuitive picture of ballistic diffusion which
suggests that the average capture number σav at fixed
coverage θ should be proportional to the average island
“cross-section”.
Eq. 8 also implies the existence of a critical value µc =

2/d of the exponent µ such that for µ = µc one has δ = 0
and the standard result for χ in d = 2 (Eq. 1) is obtained.
More generally, for finite df and µ > µc (µ < µc) one has
δ > 0 (δ < 0) and the value of χ is higher (lower) than
the critical value χc = i/(i+1+ df/d). The dependence
of δ on µ in Eq. 8 may also be expressed in terms of
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the random walk fractal dimension dw = 2/µ. Using this
notation, one may write δ = d−dw while the two distinct
cases µ > µc (µ < µc) correspond to dw < d (dw > d)
respectively.
Substituting Eq. 6 for σav with δ given by Eq. 8 into

Eq. 5 and Eq. 4, and assuming that σi is independent of
N , and then integrating with respect to θ (φ) the follow-
ing expressions for the exponents χ (χ′) are obtained for
µc ≤ µ ≤ 2 [27],

χ =
iµd

2i+ 2 + µdf
, χ1 =

2 + µdf
2i+ 2 + µdf

(9a)

χ′ =
iµdf

2i+ 2 + µ(df + (i + 1)η)
, χ′

1 = 1− 2 + µη

µdf
χ′(9b)

where η ≡ df − d. Also shown are expressions for the
exponents χ1 (χ′

1) obtained using Eq. 3. As discussed
in more detail below, for the special case of point-islands
(df = ∞) and d ≥ 3, µc = 1 rather than 2/d.
Since Eq. 8 implies δ = 0 for d = 2 and µ = 1, these

expressions are consistent with a variety of previously
obtained results for the case of ordinary diffusion and
substrate dimension d = 2. The expression for χ′ in
Eq. 9b also agrees with a previous conjecture by one of
us [26, 30] for ordinary diffusion and substrate dimension
d ≥ 2. In addition, for the case of ballistic monomer
diffusion (µ = 2) we obtain χ = di/(i + 1 + df ) which
confirms and generalizes a recent prediction [9], that χ =
2i/(i+3) for the case of ballistic diffusion with d = df = 2
to the case of general substrate dimension d and island
fractal dimension df .
Interestingly, Eq. 9 also predicts that for point-islands

(df = ∞) one has χ′ = 1−χ′
1 = i/(i+2) for µc ≤ µ ≤ 2.

We have verified that this is the case by carrying out
point-island simulations for 1 ≤ µ ≤ 2 with i = 1 and
d = 2. This result is also consistent with the results of
previous point-island simulations [26] in d = 3 for the
case of ordinary diffusion (µ = 1) and i = 1.
As an additional test of these results we have carried

out simulations (see Appendix A for details) for the case
of irreversible growth (i = 1) on a two-dimensional sub-
strate with 1 ≤ µ ≤ 2. In our simulations monomers were
deposited with (per site) flux F on an initially empty
substrate corresponding to an L × L lattice, and were
assumed to carry out nearest-neighbor hops with rate
D. However, in contrast to the case of normal diffusion
in which a random hopping direction is randomly cho-
sen at each step, in our simulations with 1 < µ ≤ 2
the monomers executed Lévy walks [31], such that the
hop direction remains constant over a persistence length
l with power-law distribution P (l) ∼ l−(4−µ), before a
new random direction is chosen [32, 33].
In order to determine the asymptotic scaling behavior,

simulations were carried out with D/F ranging (in steps

of
√
10) from 105 to 1010. To avoid finite-size effects -

which become increasingly important with increasing µ
and D/F - our simulations were carried out using ex-
tremely large system sizes (L = 45, 000). Simulations
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FIG. 1: Effective exponent χ(R) for R = 106 − 3.16× 109 ob-
tained from simulations (open and filled symbols) as function
of 1/log(R)p for compact islands, where values of p correspond
to best fits (dashed lines) and µ = 1.25 (p = 2.75), µ = 1.5
(p = 1.66), µ = 1.75 (p = 1.4), and µ = 2.0 (p = 1.25). Also
shown are RE results for µ = 2 (see text).

were carried out for both ramified islands (corresponding
to irreversible attachment with no cluster re-arrangement
and fractal dimension df ≃ 1.7 − 2.0 [34, 35] depending
on the coverage and dimensionality of the Lévy walk)
and compact islands (df = 2) in which the islands were
forced to grow in a compact spiral around each initial
dimer seed.

For each value of R = D/F , the effective value of the
exponent χ was determined using the expression χ(R) =

−log[
Npk(aR)
Npk(R/a) ]/log(a

2) with a =
√
10, where Npk(u) cor-

responds to the peak island-density for D/F = u. Sim-
ilarly, the effective value of χ′

1(R) was determined for
several values of φ in the aggregation regime correspond-
ing to N1 << N , using a similar expression with Npk

replaced by N1(φ). However, as shown in Fig. 1 - in con-
trast to the exponent χ′

1 which saturates for large R -
the effective value of the exponent χ(R) increases with
increasing R. As also shown in Fig. 1, we have observed a
similarly slow (fast) crossover behavior for χ(R) (χ′

1(R))
when numerically integrating the contracted REs Eq. 2
for the case i = 1 with σ1 = 1, df = d, and δ/d = 1/2,
for which a scaling analysis [36] confirms that the corre-
sponding asymptotic values are χ = 1/2 and χ′

1 = 3/4.
Accordingly, in order to determine the asymptotic (large
R) value of χ, we have assumed that for finite R one
may write χ(R) = χ(∞) − c/log(R)p where c and p are
unknown constants. In particular, for each value of µ,
we have carried out linear fits of χ(R) as a function of
log(R)−p for various values of p and have used the value



4

0.65

0.7

0.75

0.8

Compact

Ramified

χ'
1

(a)

δ = 0

0.35

0.4

0.45

0.5
Eq. 9 (d

f
 = 2)

χ(∞)  Compact

χ(∞) Ramified

1 1.2 1.4 1.6 1.8 2

χ

µ

δ = 0

(b)

FIG. 2: Exponents χ and χ′
1 obtained from simulations (sym-

bols) for case of superdiffusion (1 ≤ µ ≤ 2) with i = 1 and
d = 2. Solid curves correspond to Eq. 9 with df = 2. In (b)
filled symbols correspond to extrapolated values while open
symbols correspond to χ(R) for largest value of R used in
our simulations. Small filled dots with µ = 1 correspond to
Eq. 1 with i = 1 and df = 1.7 (upper dot) and df = 2 (lower
dot). Dashed curves labeled δ = 0 correspond to RE approach
[32] in which the dependence of σav on N was not taken into
account.

of p which gave the best fit with the simulation data to
estimate χ(∞).
As can be seen in Fig. 2 there is excellent agreement

between the values of χ (extrapolated) and χ′
1 obtained

from our simulations of compact islands (filled circles)
and ramified islands (filled triangles) [37] and the predic-
tions of Eq. 9 with df = 2 for all values of µ between
µ = 1 and µ = 2, except for µ close to 1. In this case our
results for χ are consistent with the predicted existence
[28, 29] of logarithmic corrections for ordinary diffusion
which lead to a somewhat larger effective value of χ. For
comparison, also shown in Fig. 2 are the results obtained
using a previous RE approach [32] in which the depen-
dence of σav on N was not taken into account (dashed
curves corresponding to χ′

1 = 2χ = 2µ/(1+ 2µ)). In this
case there is very poor agreement with our simulation
results except for µ = 1.
While Eq. 9 holds for µc ≤ µ ≤ 2, it is also inter-

esting to consider nucleation and growth with µ < µc.
One example of particular interest is deposition on a 2D
substrate with anisotropic diffusion (or equivalently de-
position on a 1D substrate) which corresponds to d = 1
and µc = 2. Since in this case, the island radius no
longer plays a direct role, it is reasonable to assume - as
in previous work for the case of ordinary diffusion [38]
- that at fixed coverage both σi and σav have the same

dependence on island density, e.g. σi ∼ σav ∼ N−δ′ . An
analysis similar to that carried out above then implies
that δ′ = δ = d− 2/µ with d = 1. We conjecture that in
general for µ ≤ µc one has δ′ = δ rather than δ′ = δ/d.
Based on these assumptions we obtain [27],

χ =
iµd

id(2− (d− 1)µ) + µ(d+ df )
(µ ≤ µc) (10a)

χ′ =
iµ

i(2− (d′ − 1)µ) + 2µ
(µ ≤ µc) (10b)

with χ1 = 1 − χ(1 − δ) = (d + df )χ/(id) and χ′
1 =

1−χ′(1− δ) = 2χ′/i. Here d′ = d and µc = 2/d for finite
df or df = ∞ with d ≤ 2. However, as discussed below,
for the special case of point-islands (df = ∞) and d ≥ 3,
d′ = 2 and µc = 1.
For d = 1 this confirms a previous result [32] for i =

df = 1 and generalizes it to the case of arbitrary critical
island-size i and df . Eq. 10 also implies that for µ ≤
µc, χ′ is independent of island fractal dimension. For
d = df = 2 and i = 1 one has χ′

1 = 2χ = 2µ/(2 + µ)
for µ ≤ 1. In contrast, assuming that for µ ≤ µc, one
has δ′ = δ/d implies that χ′

1 = 2χ = 2µ/(1 + 2µ) for
d = df = 2 and i = 1.
As a test of Eq. 10 we have carried out simulations

(see Appendix B for details) of island nucleation with
monomer subdiffusion (0 ≤ µ < 1) with i = 1 and d = 2
(µc = 1). In our simulations, monomers were assumed
to execute a continuous time random walk (CTRW) [7]
to nearest-neighbor sites with a power-law distribution
of waiting times P (τ ′) ∼ (D0τ

′)−1−µ and attach irre-
versibly to occupied nearest-neighbor sites, leading to
ramified islands whose fractal dimension increases from
df ≃ 1.7 as in diffusion-limited aggregation [34] to df ≃
2.0 with increasing coverage. In order to determine the
asymptotic values of χ and χ′

1 very large values of D0/F
were used. We note that in contrast to our simulation re-
sults for µ > 1, in this case both χ and χ′

1 saturate with
increasingD0/F . This behavior is consistent with results
we have obtained for µ = 1/2 with i = 1 by numerically
integrating the contracted REs Eq. 2 with δ′ = −2.
As can be seen in Fig. 3, there is very good agreement

between the predictions of Eq. 10 for χ(µ) and χ′
1(µ) and

our simulations [39]. In contrast, assuming that δ′ = δ/d
with df = 2 (see Fig. 3) leads to poor agreement with our
simulation results. Similarly, while Eq. 9 also implies χ =
µ/(2 + µ) for d = df = 2 with i = 1, the corresponding
prediction for χ′

1 is in very poor agreement.
As a further test of Eq. 10 we have also carried out

preliminary simulations with i = 1 and µ ≤ 1 for point-
islands in d = 1 and 2, as well as for ramified islands in
d = 3 for µ ≤ 2/3 [40] and have found excellent agree-
ment in each case. However, for the special case of point-
islands (df = ∞) and d ≥ 2, a monomer must visit N−1

rather than N−2/d sites before attaching to an island,
which implies µc = 1 rather than 2/d. Since the number
of sites visited in time τ for superdiffusion is equal to Dτ ,
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FIG. 3: Exponents χ and χ′
1 as function of µ for case of

subdiffusion (0 ≤ µ ≤ 1) with i = 1 and d = 2. Symbols
correspond to simulation results while solid curves correspond
to Eq. 10.

this implies τ ∼ N−1, δ = 0, and χ′ = 1− χ′
1 = i/(i+ 2)

for df = ∞ and µ ≥ µc. Similarly, since for subdiffusion
the number of sites visited in time τ is proportional to
the mean-square displacement τµ, we obtain τ ∼ N−1/µ

which is equivalent to Eq. 7 with d = 2. This indicates
that for the special case of point-islands (df = ∞) in
d ≥ 2, one has µc = 1 and δ′ = 2 − 2/µ (δ = 0) for
µ ≤ µc (µ ≥ µc). Accordingly, we conclude that in this
case the exponents χ′ and χ′

1 are given by Eq. 10 (with
d′ = 2 rather than d′ = d) for µ ≤ 1, while for µ ≥ 1,
Eq. 9 holds. Simulations which we have carried out with
i = 1, df = ∞, and d = 3 and 4, indicate that this is
correct.

In conclusion, we have derived expressions for the ex-
ponents describing the dependence of the monomer and
island densities on deposition rate in submonolayer island
growth as a function of critical island-size i, substrate di-
mension d, and island fractal dimension df for the case
of generalized diffusion with 0 ≤ µ ≤ 2. For the case of
finite df , our results indicate the existence of a critical
value of µ (µc = 2/d) such that for µ = µc, the aver-
age capture number at fixed coverage does not depend
on island-density and as a result, χ is given by the “stan-
dard” value χc = i/(i+1+df/d). In addition, for µ > µc

we obtain σav(θ;N) ∼ N−δ/d with δ = d−2/µ > 0 which
implies that χ > χc. These results also imply the exis-
tence of strong crossover effects for µ > µc such that the
effective value of the exponent χ only logarithmically ap-
proaches the asymptotic prediction with increasingD/F .
As already noted, these strong crossover effects may have
important consequences for the interpretation of exper-

iments in which anomalous monomer diffusion plays a
role. For the special case of point-islands (df = ∞) with
d ≥ 2, we find µc = 1 with δ = 0 for µ ≥ 1, which implies
that χ′ = i/(i+ 2) for all µ ≥ 1.

In contrast, for µ < µc our results are consistent with
the assumption that σi ∼ σav ∼ N−δ′ where δ′ = δ
rather than δ/d as expected. For finite df , or df = ∞
with d ≤ 2, one has δ′ = d− 2/µ and µc = 2/d, while for
df = ∞ and d ≥ 3 we obtain δ′ = 2 − 2/µ and µc = 1.
In addition, since δ′ < 0 for µ < µc one has χ(µ) < χc

and crossover effects are significantly reduced. While we
do not have an explanation for the extra factor of d in
the value of δ′ we conjecture that it may be related to
the divergence of the mean hopping time for a CTRW
with µ < 1. In the future, it may be of interest to carry
out simulations using correlated random walks [41] for
comparison in order to gain a better understanding of
the scaling behavior in this case.

It is also interesting to compare the results presented
here with those obtained in previous work [32] for the case
of superdiffusion (1 ≤ µ ≤ 2) with i = 1. In Ref. [32],
the dependence of σav and/or σ1 on N was not taken
into account, and as a result, and as shown in Fig. 2,
the corresponding RE predictions for d = 2 with 1 <
µ ≤ 2 are incorrect. In addition, due to the small system
sizes used (L = 300 − 1000) as well as the existence of
significant crossover effects, there were significant finite-
size effects in the simulations. In contrast, for the case
d = 1 we find µc = 2, and as a result the errors in
Ref. [32] created by neglecting the N -dependence of σ1

and σav cancel out for i = 1. Accordingly, the predictions
of Ref. [32] for i = d = df = 1 with 1 ≤ µ ≤ 2 are in
agreement with our more general results shown in Eq. 10.

Finally, we note that while these results signifi-
cantly extend our understanding of island nucleation and
growth, they also suggest a number of possible areas for
future work. For example, while we expect based on the
arguments presented in Ref. 2, that the Walton relation
holds for µ 6= 1, it would be of interest to carry out sim-
ulations with i > 1 to check this, as well as to determine
if the large crossover and finite-size effects for i = 1 and
µ > µc extend to higher critical island-sizes. The depen-
dence of the capture-number and island-size distributions
on µ is also of interest and will be reported elsewhere [42].
For the case of subdiffusion due to disorder, the effects
of quenched randomness in d = 1 are also of interest,
since this may alter the scaling behavior. In addition,
for the case i = 1, it may be possible to go beyond the
asymptotic scaling results presented here by carrying out
a self-consistent RE analysis (similar to that carried out
for ordinary diffusion in d = 1 − 4 [26, 29, 43–45]) by
solving the corresponding fractional diffusion equations
for the monomer density surrounding an island. Work is
currently ongoing to address these issues.
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Appendix A: Superdiffusion simulations

In our simulations for 1 < µ ≤ 2, the persistence length
l (in units of the lattice constant) was calculated using
the expression, l = ξ−1/β where ξ is a uniform random
number between 0 and 1, and β = 3 − µ (see Ref. 32).
For the case µ = 1 the persistence length was set to
1 (corresponding to infinite β) as in an ordinary ran-
dom walk. For the case i = 1 and d = 2, our simula-
tions of ramified, compact, and point-islands were car-
ried out using a triangular lattice with very large system
size (L = 45, 000) to avoid finite-size effects. As a result,
in the worst possible case, corresponding to compact is-
lands with µ = 2 and D/F = 1010, the system size L was
more than 300 times the typical island-distance at the
peak island density. Depending on D/F , averages were

taken over from 1 to 15 runs. To minimize geometric
effects, in all of our point-island simulations, monomers
were irreversibly “absorbed” upon landing on an already
occupied (monomer or island) site whose size was then
incremented by 1. As a check for the case of ramified is-
lands with µ = 2, additional simulations were carried out
using a square lattice, and the results were in agreement
with those obtained using a triangular lattice.

Appendix B: Subdiffusion simulations

In our simulations for 0 < µ ≤ 1, the waiting time
τ ′ was calculated using the expression, τ ′ = D−1

0 ξ−1/µ′

where ξ is a uniform random number between 0 and 1 and
µ′ = µ. In this case µ′ < 1 (µ′ > 1) corresponds to sub-
diffusion (ordinary diffusion) while µ′ = 1 corresponds
to the critical value, and so logarithmic corrections are
expected. All subdiffusion simulations were carried out
using d-dimensional hypercubic lattices. Simulations for
i = 1 and d = 2 were carried out with D0/F ranging from
1010 to a maximum value equal to 1016 − 1020 depend-
ing on the value of µ. Since finite-size effects are much
weaker in this case, simulations in this case were carried
out using much smaller system sizes (L = 2048 − 4096)
while averages were typically taken over 10 runs.
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[31] P. Lévy, Théorie de L’addition des Variables Aléatoires

(Gauthier Villars, Paris, 1937).
[32] J.G. Amar, F. Family, and D.C. Hughes, Phys. Rev. E



7

58, 7130 (1998).
[33] For the case of normal diffusion corresponding to µ = 1,

the hopping direction was chosen randomly after each
step.

[34] T.A. Witten and L.M. Sander, Phys. Rev. Lett. 47, 1400
(1981).

[35] P. Meakin, Phys. Rev. B 29, 3722 (1984).
[36] J.G. Amar, F. Family, and P.-M. Lam, Phys. Rev. B 50,

8781 (1994).
[37] For µ ≥ 1.5 the measured value of df for ramified islands

was between 1.9 and 2.0.
[38] M.C. Bartelt and J.W. Evans, Phys. Rev. B 46, 12675

(1992).
[39] The slightly lower effective value of χ for µ = 1 shown in

Fig. 3 compared to Fig. 2 is most likely due to the fact
that we have used a CTRW with µ = 1 rather than a
simple random walk in this case.

[40] E. Sabbar and J.G. Amar, in preparation.
[41] N. Kumar, U. Harbola, and K. Lindenberg, Phys. Rev.

E 82, 021101 (2010).
[42] N.N. Poddar and J.G. Amar, in preparation.
[43] J.A. Blackman and P.A. Mulheran, Phys. Rev. B 54,

11681 (1996).
[44] J.G. Amar, M.N. Popescu, and F. Family, Surf. Sci. 491,

239 (2001).
[45] F. Shi, Y. Shim, and J.G. Amar, Phys. Rev. E 74, 021606

(2006).


