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Dissipative Particle Dynamics (DPD) simulations of polymeric melts in a start-up of shear flow as a function of ramp-time to 
its steady state value is studied. Herein, we report for the first time the molecular findings showing the effect of ramp- time on 
formation of shear banded structures and chain relaxation behavior. Specifically, it is shown that shear banding emerges at 
rapid start-up, however homogenous shear prevails when the deformation rate ramp time is sufficiently slow. This finding is in 
full consistency with prior continuum level linear stability analysis of shear banding in startup of shear flows as well as 
experimental observations of entangled DNA and polymer solutions. Further, for the first time it has been revealed that the 
ratio of the chain longest orientation relaxation time to that of the time for the imposed deformation rate to reach its steady state 
value, plays a central role in determining whether local strain inhomogeneities that lead to the formation of shear banded flow 
structures are created. In addition, we have shown that the gradient of number of entanglements along the velocity gradient 
direction should reach a critical value for creation of localized strain inhomogeneity. Moreover, the relation between the local 
process leading to shear banded flows and the relaxation mechanism of the chain is discussed. Overall, a molecular picture for 
the interrelation between the chain longest orientation and stress relaxation time, local inhomogeneities, and shear banding has 
been proposed and corroborated with extensive analysis. 
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I. Introduction 
 
Shear banding occurs in complex fluids due to 

localized fluid property variations that evolve in time to 
create two adjoining regions of fluid with a high and low 
deformation rate. This phenomenon was first 
experimentally observed in worm-like micelle solutions in 
the early 1990s [1, 2]. In 2006, shear banding in entangled 
polymeric fluids was observed experimentally [3] almost 
two decades after analyses based on the first generation 
tube-model constitutive equations [4, 5] suggested that 
banded flow structure are likely to occur in highly 
entangled polymeric fluids. Specifically, Tapadia and 
Wang [3] observed a transition between a linear velocity 
profile to a banded structure  in a step-strain start-up flow 
generated in a cone-and-plate rheometer via Particle 
Tracking Velocimetry (PTV) when the externally imposed 
deformation rate was in the stress plateau region of the 
shear stress versus deformation rate curve. Further, Wang 
and co-workers documented the existence of this 
phenomenon (both steady and transient) in different types 
of shear flows of highly entangled synthetic polymeric 
fluids (Polybutadiene solutions with molecular weights 
Mw ~ 61 2 10− ×  g/mol) as well as entangled DNA 
solutions with average number of entanglements per chain 
greater than forty, i.e., <Z> ≥ 40 [6-10].   

Wang and co-workers ascribed the occurrence of shear 
banding to “cohesive failure” or “elastic yielding” of the 
highly entangled fluid. On the other hand, Sui and 
McKenna [11] experiments show that shear banding can 
also occur in a cone-and-plate rheometer as a result of a 
hydrodynamic flow instability that is caused by surface 

distortion, either by edge fracture or by elastic spiral 
ripples. However, it should be noted that in Wang and co-
workers experiments the meniscus was wrapped with a 
transparent film to avoid edge effects. 

The most prevalent yet highly controversial theoretical 
basis offered to rationalize the occurrence of shear banded 
flow structures in entangled polymeric fluids is based on 
the non-monotonic constitutive relation between shear 
stress and shear rate, as originally proposed by Doi and 
Edwards [5]. In the DE tube-model, shear stress decreases 
at shear rates larger than  1

dγ  τ−>&  ; it is generally accepted 
that the flow is unstable in the region where the shear 
stress is a decreasing function of shear rate and this 
instability leads to a transition from a unidirectional shear 
flow to a shear banded flow structure. Recently, linear 
stability analyses [12-15] based on the most 
comprehensive tube based constitutive equations including 
the Roile-Poly model [16], have shown the existence of 
both steady and transient shear banding. Moreover, 
Olmsted and coworkers [13-15, 17] have proposed a 
“mechanic instability” in the region of the constitutive 
curve with a negative slope that results in formation of 
steady shear banding in both worm-like micellar and 
entangled polymeric solutions. On the other hand, 
Moorcroft and Fielding [18] developed a fluid-universal 
criterion for the onset of shear banding which depends on 
the shape of time-dependent rheological response function 
and is independent of fluid’s constitutive law and internal 
state variables. Cromer et al. [19] have also shown that the 
steady shear banded flow structures can be obtained with a 
monotonic constitutive equation in entangled polymeric 
solutions where the polymer stress and concentration are 
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coupled. Although nearly identical constitutive relations 
were used in the aforementioned studies, the discrepancy 
between their predictions due to the assumed rate of CCR 
which to a great extent determines the rheological response 
of the fluid, stress and concentration coupling, monotonic 
versus non-monotonic flow curves and the choice of 
perturbation used in the analyses renders their findings 
regarding the origin of shear banding in entangled 
polymeric fluids not concrete.   

In 1983, the possibility of formation of local 
inhomogeneities in step-strain startup of unidirectional 
shear flows of entangled polymeric fluids in the 
deformation rate regime where a stress overshoot is 
present was suggested by Marrucci and Grizzuti (MG) [4]. 
Specifically, they examined the free energy of the system 
based on the original Doi-Edwards tube-based constitutive 
equation and identified an inflection point in the free 
energy at the strain corresponding to the maximum 
transient stress. Hence, they postulated that the flow is 
prone to instability in the stress relaxation regime (region 
where the stress decays from its maximum value to its 
steady state value; consistent with findings of reference 4 
some 30 years later) provided that segmental stress 
relaxation occurs at a much faster rate than segmental 
orientation relaxation. Further, they suggested that on a 
relatively small length scale, the aforementioned elastically 
driven instability will lead to inhomogeneous deformation 
in the fluid and hence to shear banding. Morrison and 
Larson in 1992 [20] assessed the validity of the 
aforementioned MG postulate in monodisperse and bi-
disperse high molecular weight Polystyrene solutions (Mw 
~ 2-9  106 g/mol) at different concentrations and concluded 
that the MG postulate to be qualitatively correct in 
predicting strain inhomogeneities. The concept put forward 
by MG is further corroborated by experimental results 
showing the correlation between transient shear banding 
and existence of stress-overshoot [6, 10]. However, it 
should be noted that the proposed mechanism by MG for 
formation of local inhomogeneities in shear flow of 
entangled polymeric melts is qualitative due to the 
approximations used in the evaluation of chain segmental 
orientation relaxation time and the fact that the free energy 
analysis is based on the DE constitutive equation.     

Evidently additional information is required to 
conclusively develop a molecularly based criterion for the 
formation of local inhomogeneities and its relation to 
formation of the incipient shear banded flow structures. 
Thus, motivated by the MG postulate and findings of 
Moorcroft and Fielding, we have utilized Dissipative 
Particle Dynamics (DPD) simulations to investigate the 
mechanism for the formation of inhomogeneities on a 
molecular level. Specifically, we have scrutinized the 
interrelation between chain segmental stress and 
orientation relaxation times, presence of stress overshoot 
and formation of shear banded flow structures. To this end, 
we have performed a series of simulations by varying the 
time taken for the deformation rate to achieve its steady 
value.  

The aforementioned studies have revealed for the first 
time that the ratio of the longest chain orientation 
relaxation time to that of the time for the deformation to 
reach its steady state value, defined here as “MK” plays a 
central role in determining whether local inhomogeneities 
are created in the fluid; a prerequisite for formation of 
shear banding. Specifically, if MK is greater than one, 
local inhomogeneity in the entanglement density in the 
velocity gradient direction is observed and in turn the flow 
transitions to a shear banded structure. Otherwise, 
homogenous shear flow prevails. Finally, the local process 
for the formation of shear banding and its relation to the 
molecularly universal criterion for occurrence of shear 
banding is discussed. 

 
II. DPD and Simulation Details 

 
A massively parallel DPD simulation algorithm [21, 

22] in conjunction with Lees-Edwards boundary condition 
[23] has been utilized to study shear banding in planar 
Couette flow of entangled polymeric melt of N=250 
beads/chain (equilibrium entanglement density <Zk> =17) 
with 705 chains in a canonical (NVT) ensemble. The 
entanglement network analysis has been performed by 
using the Z1 code developed by Kröger et al. [24, 25]. The 
reported quantities regarding the entangled network are 
averaged over the x-z plane along the flow gradient 
direction (y). To achieve steady state velocities, shear and 
first normal stresses, simulations up to 25 times the 
disengagement time of the system have been performed. In 
the simulations, the shear rate is non-dimensionalized by 
the longest relaxation time of the fluid at equilibrium, τd0, 
and expressed as Weissenburg number, Wi = d0γ τ×& . 
Also, time, t, is scaled by the disengagement time of the 
entire system at the applied shear rate, i.e., τd. The 
disengagement time is calculated by fitting an exponential 
to the auto-correlation function of the chain unit end-to-

end vector.  
 
 

FIG 1. Steady shear banding observed in a step-strain 
experiment. The temporal evolution of velocity 
profiles is shown in the figure inset. This figure 
appeared in our previous publication [21]. It has been 
included to facilitate the discussion.      
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III.  Macroscopic Results: Step-strain simulation 
 
We begin by examining the characteristic response of a 

polymer melt to a step-strain start-up at Wi = 30 (WiR = 
1.2, Weissenburg number based on the Rouse relaxation 
time; Rouse relaxation time scale, Rτ  is estimated as 

follows: d0
R

ττ
3Z

=  ). The choice of the Wi has been 

motivated by the fact that  this deformation rate is in the 
region where the steady shear stress is a slight decreasing 
function of shear rate (for more information, please refer to 
figure 1 in reference [21]). Also, a stress-overshoot exists 
under these conditions as shown in Figure 1. Chains, i.e., 
their corresponding primitive path are stretched and 
oriented at strains up to the stress overshoot, as they are 
mainly deformed affinely. Thus it is reasonable to assume 
that no inhomogeneity could arise prior to the time where 
the stress-overshoot is observed. This conclusion is 
corroborated by the evidence of linear velocity profile at 
the stress overshoot as depicted in the inset of Figure 1 as 
well as [19, 20]. However, after the stress-overshoot, at t = 
0.4 τd, localized perturbations are observed in the velocity 
profile. These perturbations arise due to spatially-
inhomogeneous chain entanglement density in the velocity 
gradient direction that leads to formation of the incipient 
shear banded structures at t = 0.6 τd [21]. Moreover, the 
slow (low shear rate) and fast (high shear rate) bands 
continue to develop (2 τd < t < 6 τd), i.e., the thickness of 
the slow band gradually increases until each band occupies 
nearly half of the box. At this point, the steady shear 
banded structure is realized.     

 
IV.  Macroscopic Results: Start-up of Shear Flow 

 
To directly examine the influence of chain segmental 

stress relaxation (usually fast in the relaxation regime) and 
orientation relaxation times on formation of local 
inhomogeneities, a series of simulations have been 
performed by gradually increasing the imposed shear rate 
from zero to the final desired dimensionless deformation 
rate , i.e.,  Wi = 30. Specifically, three different ramp time 
(time taken for the shear rate to attain its steady state 
value) were studied, i.e., 2, 10 and 20 dτ .  

Figure 2 depicts the shear stress evolution as a 
function of strain (time) for different ramp-times. The step-

strain start-up shows a clear stress-overshoot. As the rate 
of deformation ramp-time is decreased, the stress-
overshoot is diminished and eventually, at ramp-time = 20

dτ , it almost disappears. As expected, the stress overshoot 
appears at strain units of approximately 2 and the steady 
stress shear stress values are identical for all ramp rates. 
However, the snap-shots of the velocity profile at different 
times as depicted in figure 1 and 2 insets are significantly 
different for different ramp-times. Specifically, robust 
shear banding is observed for the step-strain and fast start-
up conditions (ramp-time ≤ 2 dτ ), while for the slow ramp-

times, i.e., 10 and 20 dτ , the linear velocity profile is 
maintained at all times. This finding clearly indicates that 
the temporal evolution of the velocity profile is a very 
sensitive function of the time scale over which the 
deformation rate is increased from zero to a given steady 
state value.  Thus, shear banding is not a unique response 
of the flow at a specific shear rate even when the shear rate 
is in the region where the steady shear stress is a slight 
decreasing function of shear rate; rather its existence 
depends on the relaxation behavior of the entangled 
network as will be discussed herein. Specifically, a 
universal molecular criterion for the formation of 
inhomogeneity will be proposed henceforth. 

 
V.  Microscopic Results: Free Energy Analysis and 

Chains’ Relaxation Behavior 
 

 The Helmholtz free energy change per unit volume 

is evaluated as follows [26]: ( )1A  < Q Q :σ >
2

+Δ = − + , 

FIG 2.  Influence of deformation rate ramp time on 
shear stress evolution as a function of strain; velocity 
profiles are shown in the inset. 

FIG 4. The chain rotation/retraction cycle of the 
step-strain start-up simulation at Wi = 30, N=250.   

 a) t = 3.024  τd

  d) t = 4.608  τd  c) t = 4.032 τd

  b) t = 3.744  τd

  e) t = 5.328 τd f) t = 6.72  τd

FIG 3.  Free energy evolution as a function of 
strain for different ramp-times.  



4 
 

where ( )Q Q / 2++  denotes the strain tensor and σ is the 

total stress tensor with fluctuations. Figure 3, depicts the 
results of this analysis in kT units. Clearly, the free energy 
curvature is positive before the occurrence of the stress-
overshoot at γ = 2. However, the curvature becomes 
negative for strain units larger than 2. Therefore, an 
inflection point in the free energy curve exists at the strain 
corresponding to the stress-overshoot. This inflection point 
in the free energy suggests flow instability in form of 
“local strain inhomogeneity” [4]. 

To understand the formation of local 
inhomogeneities, we have closely examined the chain 
dynamics during the stress relaxation process. The stress 
relaxes in two steps, first chains relax their tension via 
stretch relaxation which is quite fast and in the second 
process, chain segments relax their orientation from highly 
anisotropic flow induced configurations (stretched) to 
isotropic equilibrium like structures (coils). The latter 
process, namely, orientation relaxation is slow and it 
mainly occurs through a number of steps in a 
rotation/retraction cycle which leads to significant 
configurational diversity. A typical rotation/retraction 
cycle is shown in figure 4. During this cycle the chain 
retracts from a stretched configuration to a coil-like 
structure and expands once more to assume a stretched 
configuration. At Wi=30, the rotation/retraction cycle 
takes ~10 d τ  under step-strain conditions. Based on these 
observations, we propose that the large discrepancy 
between the stress and orientation relaxation time scales 
leads to local inhomogeneity in the entanglement network 
and hence inhomogeneous deformation. Specifically, the 
combination of flow induced chain disentanglement and 
insufficient time for orientation relaxation leads to 
inhomogeneous entanglement density and a commensurate 
local variations in fluid properties in the velocity gradient 
direction that cause a flow transition leading to formation 
of the incipient shear banded structure.  

If the above mentioned molecular criterion for 
creation of local inhomogeneities is valid, one should be 
able to adjust the time scale for ramping up the 
deformation rate from zero to its steady state value such 
that chain stretch is delayed and orientation relaxation has 
sufficient time to occur, hence, obviating the formation of 
the incipient shear banded structure. Indeed, as 
deformation rate ramp-time is increased from 2 to 10, and 
finally to 20 dτ , the retraction/rotation time scale is 

reduced from 10.1 to 9.2, and 7.4 dτ , respectively. Thus, 
the ratio between the retraction/rotation time scale to 
deformation rate ramp-times of 2, 10 and 20 dτ , i.e., 

rot
ramp m

M
e

τ
K

ti−
=  is decreased from 5.05 to 0.96, and 0.37, 

respectively. This decline in this ratio clearly shows that 
retraction/rotation cycle becomes more frequent and 
occurs globally prior to the system reaching its steady state 
value; hence, the main driving force for the formation of 

“local inhomogeneity” is suppressed and shear banding is 
eliminated. 

To gain a more in-depth understanding of the 
interrelation between the chain longest relaxation time, 
local inhomogeneity and shear banding, we have 
thoroughly examined the primitive path segmental 
orientation distribution function at various deformation 
rate ramp times (see Figure 5). To quantify the segments 
that possess isotropic or anisotropic orientation, the 
following procedure has been used. The fraction of chains 
segments that have orientation angle between -45º and 45º 
with respect to the flow direction are labeled anisotropic, 
λ, hence, (1-λ) is the fraction of chain segments that have 
isotropic orientation angle, i.e., angles larger than 45º and 
smaller than -45º. Clearly, the isotropic fraction, (1-λ) 
increases as the ramp-time increases indicating more 
frequent chain retraction/rotation that allows more 
significant orientation relaxation to occur. On the other 
hand, in the anisotropic portion of the distribution 
function, the global maximum associated with the positive 
orientation angle declines and the local maximum 
corresponding to negative orientation angle grows as the 
ramp-time increases. It should be noted that the positive 
maximum value is associated with the fraction of the chain 
segments that are highly-oriented and stretched in the 
direction of the flow. While the negative maximum 
appears as a consequence of existence of a large number of 
folded configurations associated with the 
retraction/rotation cycle (see Figure 4-b, c, e). Thus, the 
significant drop in the positive maximum peak and 
considerable growth of the negative maximum peak clearly 

indicates that as the ramp time is increased, the 

rotation/retraction cycle leads to  global orientation 
relaxation (in the entire simulation box) as opposed to 
local orientation relaxation as is the case for fast start-up 
flows.  

 
The intricate relation between the relaxation time scale, 

chain disentanglement and formation of local 
inhomogeneity can also be quantified by examining the 
average time for flow induced chain disentanglement as a 
function of deformation rate ramp time (See Figure 6). 

FIG 5. Primitive path segmental 
orientation distribution at various ramp 
times.   
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Clearly at large ramp-time = 10, 20 dτ (r < 1), the flow 
induced chain disentanglement occurs at a commensurate 
time scale (see Figure 6a) as the retraction/rotation process 
leading to a homogeneous entanglement density along the 

velocity gradient direction (see Figure 6-b).  However, in 
the case of fast start-up, i.e., step-strain and ramp-time 
over 2 dτ  (r > 1), the chain disentanglement occurs much 
faster than the time scale associated with the 
retraction/rotation time scale; hence, giving rise to a 
locally inhomogeneous entanglement density along the 
velocity gradient direction. This in turn, gives rise to a 
localized jump in fluid viscosity and normal stresses that 
leads to shear banding (please see reference [21]).       

 
 
 

VI.  Local Process of Shear Banding Formation 
 

The local perturbations are observed for the first time 
at t = 0.4 τd (see velocity profiles in the inset of Figure 1). 
In order to study the origin of this perturbations, we have 
investigated the entanglement network behavior at the 
step-strain and slow (ramp-time= 20 τd) start-up of Wi=30 
at 0.25 τd ≤ t ≤ 0.4 τd (the stress-overshoot occurs at t = 0.2 
τd). Various number of equal sub-volumes of the 
simulation box have been examined. Here the three main 
regions labeled as lower, middle and upper regions are 
discussed since they provide more meaningful statistical 
results.  

The movie (primitive_path.pm4) shows the chains’ 
primitive path evolution for the step strain simulation as a 
function of time between 0.25τd ≤ t ≤ 0.4τd, i.e., before the 
occurrence of incipient shear banding at t = 0.6 τd. Beads 

indicate the entanglement defined and detected by Z1 code 
and the lines are primitive path segments. It is evident that 
the chain primitive path movement in the upper and lower 
regions of the box are less restricted and they disengage 
from the original tube much faster as compared to the 
chains in the middle region. Chain disengagement can be 
triggered by “higher kinetic energy” in the boundary 
regions due to the Lees-Edwards boundary condition 
providing higher velocities towards the box ends. Thus, the 
chains in the boundary regions relax their orientation and 
“chain  

disentanglement rate” is larger in the aforementioned 
regions while chains in the middle of the box cannot relax 
their orientation as rapidly as the higher kinetic energy 
region. Hence, the local criterion for the formation of 
inhomogeneity is provided at some time after stress 
overshoot when the chains in the two adjacent regions 
disentangle and relax their orientation on a different time 
scale, therefore inhomogeneity forms in deformation at the 
interface between the two aforementioned regions. To 
determine the location of inhomogeneity or the interface, 
we have looked at the number of entanglement points 
(different from number of entanglement per chain; time 
averaged over 0.25 τd ≤ t ≤ 0.4 τd) over the X-Z and X-Y 
plane. The number of entanglement points in each cell are 
counted. It is clear from the X-Y contour shown in Figure 
7-(a) that asymmetry in the entanglement distribution 
exists at y = 8 and 32 rc (box length in y dimension is 42.0 
rc). These two positions correspond to the locations in 
Figure 1 velocity profile inset at t = 0.4 τd where velocity 
perturbations are observed. The entanglement distribution 
for ramp-time = 20 τd is shown in Figure 7-(b) averaged 
over 3 < γ < 5. The gradient of entanglement along the y 
direction in the case of ramp-time = 20 τd is smaller than 
the step-strain case as the dense contour lines suggest. The 
data points in Figure 7-(a,b) indicate the position and level 
of each contour. We have extremely examined various 
planes in the vicinity of asymmetry in entanglement 
distribution, and have found that Z

Y
Δ
Δ

 for the case of step-

strain is larger than 3 and for the case of slow start-up 
(ramp-time = 20 τd) is smaller than 2. This point indicates 
that discontinuity in the number of entanglement should 
reach a critical value for inhomogeneity in deformation to 
occur.  

The X-Z entanglement contours for different regions 
(upper, lower and middle) of the box show similar 
behavior (see Figure 8). However, the number of 
entanglements is different in each region. Overall, the 
number of entanglements in the core of each region is 
highest and disengagement occurs from the tube ends. The 
orientation relaxation occurs at higher rate in regions close 
to the boundaries and thus a discontinuity in chain 
disentanglement appears in adjacent high and low kinetic 
energy regions and an interface between them is formed. 
Eventually, the lower and upper regions form the fast 
bands and the middle region becomes the slow band. If we 
consider the position of the interface at y = δ (the distance 
from the center of the box), δ is not randomly determined. 
Instead it is located somewhere between the boundaries 

FIG 6. Average number of entanglements a) 
as a function of time and b) along the velocity 
gradient direction Y, at different ramp times. 
Y is scaled by the simulation box length, H.      
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and middle of the box which is a function of chain length 
(viscosity and elasticity), and shear rate in the stress 
relaxation regime. The interface is eventually stabilized 
when the viscous and elastic forces are balanced. It should 
be mentioned that in the entanglement network analysis 
(Figures 7 and 8), the central box and the adjacent boxes 
are also available to clearly count the number of 

entanglement points, the central box dimension is 
3
c100 42 42 (r× × ). 

 

 

VII. Conclusion 
 

In conclusion, we have demonstrated that shear 
banding is not a unique response of entangled polymeric 
fluids to a specific shear rate. Moreover, a molecular 
picture for the interrelation between longest orientation 
relaxation time, local inhomogeneities, and shear banding 
has been proposed and corroborated.   Moreover, the local 
process for the formation of shear bands is discussed in 
terms of chain disentanglement rates reaching a critical 
value as a result of different relaxation processes. Overall, 
if the orientation and stretch relaxation time scales differ 
significantly, the orientation relaxation occurs “locally”, 
thus the chain disentanglement rate becomes different in 
the adjacent regions, hence an interface and consequently 
inhomogeneous deformation is observed.   Finally, our 
findings regarding the influence of deformation ramp time 
on shear banding is supported by continuum linear stability 
analysis of Moorcroft and Fielding [18] as well as 
experimental findings of Wang and coworkers with 
monodisperse entangled DNA [7] where a ramp-time of 
12.82 d0τ  was used to eliminate shear banding in a cone-
plate rheometer. 

The authors would like to acknowledge the National 
Science Foundation (EPS-1004083) as well as the 
University of Tennessee and Oak Ridge National 
Laboratory Joint Institute for Computational Sciences for 
the support of this work. 

b

a) 

Figure 7. a) Step-strain entanglement distribution in X-Y 
plane, b) Contour plot of number of entanglements at 
ramp-speed =20 τd. The dashed lines indicate the interface 
between the adjacent regions. ∆Z∆Y > 3 and < 2 for step 
strain and ramp-speed =20 τd. 
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