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Energy barriers, entropy barriers, and non-Arrhenius behavior in a minimal glassy

model

Xin Du and Eric R. Weeks
Department of Physics, Emory University, Atlanta, Georgia 30322, USA

We study glassy dynamics using a simulation of three soft Brownian particles confined to a
two-dimensional circular region. If the circular region is large, the disks freely rearrange, but rear-
rangements are rarer for smaller system sizes. We directly measure a one-dimensional free energy
landscape characterizing the dynamics. This landscape has two local minima corresponding to the
two distinct disk configurations, separated by a free energy barrier which governs the rearrangement
rate. We study several different interaction potentials and demonstrate that the free energy barrier
is composed of a potential energy barrier and an entropic barrier. The heights of both of these
barriers depend on temperature and system size, demonstrating how non-Arrhenius behavior can
arise close to the glass transition.

PACS numbers: 64.70.qd, 64.70.pm, 64.60.De

I. INTRODUCTION

Glassy materials are amorphous solids: disordered mi-
croscopically, and unable to flow macroscopically [1–4].
They are inherently out of equilibrium [5, 6], in contrast
to crystals. In 1969, Goldstein proposed the idea of the
potential energy landscape, a conceptual framework for
thinking about glassy and crystalline materials [7]. The
potential energy landscape is defined as the potential en-
ergy U of a material “plotted as a function of 3N atomic
coordinates in a 3N + 1 dimensional space,” where N is
the number of atoms [7]. At low temperatures, an ideal
crystalline solid will have particle coordinates that corre-
spond to a global minimum of the potential energy land-
scape. Glasses are disordered, so at low temperatures
a glass will have coordinates in a local minimum of the
potential energy landscape, but there are an enormous
number of such local minima [8–11].

Turning to higher temperatures where a material is
a liquid, thermal energy allows the system to rearrange
constantly, and so the 3N atomic coordinates trace out
a trajectory traversing the potential energy landscape. If
the temperature is close to the material’s glass transi-
tion, and if crystallization is avoided, then the trajectory
through the landscape spends most of its time near lo-
cal minima, with occasional passages through a saddle
point in the landscape to an adjacent minimum [12, 13].
The number of minima, their depth, and the details of
the saddles between them can be connected to the micro-
scopic dynamics of samples at a variety of temperatures
[10, 11]. At low temperatures, the thermal energy kBT
does not allow the system to escape a local minimum
easily. In particular the escape from any particular local
minimum is a thermally activated process, depending on
the barrier height between that local minimum and the
minima adjacent in the 3N + 1 dimensional space. Of
course, given the high dimensionality of the problem, vi-
sualizing this is impossible except for conceptual sketches
[9, 14, 15], of which the earliest one we are aware of was
by Stillinger and Weber in 1984 [16].

Figure 1: (Color online) Sketch of our model, with three dis-
tinguishable particles confined within a circular system. In
(a), h is the distance between one of the particles and the
axis defined by the other two. In (b), R is the radius of the
confining boundary. The states (a)-(c) show a cage breaking
event in our model, where h changes sign.

The picture of a potential energy landscape changes
when one considers a system of hard spheres. Hard
spheres are defined as particles that have no interaction
energy when they are not in contact, and infinite inter-
action energy if they touch. As a function of the 3N
sphere coordinates, the potential energy surface is flat
at U = 0 except for prohibited configurations for which
U = ∞. Rather than local minima separated by sad-
dles, the landscape has flat open areas separated by bot-
tlenecks that correspond to entropic barriers. As hard
spheres can form glasses at high densities [17–19], these
entropic barriers must function similarly to the potential
energy barriers in a potential energy landscape [20–22].
In 2012 Hunter and Weeks introduced a simple model

with hard particles where the entropic landscape was
directly measurable [22]. The model consists of three
hard disks executing Brownian motion within a two-
dimensional circular region. As illustrated in Fig. 1,
the system has two distinct configurations of the three
disks. A transition occurs between these two configu-
rations when any one of the three particles passes be-
tween the other two. When the system size R is smaller,
these transitions are rarer. This model captures the fla-
vor of hard spheres near their glass transition, where rear-
rangements are difficult due to particle crowding [23, 24].
Hunter and Weeks directly calculated a free energy land-
scape based entirely on the entropy of the states. They
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demonstrated that the transition time scale was related
to the entropic barrier height, τ ∼ exp(Sb).
In the current paper, we extend the model of Hunter

and Weeks to consider the case of soft particles. In this
situation, we now have a potential energy landscape that
varies smoothly as a function of the particle coordinates.
However, the best description of our model is through the
free energy landscape which includes both entropy and
potential energy. The transition state shown in Fig. 1(b)
still corresponds to a barrier, now with both potential
energy and entropic components. We examine poten-
tial energy and entropy to understand the relative im-
portance of each in determining the transition rate be-
tween states. Our most significant result is an explicit
demonstration that the influences of both potential en-
ergy and entropy depend on temperature; that is, the
effective free energy barrier height depends on T . Our
results help bridge concepts between soft and hard par-
ticles in a simple model, complementing prior molecular
dynamics simulations done with large numbers of soft
particles [25–27].
Our model is a straightforward system with non-

Arrhenius scaling as the glass transition is approached.
Arrhenius scaling occurs in a system where a time scale
τ for a transition is set by a fixed energy barrier of size
∆, such that τ ∼ exp(−∆/kBT ). In a glass-forming sys-
tem, τ could be the time scale for diffusion or flow, and τ
grows dramatically as the glass transition is approached.
Often, this happens in a non-Arrhenius fashion [28]: τ
grows faster than expected as T is decreased. This leads
to the interpretation that ∆ = ∆(T ) increases as T de-
creases. We demonstrate that in our model ∆ is due
to potential energy and entropy, both of which are T -
dependent, even though the underlying potential energy
landscape is T -independent.

II. THE MODEL SYSTEM

We study three two-dimensional particles confined to
a circular system of size R as shown in Fig. 1. We will
consider four distinct particle interactions in our simple
model system.
Our first particle type is a commonly used finite-ranged

harmonic potential [29, 30]. This considers deformable
soft particles interacting through purely repulsive body
centered forces. Our harmonic potential is defined as:

UHM(rij) =

{

U0(
2−rij

2 )2; rij < 2
0; rij ≥ 2

(1)

Here rij is the center-to-center distance between particles
i and j. All particles have radius 1 (ai = aj = 1) and do
not interact when they are not touching (rij ≥ 2). The
particles have the same interaction with the wall:

UHM,wall(ric) =

{

U0(
ric−(R−1)

2 )2; ric > R− 1
0; ric ≤ R− 1

(2)

ric is the distance between the particle center and system
center, that is, it is the radial coordinate of particle i. As
the particle radius is 1, when ric = R − 1 the particle
comes into contact with the wall, and for ric > R − 1,
the interaction energy increases and the particle feels a
repulsive force from the wall.
Our second particle type is also repulsive, but has a

infinite range interaction between the particles, and be-
tween the particles and the wall; we term this the “long-
range potential.” We define this potential as:

ULR(rij) = U0(
rij
2
)−12 (3)

between the particles and

ULR,wall(ric) = U0(
R− ric

2
)−12 (4)

between the particles and the wall.
Our third particle type uses the Lennard-Jones poten-

tial (“LJ potential”), which approximates the interaction
between a pair of neutral atoms [31]. The Lennard-Jones
potential is defined as:

ULJ(rij) = U0(
rij
2
)−12 − U0(

rij
2
)−6. (5)

This interaction potential differs from the first two (har-
monic and long-range) in that Lennard-Jones particles
have both a repulsive and an attractive component. In
contrast to the first two potentials, these particles have a
finite preferred separation distance that minimizes U at
rij = 27/6 = 2.245. To simplify this model, the wall is
hard. In this case, the interaction energy with the wall
is U = 0 until the particles touch the wall (ric = R − 1)
in which case U = ∞.
We consider one last particle type using the Weeks-

Chandler-Andersen potential (“WCA potential”) [32].
This potential starts with the LJ potential, truncates it
at the minimum, and then shifts it upward so that the
potential goes smoothly to zero:

UWCA(rij) =

{

ULJ + U0

4 ; rij < 27/6

0; rij ≥ 27/6
(6)

This then is the repulsive component of the LJ potential,
and has no attractive component. As with the LJ po-
tential, we again assume a strictly hard contact with the
confining wall. Like the harmonic potential, the WCA
potential is finite-ranged, but in contrast this potential
diverges at rij → 0. This latter behavior is like the long-
range potential, which also diverges.
These four interaction potentials capture several in-

teresting possibilities. Two are finite-ranged; three are
purely repulsive; three diverge as the particle separation
goes to zero.
We use the Metropolis algorithm [33] to simulate Brow-

nian motion of the particles, similar to previous work
by our group [22]. At each Monte Carlo step, we try
to move each particle (one at a time) in a random di-
rection with rms step size of 0.01 (or in some cases
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smaller). We consider the change in energy ∆U for the
trial move. These trial moves are accepted with probabil-
ity 1 if ∆U < 0, and with probability exp(−β∆U) other-
wise, with β = 1/kBT . The initial condition is with the
three particles starting at the vertices of an equilateral
triangle of side length 2, and the system is equilibrated
after the first transition of the sort shown in Fig. 1. The
simulation is evolved continuously for at least 20 transi-
tions (in the cases with very slow dynamics), and more
typically 100-1000 transitions. Given that there is no
memory in this system, each condition is run only once
as a time-average was adequate (although we did check
this with multiple runs several times, and also checked
that the results are insensitive to the rms step size).
In all situations, the radius of the confined system is R

as indicated in Fig. 1. For the harmonic potential, recall
the particle radius is 1, so for R = 3 the particles can just
line up across a diameter of the system with U = 0. For
R < 3, particles can only change configuration [Fig. 1(a-
c)] with a nonzero temperature. The WCA potential is
also finite-ranged, although the range is not 1 but rather
27/6, so here R = 1 + 2

7

6 = 3.245 is the smallest radius
at which particles can line up across a diameter with
U = 0. For the long-range potential and the LJ potential,
particles always interact with nonzero potential energy,
and so there is no value of R with any special meaning.
Note that the meaning of U0 differs between the poten-

tials in an unimportant way. For the harmonic potential,
U0 is the maximum potential energy between two parti-
cles when they are fully overlapped (rij = 0). For the
long-range potential, U0 is the potential energy between
two particles when rij = 2. For LJ and WCA, there are
yet other meanings for U0. In the simulation, we simply
set U0 = 1 and vary the value of kBT . As U0 is not
comparable between the different interactions, likewise
specific values of T are not comparable either. Accord-
ingly, our discussion will focus on comparing behaviors as
functions of T without need to compare specific values.
The remainder of the paper will study the behavior of
our model as we change R, T , and the interaction poten-
tial. In particular we are most interested as the system
becomes “glassy:” smaller R and/or smaller T .

III. RESULTS

A. Free energy landscapes

To study the free energy landscape, we define a
macrostate variable h as shown in Fig. 1(a) [22]. To do
this, we pick two particles to define an axis (say, point-
ing from particle 1 to particle 2). h is the distance of
the third particle above (or below) this axis. h can be
positive or negative, and is zero at the transition state
shown in Fig. 1(b). Therefore, when h changes sign, a
rearrangement occurs. It is arbitrary which two parti-
cles define the horizontal axis; if we consider h′ and h′′

defined using different pairs of particles, all three h vari-
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Figure 2: (Color online) (a) The free energy landscape for the
harmonic (“HM”) interaction potential. R = 3.2 and the tem-
peratures are as indicated. (b) Free energy landscapes for in-
teractions as indicated, where “LR” designates the long-range
potential, “LJ” the Lennard-Jones potential, and “WCA” the
Weeks-Chandler-Andersen potential. R = 3.2 and the tem-
peratures are as indicated, chosen so that the barrier height
at h = 0 is comparable for the different interaction potentials.

ables change sign simultaneously upon a transition.
Following Ref. [22], we construct the free energy land-

scape by counting occurrences of each h in the simulation
for given parameters (R and T ). We then compute P (h),
the probability of seeing each h value. Finally, the free
energy landscape is computed directly according to the
Boltzmann distribution, P (h) ∼ exp(−F (h)/kBT ). For
simplicity, we set kB = 1 in the simulation. We shift
F (h) so that the minimum value is F = 0.
Figure 2(a) shows the free energy landscape for the

harmonic potential model. There is a free energy barrier
at the transition state h = 0. For R = 3.2, the particles
do not have to overlap at the transition state, but for T >
0 they are allowed to overlap which makes transitions
easier. Keeping R fixed, as T → 0 overlaps are less likely,
and the free energy barrier for transitions grows. At T =
0, overlaps are impossible, although since this is a finite-
range potential, transitions still occur. In this situation
the free energy landscape is identical to the landscape for
hard disks, indicated by the dashed line in Fig. 2(a). In
other words, at low T , thermal fluctuations decrease and
these soft particles become hard.
The other features of the free energy landscape shown

in Fig. 2(a) are straightforward to understand. There
are two symmetrically located minima close to h = ±2
that correspond to the most probable states for the three
particles [22]. For large values of |h|, the particles are
forced to interact with the confining wall. This causes
the free energy to grow dramatically due to the large
potential energy penalty.
Figure 2(b) shows free energy landscapes for other in-

teraction potentials, with temperatures chosen so that
the barrier height is approximately the same for each,
and R = 3.2 kept constant. The shapes are all qual-
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Figure 3: (Color online) (a) Mean-square displacement in h
space for the harmonic (“HM”) interaction potential. R = 2.9
and T = 10−1, 10−2, 10−2.2, 10−2.4 (from top to bottom, red
to black). The dashed line has a slope of 1. (b) Mean-square
displacement in h space for the long-range (“LR”) interaction
potential. R = 2.9 and T = 106, 104.6, 104.2, 104 (from top to
bottom, red to black). The dashed line has a slope of 1.

itatively similar, although the long range potential has
particles confined to a smaller range of h. For the hard
particle case, the minima occur precisely at h = ±2 [22].
For the other potentials, the locations of the minima vary
with T . For the LR and LJ potentials, one can compute
the configuration that minimizes U , and the h that min-
imize F (h) are fairly close to the h for those minimal
U configurations. The T dependence, however, makes
it clear that minimizing the free energy is not the same
as minimizing the potential energy. Maximizing entropy
plays a role as well in determining the h that minimizes
F (h). As previously reported, in the hard model, ∂F/∂h
is discontinuous at h = ±2 [22]. However, this derivative
is continuous everywhere in all of the soft models.

B. Dynamics and free energy barriers

The dynamics are straightforward when considering
h(t). Often, h(t) stays close to the values hmin that min-
imize the free energy landscape (Fig. 2), but occasionally
h(t) switches sign. We quantify the dynamics by plotting
the mean square displacement (MSD) 〈∆h2〉 as a func-
tion of lag time ∆t in Fig. 3 for the harmonic potential
(a) and long-range potential (b). At the shortest times,
particles diffuse fairly freely. At intermediate time scales,
the MSD starts to level off, reflecting that the system is
trapped in one of the probable states shown in Fig. 1(a,c).
At longer time scales, the system can swap between these

Figure 4: (Color online) Dependence of τ on T and R in
harmonic potential system. Curves in different colors show
the life time as a function of T with different R as indicated.
The lifetimes τ are normalized by τ0 = 1/2D, the time a free
particle would take on average to diffuse a distance of 1, using
the diffusion constant D from the simulation.

two states, and the MSD begins to rise again. At the
longest time scales shown in Fig. 3, the MSD levels off
due to the finite system size.
To quantify the transition time scale τ , we measure the

average time between sign changes of h. However, dur-
ing a transition, there are often small fluctuations right
around h = 0 that are not true transitions. To avoid bi-
asing τ toward lower time scales, we stipulate that once
h = 0 is crossed, the system must move a further distance
∆h = 1 before returning [22]; our results are not sensitive
to this choice. The probability distribution of time scales
P (τ) is exponentially distributed so the mean value gives
the appropriate time scale, which we plot in Fig. 4 as
a function of temperature (a) and inverse temperature
(b). The two largest system sizes R show a horizontal
leveling off of τ at cold temperatures. This is the limit
where the soft particles behave as hard particles, and τ
reaches the value seen for purely hard particles [22]. For
the smaller system sizes, particles must overlap to have
a transition, and so as T → 0 this becomes rare and τ
diverges. Were any of these systems to be Arrhenius with
a temperature-independent potential energy barrier, the
data in Fig. 4(b) would fall on a straight line; that they
do not indicates that the system is non-Arrhenius.
An alternate way to think of Arrhenius behavior is

in terms of the free energy barrier for transitions, Fb.
Calculating the free energy landscapes as in Fig. 2 allows
us to determine Fb = F (h = 0). Transitions are less
frequent with higher Fb. Figure 5 verifies that τ grows
Arrheniusly as a function of Fb, τ ∼ exp(βFb) as Fb →
∞. The deviations seen for small Fb are due to large
system sizes: for larger systems, it simply takes longer for
particles to move to the transition state [22]. The details
of this vary depending on the potential. Additionally,
the vertical spread of symbols for a given potential for
Fb . 5 reflects that different R and T values can have the
same Fb. Nonetheless, the collapse of the data at larger
Fb indicates that τ grows Arrheniusly with Fb precisely
where the dynamics are slowest.
Our primary interest is understanding the cause of

glassy dynamics in our system. In other words, we’d like
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Curves in different colors show the free energy barrier as a
function of T with different R as indicated. The interaction
potentials are (a) harmonic (“HM”), (b) WCA, (c) Lennard-
Jones, (d) long-range (“LR”). (As discussed in Sec. II, recall
that the specific values of T are not comparable between the
different potentials.)

to understand how τ grows large (equivalently, how Fb

grows large) as we decrease T and/or decrease R. Figure
6 shows Fb/kBT as a function of T for different particle
types. In each panel, the different curves are for differ-
ent system sizes R. As expected, Fb/kBT grows with
decreasing T and with decreasing R. Panels (a) and (b)
show some curves with qualitatively different behavior,
in that Fb/kBT goes to a plateau as T → 0. As with
Fig. 4, this is because of the behavior of the free energy
landscape shown in Fig. 2(a) for these two finite-ranged
potentials: for large system sizes R, even at T = 0 the
particles can rearrange without overlapping. For large R,
the plateau values for Fb seen in Fig. 6(a,b) are precisely
the free energy barrier heights for hard disks [22]. For
this argument to work, the system size R must exceed
a critical value, Rc = 3 for the harmonic potential and
Rc = 3.245 for the WCA potential (as discussed at the

Figure 7: Sketch of three simple potential energy landscapes.
(a) Model 1. (b) Model 2. (c) Model 3.

end of Sec. II). For R < Rc, particles must overlap at
h = 0 with U > 0, and so as T → 0 the free energy
barrier Fb will diverge. For the LJ and LR potentials, at
h = 0 we always have U > 0 and so not surprisingly Fb

diverges in all cases at low temperatures, with the details
depending on R.
These behaviors raise an interesting question. In the

cases of Fig. 6(a,b) with a plateau, the system approaches
the hard disk behavior as T → 0. For hard disks, this
free energy barrier is entirely an entropic barrier [22].
However, clearly for many other cases in Fig. 6, the free
energy barrier is at least in part due to the potential
energy component of the barrier. To what extent in any
of these cases can the free energy barrier be ascribed to
entropy, and to what extent to potential energy?

C. Simple models for the transition state

To understand the interplay of entropy and potential
energy at the transition state (h = 0) for our three parti-
cle system, we consider a simple model for the transition
state. Consider a system moving along a reaction coordi-
nate h with a flat energy landscape, except for a barrier
at h = 0. At h = 0, we will assume there is a second coor-
dinate x in the orthogonal direction. In the three particle
system, this would account for other degrees of freedom
for the particle locations subject to the constraint h = 0.
We examine three ideas for U(x), sketched in Fig. 7.
First consider Model 1 [Fig. 7(a)], where we let x be

constrained on the interval 0 ≤ x ≤ 1 and the potential
energy barrier depends on x as:

U(x) = 0, 0 ≤ x < δ (7)

U(x) = U0, δ ≤ x ≤ 1 (8)

so that the system can either make a transition at zero
potential energy cost, or with a finite cost U0 > 0.
Attempts to cross with zero potential energy cost occur

with probability

p1 = δ (9)

and these attempts always succeed. Attempts to cross
elsewhere occur with probability (1−δ) and succeed with
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probability exp(−U0/kBT ); thus the likelihood of a bar-
rier crossing taking this pathway is

p2 = (1− δ) exp(−U0/kBT ). (10)

The crossing attempt entirely fails with probability 1 −
p1 − p2. If attempts are made with a time scale τ0, then
the mean transition time can be shown to be

τ =
τ0

p1 + p2
. (11)

The question to consider, then, is what this transition
looks like in terms of a free energy barrier, if we average
over the coordinate x? Two limits are immediately ob-
vious. If U0/kBT is sufficiently large, p1 ≫ p2 and the
transition rate is governed by an entropic barrier. In the
converse limit, if δ is sufficiently small, the U = 0 path-
way is vanishingly rare (p1 ≪ p2) and transitions are
governed by the potential energy barrier U0. In between
these limits, one can think of this system as having an
effective free energy barrier that is due to both poten-
tial energy and entropy. The mean potential energy the
system has when the barrier is crossed is given by

β〈U〉 =
βU0p2
p1 + p2

(12)

using β = 1/kBT . The partition function at the crossing
is given by Z = p1 + p2, the free energy barrier height
is βF = − lnZ = − ln(p1 + p2), and the entropy can be
derived as

βTS = −βT
∂F

∂T
= ln(p1 + p2) + β〈U〉 (13)

(which is also apparent from F = U − TS).
The conclusion is that while the potential energy sur-

face is T -independent and always has a U = 0 transition
pathway, the free energy barrier depends on T and on
average requires nonzero potential energy for the transi-
tion. Given that p2 depends on T , Eqns. 12 and 13 show
that both the potential energy and entropy contributions
to the free energy barrier depend on T .
We next consider the more realistic Model 2, where the

transition has a harmonic potential with respect to the
coordinate x:

U(x) = U0x
2. (14)

For this potential, the mean potential energy required
is β〈U〉 = 1/2 (equipartition). In the interesting limit
T → 0, the free energy barrier grows as βF ∼ | lnT |. As
the potential energy contribution is independent of T , the
barrier growth is due to entropy: at low temperatures the
system only crosses at |x| .

√

kBT/U0. As with Model
1, while U(x) is independent of T , the free energy barrier
depends on T .

Finally, we consider model 3 which is a hybrid of the
previous two models:

U(x) = 0, |x| < δ (15)

U(x) = U0(|x| − δ)2, |x| ≥ δ. (16)

In this model, the mean potential energy required to cross

the barrier is β〈U〉 = 1
2 (1 + 2δ

√

βU0

π )−1. At low temper-

ature and with large δ, the system prefers to cross within
the region |x| < δ where potential energy is zero. In this

case, δ
√

βU0

π → ∞, and β〈U〉 → 0. For small δ and/or

large T , the average potential energy found when cross-
ing the barrier is larger. At high temperature and with

small δ, when δ
√

βU0

π → 0 , β〈U〉 → 1/2, which is same

as model 2.
To be clear, for these models we are really interested in

the case where the system climbs a potential energy hill
to reach the transition state h = 0. We are then consider-
ing how the system crosses through the h = 0 state, and
concluding that this requires additional potential energy
(on average) and also navigating an entropic barrier. In
other words, merely having enough potential energy to
reach the saddle is insufficient, as threading through the
saddle’s lowest point is of low probability. In all of these
simple models of the transition state, the transition time
scale will be

τ = τ0 exp(βUmin) exp(βF ) (17)

where Umin is the potential energy of the saddle’s lowest
point, and F is the additional free energy barrier asso-
ciated with the h = 0 potential energy landscape cross-
section. The exp(βUmin) contribution gives Arrhenius
scaling with T , and the exp(βF ) contribution provides
additional non-Arrhenius scaling. In many situations,
the exp(βUmin) term dominates, but one can anticipate
that if U0 > Umin, then the exp(βF ) term may dominate.

D. Barriers: Energy and Entropy

This discussion motivates us to divide the free energy
barrier in our three-particle simulations into energetic
and entropic components. As F = U − TS, we consider
the free energy barrier to be:

βFb = βUb + Sb (18)

where as usual, kB = 1. The relevant quantities are
illustrated in Fig. 8. hmin is the value of h that minimizes
the free energy. The contribution of potential energy
to the barrier is defined as Ub = 〈U〉(0) − 〈U〉(hmin).
〈U〉 is the black curve indicated by Ub in Fig. 8, and is
averaged over ≥ 20 barrier crossings. Equation 18 lets
us calculate Sb from Fb and Ub. Note that the definition
of Sb differs from Ub by a minus sign: Sb = S(hmin) −
S(h) > 0, such that it is positive (and thus a barrier).
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Figure 8: (Color online) The free energy landscape for the
harmonic (“HM”) interaction potential. R = 2.9 and T =
10−2.2.The blue curve is the free energy landscape. The black
curve is the potential energy landscape based on 〈U〉 in h
space. The red curve is the minimum potential energy, Umin,
in h space. Fb/kBT , Ub/kBT , and Umin/kBT are as indicated.
hmin is the value that minimizes F .

The minimum possible potential energy for each value of
h is the thin red curve in Fig. 8 which is at zero for most
values of h. We define Umin as the minimum potential
energy needed to cross h = 0 if the system finds the
optimum transition path, as indicated in Fig. 8. It is
clear from Fig. 8 that Ub will almost always be larger than
Umin, although a rare exception for the Lennard-Jones
potential will be described below. Umin is a quantity
we can derive analytically for each interaction potential,
while Ub is determined from the simulation data. Umin

is temperature independent, in contrast to Ub, Sb, and
Fb. We wish to see what conditions allow Sb or Ub to
dominate the free energy barrier, and also to gain some
intuition about non-Arrhenius temperature dependence
in general. Note that simulation times become nearly
intractable when βFb = βUb + Sb & 10, thus limiting
how much of the growth of the barriers we can study.
Figure 9(a) shows data for the harmonic interaction

potential for R = 2.6. As R < 3, the particles must
overlap at h = 0 and thus Umin > 0. The graph shows
that as T → 0, both βUb and Sb grow. The growth
of βUb is more significant, pushed up by βUmin. This
situation is analogous to Model 2 from Sec. III C, where
Ub ≈ Umin + 1

2kBT and Sb ≈ | lnT |. Given the slow
growth of Sb, the free energy barrier is dominated by
Umin.
Figure 9(b) shows complementary data for the har-

monic interaction potential as a function of R at fixed
T = 10−2. Given the finite range for the potential,
Umin = 0 for R ≥ 3, although Ub > 0 as the particles
overlap for some crossings. The R > 3 case is analogous
to Model 3, whereas R < 3 is analogous to Model 2. The
data in Fig. 9(b) show that entropy plays a smaller role
for small R, where the free energy barrier is dominated
by the potential energy. For this interaction potential,
Umin ∼ (R − 3)2 for R < 3; the data show that Sb is
nearly constant as a function of R.
Figure 9(c,d) shows the comparisons of entropic barrier
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Figure 9: (Color online) Data for the potential energy bar-
rier and entropy barrier for a variety of interaction poten-
tials, temperatures, and system sizes R, as indicated. The
solid curves indicate Umin, the theoretical minimum potential
energy barrier. The symbols indicate measured values (from
the simulation data), connected by straight dashed lines. The
meanings of the curves are all as labeled in (a). The in-
teraction potentials are (a,b) harmonic (‘HM’), (c,d) long-
range (‘LR’),(e,f) Weeks-Chandler-Andersen (‘WCA’) and
(g,h) Lennard-Jones (‘LJ’).

and potential barrier for the LR potential. For large T or
large R cases, Sb > βUb. In the converse cases, the oppo-
site is true. As the system becomes slower with a large
free energy barrier, the free energy barrier is strongly
determined by the potential energy component.
For the WCA data shown in Fig. 9(e,f), Umin goes

to zero at R = 3.245, although as before we still have
βUb > 0. For the WCA potential, we see a more dra-
matic growth of Ub with decreasing T [panel (e)] and
with decreasing R [panel (f)]. It appears that if we fur-
ther shrink the system size in panel (f), Ub will eventually
grow larger than Sb. The growth of Sb at small R is not
as strong as the growth of βUmin, and since Ub > Umin,
this further suggests that βUb will be larger than Sb for
smaller systems.
Figure 9(g,h) shows the comparisons of entropic bar-

rier and potential barrier for the LJ potential. For high
T cases [panel (g)], Sb > βUb, with the opposite oc-
curring as T → 0. Panel (h) shows that at a fixed T ,
with decreasing R both Sb and βUb grow, with the latter
growing more dramatically. It appears that if we further
shrink the system size in panel (h), Ub will eventually
grow larger than Sb.
Unusual behavior is seen for the LJ potential in

Fig. 9(g,h), where Ub < Umin with large R and low T .
This can be understood given the differences between
our definitions of Ub and Umin. Umin considers the dif-
ference in potential energy between the lowest potential
energy path at the saddle point (h = 0) and the low-
est potential energy the particles can obtain given R.
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Figure 10: (Color online) The potential barrier and entropy
barrier for (a) the harmonic interaction potential and (b) the
WCA interaction potential. The system sizes R are as indi-
cated, and chosen such that the minimum potential energy
barrier is Umin = 0. The horizontal dashed lines indicate the
free energy barrier for the hard disk case.

The latter corresponds to a configuration where the cen-
ters of the particles form an equilateral triangle with side
length = 2.24, corresponding to h = 1.94. However, this
configuration is itself an unlikely configuration, and for
example when h = 1.94 the three particles will often be
in a configuration with slightly higher potential energy
than the absolute minimum. This is essentially the same
argument put forth in Sec. III C, that the average po-
tential energy experienced by the system is not the min-
imum value. Thus, the measured potential energy dif-
ference Ub will often be between a slightly higher value
for both h = 0 and h = hmin, such that their difference
Ub = U(0)−U(hmin) < Umin. This is not the case for the
other interaction potentials, probably because the poten-
tial energy is a flatter function of h around hmin for the
other interaction potentials.
Some general conclusions can be drawn from all of the

data of Fig. 9. First, in most of the cases, Ub > Umin,
confirming the intuition from Sec. III C: that crossing the
saddle point in the potential energy landscape is not typi-
cally done at the minimal potential energy path through
that saddle point. Second, Fig. 9(a,c,e) demonstrates
that βUb and Sb both depend on T and are larger for
colder temperatures: and thus these barriers behave non-
Arrheniusly. In particular, these barriers are not simply
based on βUmin.
The finite-ranged potentials (harmonic and WCA) al-

low us to look at cases where Umin = 0. As noted in the
discussion of Fig. 6(a,b), when Umin = 0 the free energy
barriers reach a plateau as T → 0 corresponding to the
hard disk limit (the horizontal dashed lines). The data
for the energy and entropy barriers are shown for two of
these cases in Fig. 10. These data match the qualitative
behavior predicted by Model 3 (Sec. III C). At low T ,
βUb ≈ 0 and Sb approaches the hard disk result. At high
T , βUb ≈ 1

2 and the entropic contribution decreases as
more microstates are possible at h = 0. For different
temperatures, the trade-off between crossing with zero
or finite potential energy changes, due to the entropic
penalty of choosing the zero potential energy pathway,
which is weighted by the temperature.

IV. CONCLUSIONS

We studied a free energy landscape of a simple model
possessing some qualitative features of a glass transition.
The model’s slow dynamics are governed by a free energy
barrier which we directly measure in simulations. The
barrier height is determined both by entropy and poten-
tial energy. The relative contributions of each of these
depend on temperature T . In particular, for fixed sys-
tem size R, the potential energy landscape is independent
of T , yet the effective potential energy barrier height,
entropic barrier height, and overall free energy barrier
all depend on T . This leads to non-Arrhenius tempera-
ture dependence. In particular, the entropic contribution
dominates the free energy barrier height for cases with fi-
nite range potentials at lower densities (larger system size
R), as shown in Fig. 10. Even in cases with long-range
potentials and smaller system sizes, entropy still plays a
nontrivial role, as shown in Fig. 9. We have argued that
for many of these cases, potential energy will dominate
the free energy barrier as T → 0; nonetheless, the en-
tropic contribution is still significant at temperatures for
which the system is already extremely slow.
We conjecture that with more particles, entropy plays

an even more important role in cooperative rearrange-
ments, as suggested in 1965 by Adam and Gibbs [34]
and discussed by many authors subsequently. In fact,
our model is in the spirit of Adam and Gibbs, in that
rearrangements require coordinated motion of all three
particles [Fig. 1(b)] resulting in an entropic penalty.
There are qualitative differences between our results

and non-Arrhenius behavior seen in glass-forming sys-
tems. First, the onset of slow dynamics in our model
requires temperature changes of several orders of magni-
tude (Fig. 6), whereas similar changes in glassy materials
require a temperature decrease of only 10-20% [1–4, 28].
Second, in our model, as T → 0, the potential energy
component of the barrier may become more important
than entropy, suggesting a recovery of Arrhenius behav-
ior at the lowest T (Fig. 9), whereas in glassy materials
the most pronounced non-Arrhenius behavior is seen at
the coldest temperatures. However, the recovery of Ar-
rhenius behavior is not completely clear from our data
as the T → 0 limit requires prohibitively long simulation
runs. Both of these differences between our simple model
and glassy behavior might disappear for larger numbers
of particles, but then we would lose the ability to fully vi-
sualize the free energy landscape (Fig. 2). It is certainly
known that near the glass transition, rearrangements can
involve far more than three particles [23, 24], which would
likely enhance the temperature sensitivity. While we do
not model the N → ∞ limit of a glass transition, we
have demonstrated connections between the free energy
landscape, free energy barriers, and non-Arrhenius tem-
perature dependence in our model glassy system.
We thank M. E. Cates, F. Family, and G. L. Hunter

for helpful discussions. This work has been supported
financially by the NSF (CMMI-1250199/-1250235).
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