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Abstract

The self-assembly of highly anisotropic colloidal particles leads to a rich variety of morphologies,

whose properties are just beginning to be understood. This article uses computer simulations

to probe a particle-scale perturbation of a commonly studied colloidal assembly, a monolayer

membrane composed of rodlike fd viruses in the presence of a polymer depletant. Motivated

by experiments currently in progress, we simulate the interaction between a microtubule and a

monolayer membrane as the microtubule “pokes” and penetrates the membrane face-on. Both the

viruses and the microtubule are modeled as hard spherocylinders of the same diameter, while the

depletant is modeled using ghost spheres. We find that the force exerted on the microtubule by

the membrane is zero either when the microtubule is completely outside the membrane or when

it has fully penetrated the membrane. The microtubule is initially repelled by the membrane as

it begins to penetrate but experiences an attractive force as it penetrates further. We assess the

roles played by translational and rotational fluctuations of the viruses and the osmotic pressure

of the polymer depletant. We find that rotational fluctuations play a more important role than

the translational ones. The dependence on the osmotic pressure of the depletant of the width and

height of the repulsive barrier and the depth of the attractive potential well is consistent with the

assumed depletion-induced attractive interaction between the microtubule and viruses. We discuss

the relevance of these studies to the experimental investigations.
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I. INTRODUCTION

Colloidal liquid crystals have proven to be a fertile area of experimental and theoretical

soft matter research for many years [1]. Of particular interest in recent years [1–11] are

assemblies of fd viruses in the presence of a polymer depletant which generates an attractive

force between the viruses. Each virus is a rod of roughly one micron in length; the flexibility

of the rods can be controlled by molecular engineering and highly monodisperse systems can

be fabricated. As the concentration of polymer depletant is varied, a variety of equilibrium

structures are observed, including membranes, micron-sized monolayer disks, twisted rib-

bons, braided ribbons, smectic filaments and nematic tactoids. Given that the constituent

viruses of these assemblies are micron-sized, it is possible to image these structures at the

molecular level. The rodlike virus system has thus served as an important model system

to study entropy-driven assembly of hard particles, and has been the subject of numerous

experimental and theoretical investigations [10, 12, 13]. The assemblies can also be manip-

ulated via optical tweezers achieving structural changes via mechanical means (e.g. [3, 14].

However, the response of such assemblies to particle-scale perturbations has not yet been

explored. Here, we computationally consider such a perturbation to the best-studied class

of colloidal assemblages, one-rod-length thick monolayers of rodlike particles called colloidal

membranes.

The interaction of fd viruses in the absence of depletant is well-modeled by the excluded

volume interaction of hard rods [15]. The addition of nonadsorbing depletant introduces

an attractive interaction, due to the increased free volume made accessible to the depletant

molecules by clustering of the colloidal rods [16]. As the polymer concentration is increased

(thus increasing the attraction strength), a dilute suspension of virus undergoes a series of

phase transitions: from an isotropic phase, to nematic liquid crystalline droplets or tac-

toids [12], to monolayer colloidal membranes [2], to a smectic phase consisting of stacks of

membranes [17].

The colloidal membranes found at moderate polymer concentrations have been of partic-

ular interest as a model system because they exhibit the same long wavelength properties as

lipid bilayers, but their micron-scale thickness enables study by light microscopy. Moreover,

monolayers of nanoscale rods are of technological importance for the development of scal-

able optoelectronic devices (e.g. [18–22]). Colloidal membranes have thus been the subject
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of experiments studying their continuum-scale properties, morphological transitions induced

by optical tweezers, and interactions between pairs of colloidal membranes [1–3, 7, 8, 14, 23].

While early theoretical work focused on nematic tactoids (e.g. [24–30]) or spheres in a ne-

matic background of rods (e.g. [31–46]), colloidal membranes and smectic stacks have been

the subject of more recent modeling (e.g. [4, 5, 7, 9–11, 47–54]). Most relevant to the

current study, Yang et al.[4] carried out numerical simulations of the fd -depletant system,

modeling the viruses as hard spherocylinders of diameter σ and length L. The depletant

was represented by the Asakura-Osawa (AO) model [16, 55], where the polymers are mod-

eled as ghost spheres which freely interpenetrate each other but interact with the rods via

an excluded volume interaction. Monte Carlo (MC) simulations performed by Yang et al.

predicted that stable monolayer membranes exist above a critical aspect ratio of the rods

(whose value depends on the osmotic pressure of the ghost spheres) and below a critical

diameter of the spheres, approximately 1.7σ at low osmotic pressure. The latter prediction

was found to be in accord with experimental results [4].

While these previous studies have generated significant insights about the continuum-scale

behaviors of colloidal membranes, their particle-scale mechanics have yet to be completely

characterized. One intriguing way to experimentally probe the structure of a monolayer fd

membrane is to “poke” it face-on with a microtubule of roughly the same diameter as the fd

virus but of greater length [56], and push the microtubule so that it completely penetrates

the membrane. The membrane is held sideways by two optical tweezers and two additional

optical traps hold two beads attached to the microtubule or flagellum. The force of the

membrane on the rod can be measured as a function of the relative positions of the rod and

the membrane.

Motivated by these experiments, which are currently in progress, we consider in this

paper a numerical simulation of the interaction potential between a microtubule and virus

membrane as a function of their separation. We model the membrane and depletant using the

same approach as Ref. [4], and we model the microtubule as an fd rod of diameter σ but with

length Lt, with Lt > L. Figure 1 shows a schematic diagram of the microtubule approaching

and penetrating the membrane. To map a phase diagram with computational efficiency,

Yang et al.[4] kept the membranes constituent rods fully aligned. Here, we relax that

constraint and allow rod rotations, which we find play an important role in the interaction

between the membrane and microtubule. Our results provide an experimentally testable
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prediction for the forces and corresponding free energy profile experienced by a rodlike

particle as it enters a colloidal membrane, and enable a first look at the response of an fd

virus assembly to a particle-scale perturbation.

This paper is organized as follows. In the next section we describe our computational

model and the simulation techniques used to measure the interaction potential and force

between the microtubule and membrane. Sec. III presents our results, including a compar-

ison with a theoretical calculation of the potential assuming an idealized configuration of

the membrane viruses. We also compare these results with simulations that exclude rod

rotations. Sec. IV offers concluding remarks.

II. SIMULATION MODEL

As in Ref.[4], we model the the fd viruses as hard spherocylinders of diameter σ and length

L. The polymer depletant is represented as ghost spheres of diameter σp, which freely

interpenetrate each other but interact with the rods via an excluded volume interaction.

Unlike most simulations in Ref.[4], we allow for orientational fluctuations of the virus rods.

The microtubule is modeled as a spherocylinder with the same diameter as the viruses but

of length Lt, with Lt > L. The long axis of the microtubule is held fixed parallel the z axis,

the normal to the plane of the membrane. The microtubule is moved along this axis, which

passes through the center of the membrane. We report our simulation results with σ as the

unit of length, kBT as the unit of energy, and kBTσ
−3 as the unit of pressure.

The total number, N , of rods in the membrane is fixed and the ghost sphere chemical

potential µp is fixed by coupling to a bath with concentration ρp through insertion/deletion

moves. Since the internal pressure of a membrane should be balanced by the polymer solution

pressure, a constant pressure p is maintained in the xy plane by performing volume-change

MC moves, while the box size is fixed in the z direction. MC moves are accepted or rejected

according to the Metropolis criterion; the simulations sample from the NµppT ensemble.

We set the external pressure equal to the sphere osmotic pressure, p. Since there are no

sphere-sphere interactions in the AO model, the osmotic pressure is given by the van’t Hoff

equation p = kBTρp and the sphere chemical potential is µp = kBT ln(ρpσ
3).

Yang et al. [4] mapped out the phase diagram for the virus-depletant system primarily

in the absence of rod orientational fluctuations to increase computational efficiency. They
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FIG. 1. (Color online) Schematic illustration of the process modeled in this paper. A microtubule

of length Lt approaches (a) and penetrates (b) a two-dimensional membrane of rods of length L.

The center of mass separation of the microtubule and membrane is denoted by d.
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studied the phase diagram as a function of both the rod length L (ranging from 20 to

175) and the ghost sphere diameter δ = σp/σ (ranging from 1.2 to 2.0). Since we find that

orientational fluctuations are important for the “poking” process studied here (shown below),

we include orientational fluctuations in our calculations. Due to the increased computational

overhead associated with orientational fluctuations, we consider one rod length, L = 100

and one ghost sphere diameter, δ = 1.5. We set Lt = 150 for the length of the microtubule.

For these values of L and δ, our simulations with rod orientational fluctuations yield

stable monolayer membranes for pressures in the range 0.06 . p . 0.1, while Yang et al.

[4], excluding orientational fluctuations, found stable isolated membranes for pressures in

the range 0.02-0.08 for the same values of L and δ. At higher pressures a smectic phase is

stable, even when orientational fluctuations are included. We assess the relative stabilities of

the smectic and isolated membrane phases by performing MC simulations with the system

initialized in a double layer. In the isolated membrane phase the two layers separate, while

in the smectic phase they remain in contact. However, isolated membranes are highly

metastable even at pressures corresponding to the smectic phase. It is thus possible to

study the response of a membrane to poking in this regime by initializing the system with a

single layer. Similarly, it is possible to experimentally study such metastable membranes by

preparing them under conditions in which isolated membranes are stable, and then increasing

the osmotic pressure in situ [57].

We measure the interaction potential φ and force F between the microtubule and mem-

brane as functions of the distance d between their centers of mass. We consider values of d in

the range 0 ≤ d ≤ D, with D > (L+Lt)/2 to study the process of the microtubule approach-

ing and penetrating the membrane. For our fixed values of L and Lt we choose D = 150.

Using umbrella sampling [58, 59], we divide the range 0 ≤ d ≤ D into n partially overlapping

windows, each of unit width, except in the range 124.5 ≤ d ≤ 125.5 where the microtubule

is approaching and penetrating the membrane. In the latter range we use windows of width

0.1. The overlap between neighboring windows is chosen to be 0.4, except for the windows

of width 0.1 where the overlap is 0.04. In total we have n = (D − 1)/0.6 + 1/0.06 = 265

windows. In each window, the membrane is initialized in a layer in the xy plane at a high

osmotic pressure (p = 0.15) where the layer undulations are smaller. We then adjust p to the

desired value, and perform MC simulations on this system, measuring the acceptance ratio

every 200 cycles, adjusting the maximum amplitudes of the rod translations and rotations

6



and the changes in the x and y dimensions of the simulation box to maintain an acceptance

ratio within the range 0.3-0.5. We consider the system to be equilibrated when the all of

the amplitudes do not require adjustment for 50 consecutive measurements.

Next, for each window, the microtubule is placed so that its distance d from the membrane

lies within the window. The system is equilibrated via an MC simulation as described above,

now including a hard-wall umbrella potential that constrains d to remain within the window,

and then simulated for 2 × 106 MC sweeps. The free energy as a function of d is then

determined using the weighted histogram analysis method [60]. By equilibrating the system

in each window, we are assuming that the microtubule is moving sufficiently slowly so that

equilibrium is maintained throughout the process, i.e, the process is reversible. While we

present results only for d > 0, we have also sampled the range −D ≤ d ≤ 0 and found

potential plots which are symmetric about d = 0, up to statistical noise. As one would

expect for a reversible process, there is no difference between inserting the microtubule into

the membrane and withdrawing it. To improve the statistics of our results we have included

data for both positive and negative values of d with the latter data incorporated using the

absolute value of d.

III. RESULTS

Figure 2 shows the interaction potential φ as a function of the center of mass separation d

of the microtubule (Lt = 150) and membrane with N = 224 rods of length L = 100 at three

different pressures as obtained from the umbrella sampling described in the previous section.

Note that at the highest pressure shown, p = 0.15, the thermodynamically stable phase is

smectic; however, a monolayer membrane can be stabilized by initializing the system of rods

in a single layer.

As the pressure is increased the depth of the attractive well monotonically increases, but

the height of the potential barrier changes non-monotonically. Note that the barriers occur

in the vicinity of d = 125, where the microtubule (Lt = 150) would enter the membrane

(L = 100) if it were perfectly flat. However, membrane undulations slightly extend the

region of interaction between the tube and the membrane, and the width of the barriers

(defined by the range over which the potential is positive) is given by: 44.8 for p = 0.07,

44.5 for p = 0.1, and 10.3 for p = 0.15. As we discuss in greater detail below, the increasing
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FIG. 2. (Color online) Simulation results for the interaction potential φ (in units of kBT ) of a

microtubule (Lt = 150) and a membrane (N = 224, L = 100) as a function of their center of mass

separation d for three different pressures: p = 0.07, 0.1, 0.15 (in units of kBT/σ
−3). Lengths are

measured in units of σ. The microtubule fully penetrates the membrane for d ≤ 25.

attractive well depth with p is consistent with the increased driving force from the depletion

attraction, and the reduction of the barrier at the largest value of p is consistent with the

greater degree of orientational and layer order as the pressure increases and a monolayer of

well-aligned rods with minimal undulations or protrusions is formed. However, we do not

have an explanation for the increase in the barrier height at intermediate p.

The force F exerted on the microtubule by the membrane is given by the derivative of

−φ with respect to d. The force corresponding to the potential results of Fig. 2 is shown in

Fig. 3. There is a repulsive force (F > 0) acting on the microtubule as it first penetrates

the membrane. As the microtubule penetrates further into the membrane, it experiences

an attractive force due to the depletion-induced interaction. The force on the microtubule

is zero when it is either completely inside (|d| . 25) or completely outside (|d| & 125) the

membrane.

To investigate the role played by the rotational and translational degrees of freedom of the
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FIG. 3. (Color online) Force F (in units of kBT/σ) exerted by the membrane (N = 224, L = 100)

on a microtubule (Lt = 150) as a function of their center of mass separation d (in units of σ) for

p = 0.07, 0.1, 0.15 ( p measured in units of kBT/σ
−3) as calculated from the potential shown in

Fig. 2. A positive force indicates the microtubule is being pushed out of the membrane.

rods, we first consider an idealized membrane configuration where the depletion interaction

between the microtubule and the rods can be calculated exactly. In this simple configuration

(Fig. 4) the orientation of the rods is fixed parallel to the z axis (thus effects of rod rotations

are neglected) and the centers of mass of the rods are fixed on the sites of a hexagonal

close-packed lattice in the xy plane. The density of the rods is adjusted to match that of

the simulation. Specifically, the densities are 1.0330, 1.0459, 1.0563 for p = 0.07, 0.1, 0.15,

respectively. The overlap of the excluded volumes of the microtubule and the rods, vOL(d),

is given by the volume of a cylinder of radius (1+δ)/2 and height equal to the portion of the

microtubule that has penetrated the membrane. The attractive energy favoring insertion of

the microtubule is given by −pvOL(d). We then account for the work performed against the

system osmotic pressure in order to create a vacancy for the microtubule to penetrate, by

adding pvrod with vrod the volume per rod in the equilibrated membrane, so the estimated

potential is given by φideal(d) ≡ p (vrod − vOL(d)). For simplicity, we assume that the entire
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FIG. 4. (Color online) Idealized membrane configuration used in the theoretical model, viewed

along the z axis, normal to the plane of the membrane. The red circles are the cross section of the

virus rods and the blue solid circle at the center of the pattern is the microtubule’s cross section.

The blue dashed circle is the outer edge of the depletion zone of the microtubule and has radius

(1 + δ)/2 = 1.25 for δ = 1.5, with lengths measured in units of σ. The overlap volume yielding

the depletion potential between the microtubule and membrane is the part of the microtubule’s

depletion zone that overlaps with any of the rods’ depletion zones.

vacancy is created as the tube first enters the membrane, giving rise to the barrier in φideal

at d = 125.

Figure 5 shows φ(d) at various pressures, comparing the result of the simulations (Fig. 2)

with the potential φideal calculated on the basis of Fig. 4. The jump in φideal at d = 125 is

the free energy cost of creating the vacancy for the microtubule to penetrate the membrane;

i.e., the product of the pressure and the rod volume in our idealized model. We observe that

as the pressure increases the overall agreement between the simulation and the idealized

calculation improves except for the height of the barrier. The improved agreement is phys-

ically reasonable, as with increasing pressure the membrane becomes more ordered, with

smaller orientational and translational fluctuations (fluctuations which are excluded from
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the potential φideal). Quantitatively, we find that the standard deviations for the distribution

of the tilt angle of the rods about the layer normal are 8.8× 10−4, 7.5× 10−4, 4.1× 10−4 at

p = 0.07, 0.1, 0.15 respectively. The standard deviations for the distribution of the centers of

mass of the rods along the normal to the membrane have values 6,4 and 3 at p = 0.07, 0.1, 0.15

respectively. However, the simulations show a decrease in barrier height between the lower

2 pressures and the highest value (this is easiest to see in Fig. 2), whereas in the calculation

of φideal the barrier height is given by the product of the pressure and the rod volume and

thus grows monotonically with increasing pressure.

To further probe the effects of rod rotations, we perform simulations identical to those

described above, but now excluding rotations, while continuing to allow translational motion

both within the layer and normal to it (i.e. membrane undulations). The results are shown in

Fig. 6, which includes a comparison with φideal and with the results of the original simulations

including rotations. From the figure we see that, except in the barrier regions (d ≃ 125),

the results of the simulations without rotations are very similar to φideal. As the latter does

not include any translational motion while the former does, the agreement between the two

suggests that the translational degrees of freedom do not significantly affect the potential.

As we noted above, the barrier in φideal is computed in a very simplistic fashion, namely the

product of the pressure and rod volume, so the disagreement with the simulations, either

with or without rotations, is not surprising.

Comparing φideal and the results of the rotationless simulations with the results of the full

simulation, we see that the latter exhibits a wider potential barrier, except at the highest

pressure where the membrane is well-ordered. In the full simulation the width of the barrier

is pressure dependent, less so for the idealized theory and the rotationless simulations. The

depth of the potential well is also smaller in the full simulation even at high pressure (note

that the vertical scale in Fig. 6 is larger at higher pressure). These differences arise because

rotations of the rods tend to reduce the overlap of the depletion zones of the microtubule

and rod, thus reducing the depth of the depletion-induced potential well. Orientational

fluctuations of the rods also make it more difficult for the microtubule to penetrate the

membrane, leading to a taller, wider barrier.

As can be seen in Fig. 3 there is noticeable statistical noise in the force when the micro-

tubule first encounters the membrane. The physical origin of this noise can be understood

as follows. As the microtubule encounters the membrane, local undulations play a critical
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FIG. 5. (Color online) Comparison between the simulation results (solid lines) for φ (Fig. 2) and the

theoretical excluded volume calculation (dashed lines) of φideal (based on the ideal configuration

shown in Fig. 4) for a microtubule (Lt = 150) piercing a membrane (N = 224, L = 100) as a

function of the separation d for pressures: (a) p = 0.15; (b) p = 0.1; (c) p = 0.07 . The jump in

φideal at d = 125 is the free energy cost of creating the vacancy for the microtubule to penetrate

the membrane.
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FIG. 6. (Color online) Comparison of the results for φ as a function of the separation d at pressures:

(a) p = 0.07, (b) p = 0.1, (c) p = 0.15, obtained from the full simulation (dotted-dashed black

line; Fig. 2), the theoretical excluded volume calculation φideal (blue dashed line), and a simulation

where rotations of the rods are excluded (solid red line).
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role in the interaction: the microtubule can be attracted or repelled, depending on the local

undulation of the membrane. In particular, the tube is attracted by the depletion force

when it is within a depletant-radius of the local membrane surface, but repelled by rod

excluded volume as it crosses the local surface. Membrane undulations are not accounted

for by our biasing potential, which indexes the distance d between the microtubule and the

center of mass of the membrane, i.e., the average position of the rods. Therefore, attain-

ing equilibrium in these situations requires a sufficiently long simulation time such that the

tube experiences a representative ensemble of membrane undulations. In principle, greater

statistical accuracy could be achieved by including a second potential which either accounts

for or biases membrane undulations. Due to finite computational resources, we have not

performed such a study.

Following the suggestion of an anonymous referee we have measured the radially-averaged

nematic order parameter of the rods as well as their positional pair correlation function in the

region of the membrane where the microtubule penetrates. We found that the microtubule

does not induce any notable change in either the local nematic or positional order as it

enters the membrane, contrary to what one might have expected on intuitive grounds.

IV. CONCLUSION

Using numerical simulations we have studied the penetration of a microtubule into a

monolayer membrane of fd viruses in the presence of a polymer depletant. Both the viruses

and the microtubule are modeled as hard spherocylinders of the same diameter; the micro-

tubule is 50% longer than the viruses. The depletant is modeled using ghost spheres [55].

The interaction potential and force between the microtubule and membrane as a function of

their relative separation d were measured using equilibrium umbrella sampling. Our results

show that the force profile has three distinct regimes: (1) zero force when the microtubule is

completely outside the membrane or when the membrane is fully penetrated, (2) a repulsive

force as the microtubule begins to penetrate the membrane, and (3) an attractive force as

the microtubule further penetrates the membrane. As the osmotic pressure is increased, the

depth of the potential well increases while both the height and width of the potential barrier

decrease. These trends are physically reasonable because the membrane is more ordered

with increasing pressure.
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We have further explored the role played by translational and rotational fluctuations of

the rods by computing exactly the interaction potential between the microtubule and a per-

fectly aligned hexagonal lattice of rods. Excluding the range of d where the microtubule

begins to penetrate the membrane (the “barrier region”) we find that the agreement between

the exact calculation and the simulations improves with increasing pressure. We have also

performed simulations where we exclude the rotational degrees of freedom of the rods. These

simulations agree very well with the exact calculation at all pressures (excluding the barrier

region), suggesting that translational degrees of freedom (rod protrusions) do not play a

significant role in the interaction potential as compared to the rotational degrees of free-

dom. This result contrasts with the previous experimental and theoretical observation that

rod protrusions play a key role in determining the interaction between vertically adjacent

membranes [2, 4, 5].

The simulated free energy profiles can be tested against experiments in which optical traps

are used to reversibly insert particles into assemblages, such as described in the introduction.

Using similar simulation protocols, it would also be possible to determine how insertion

forces depend on additional parameters, including the diameter of the inserted particle,

finite insertion rates, or alternative assemblage structures. Ultimately, this approach could

provide a comprehensive picture of the particle-scale mechanics of colloidal assemblies.
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