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We performed parallel-tempering Monte Carlo simulations to investigate the formation and stabil-
ity of helical tertiary structures for flexible and semiflexible polymers, employing a generic coarse-
grained model. Structural conformations exhibit helical order with tertiary ordering into single
helices, multiple helical segments organized into bundles, and disorganized helical arrangements.
For both bending-restrained semiflexible and bending-unrestrained flexible helical polymers, the
stability of the structural phases is discussed systematically by means of hyperphase diagrams pa-
rameterized by suitable order parameters, temperature, and torsion strength. This exploration
lends insight into the restricted flexibility of biological polymers such as double-stranded DNA and
proteins.

I. INTRODUCTION

Helical segments and bundles are prominent structural
elements in conformations of biomacromolecules such as
proteins, DNA, RNA, or composites thereof. Finding
the reasons for the stability of tertiary folds composed
of secondary-structure segments has turned out to be es-
sential for the general understanding of the interplay of
structural geometry and biological function. A question
that is associated with this goal addresses the natural
preference of freezing or confining degrees of freedom in
biologically active macromolecules.
In biological systems, formation of helical structures is

typically explained by hydrogen bonding along the back-
bone of the polymer. However, helical structures are also
natural basic geometries of topologically one-dimensional
objects which can be stabilized by an ordering princi-
ple based on many-body constraints [1–4]. In a simi-
lar sense, the transition between disordered random-coil
structures and conformations with helical order can be
described by a one-dimensional Ising-like model [5, 6].
This transition is not a phase transition in the strict ther-
modynamic sense [7, 8], but since biologically relevant
macromolecules are finite systems on mesoscopic length
scales, conformational transitions are generally distin-
guished from phase transitions. Finite-size effects are
essential for the understanding of biomolecular structure
and function and therefore need to be considered in the
thermodynamic interpretation of such transitions [9].
Complementing statistical and thermodynamic studies

of structural transitions in helical polymer systems, the
folding dynamics, stability, and generic features of con-
formation geometry have been investigated in detail over
a long period [10–12].
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More recently and only possible because of now avail-
able computational resources, computer simulations of
effective-potential models have become an invaluable re-
source for studying thermodynamic properties of flexi-
ble [13–15] and semiflexible polymers [16–18], polymer
and peptide aggregation [19, 20] and adsorption onto a
substrate [21–24], as well as systematic parameter varia-
tion in the effective potentials contained in coarse-grained
models [25, 26]. Simulations of polymer systems yielded
also insight into the folding dynamics [27–33], conforma-
tion geometry [34–36], and stability [37–40] of macro-
molecules.

Most relevant for this paper are advances in under-
standing aspects of the structure formation of helical
polymers [41–43]. In a coarse-grained modeling ap-
proach, the formation of helical order in homopolymer
systems can be induced by inclusion of a torsional po-
tential [41], and tertiary helix bundles are stabilized by
means of a bending potential [4].

By cooling, helical polymers can undergo a direct
structural transition from random-coil structures to he-
lical conformations [44–48]. With the inclusion of non-
bonded interactions, helical segments of sufficient length
tend to assemble into helical bundles [49–56]. These he-
lical tertiary structures vary greatly depending on the
particular interactions present and can be controlled, for
example, by an adsorbing substrate [57].

It seems that in biological systems semiflexible poly-
mers, which exhibit an effective restraint on the bend-
ing angles between bonds, are naturally favored. There-
fore, we here extend our recent study on the effects of
bending restraints upon the formation and stabilization
of tertiary assemblies of helices [4] by systematic compar-
ison of structure-formation processes for both flexible and
semiflexible polymer models. For this purpose, extensive
replica-exchange Monte Carlo computer simulations [58–
61] of these models were performed. By simulating at an
array of torsion parameter strength and temperature val-
ues and by the analysis of appropriate order parameters,
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FIG. 1. (Color online) Sketch of a chain segment containing
four monomers. The torsion angle is represented by τ (blue)
and the bending angle by θ (red).

we identify the differences in folding behavior as well as
features and stability of dominant structural phases.

The paper is organized as follows. In Sec. II, we intro-
duce the model for helical flexible and semiflexible poly-
mers and describe details of the Monte Carlo methodol-
ogy used for the sampling of the structural space. Order
parameters for the statistical analysis of structural phases
are introduced and investigated in Sec. III. The hyper-
phase diagrams for both polymer classes, parametrized
by temperature and torsion strength, are discussed and
compared in Sec. IV. The paper is concluded by the
summary in Sec. V.

II. MODEL AND SAMPLING ALGORITHM

A. Model

In this study, we investigate polymers with helical
structural elements using a generic coarse-grained ho-
mopolymer model. The energy of a polymer chain with
N monomers includes bonded and non-bonded interac-
tions, the latter also mimicking the implicit solvent in
which the polymer is suspended. An additional potential
associated with the dihedral angles induces helical order
by exerting a torsional effect on polymer bonds. A bend-
ing potential is introduced to control the flexibility of the
chain.
For a polymer with conformation X =

{x1,x2, . . . ,xN} where xi is the position of the ith
monomer, the energy associated with the bond between
neighboring monomers is calculated using the FENE
(finitely extensible nonlinear elastic) potential [62–64].
For bonded monomers separated by a distance r, it
is given by vbond(r) = log{1 − [(r − r0)/R]2}. The
monomer-monomer interaction which acts between all
non-bonded monomers is calculated from the Lennard-
Jones potential vLJ(r) = 4[(σ/r)12 − (σ/r)6] − vc. The
length scale of the non-bonded interaction is defined
via the van der Waals distance σ = 2−1/6r0 associated
with the potential minimum distance which we set to
r0 = 1. The computational efficiency can be greatly
increased with no appreciable influence on the structure

formation process by introducing a cut-off. For pairs of
monomers separated by r > rc = 2.5σ the non-bonded
interaction is zero. To avoid a discontinuity in the
Lennard-Jones potential we shift the potential by
vc = 4[(σ/rc)

12 − (σ/rc)
6].

From each group of three bonds, two surfaces can be
constructed with the intersection having a dihedral angle
τ as shown in Fig. 1.

Since right-handed α-helices are most common among
helical segments in natural macromolecules, we choose
the reference torsion angle to be τ0 = 0.873. Any de-
viation of a torsion angle from this reference angle re-
sults in an energy penalty proportional to vtor(τ) =
1 − cos(τ − τ0). Similarly, we set the reference bend-
ing angle to θ0 = 1.742 and the bending energy is given
by vbend(θ) = 1 − cos(θ − θ0). With these choices of
τ0 and θ0, the energetically most favorable helical seg-
ment in our model resembles an α-helix with about four
monomers per turn.

By combining all four potentials a polymer conforma-
tion X has the energy

E(X) = SLJ

∑

i>j+1

vLJ(rij) + Sbond

∑

i

vbond(ri i+1)

+Sτ

∑

l

vtor(τl) + Sθ

∑

k

vbend(θk). (1)

Each potential has an associated pre-factor which deter-
mines its strength relative to all other potentials. As
the reference energy scale we choose the nonbonded in-
teraction strength SLJ = 1, whereas Sbond = −KR2/2
is fixed for the bond potential with standard parameter
values K = (98/5)r20 and R = (3/7)r0. These parame-
ter values ensure that without restraints (Sτ = Sθ = 0),
the polymer model describes a generic flexible polymer
with clearly separated coil-globule and freezing transi-
tions. The torsion energy scale Sτ is varied throughout
the study and is a key parameter which determines the
dominant structural macrostates. The bending energy
scale is set to either Sθ = 0, in which case there is no
restraint on the bending angles and the polymer is fully
flexible, or Sθ = 200 which effectively fixes all bending
angles to near their reference value and the polymer is
considered semiflexible.

B. Sampling

To sample the structural space of a polymer with
N = 40 monomers replica-exchange Monte Carlo (paral-
lel tempering) [58–61] has been used in this study. Here,
the initially random configuration is continually modified
by iterative random updates to its configuration. Each
change in the conformation potentially alters the energy
of the polymer by an amount ∆E. The modification is ac-
cepted with probability Pmetro according to the Metropo-
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lis criterion [65]

Pmetro =

{

e−β∆E, if ∆E > 0,

1, otherwise,
(2)

which depends of the inverse temperature β = 1/kBT (in
the following we use units in which kB ≡ 1).
There are several possible updates which are used

to modify the polymer conformation. The most basic
modification is the displacement update, where a single
monomer i is chosen at random and its position is shifted
by a vector ∆xi within a cubic box with edge lengths rd
surrounding its original location.
The size of the box has a strong influence on how effi-

ciently the displacement update explores the state space
accessible to the polymer [66]. Using a very small value
for rd typically results in a small energy change ∆E and
a high acceptance rate. Although the majority of moves
is likely to be accepted, conformational changes are small
and autocorrelation times high. Therefore, many moves
are required to explore the structural state space. Alter-
natively, large shifts rd result in a high rejection rate if
the conformation is sufficiently dense. Thus, although it
takes fewer successful steps to modify the polymer struc-
ture appreciably, autocorrelation times remain high due
to the high rejection rate.
During an initialization period without measurements,

we adjust rd dynamically to achieve a desired acceptance
rate of χfin

accept ≈ 0.5. This can be done by modifying
rd every 100 updates to be r′d = rd + p[χaccept(rd) −
χfin
accept], where p = 0.04 is a factor determining the size of

the correction and χaccept(rd) is the measured acceptance
rate at given box size rd. Note that the thus determined
optimal box size rd depends on the temperature T .
The sampling efficiency can be improved by nonlocal

updates such as angular Monte Carlo moves. Among
those, bond angles can be altered by pivot rotations,
which is efficient for extended conformations of flexible
polymers. For semiflexible polymers, torsional rotations
about a randomly selected bond are more efficient [9].
Simulating at each temperature independently is im-

practical due to the inability of Metropolis sampling to
overcome free-energy barriers in a reasonable number of
moves. To improve the sampling efficiency, we employ
replica-exchange Monte Carlo (parallel tempering) [58–
61]. For each choice of model parameters Sτ and Sθ,
Metropolis simulations are performed at N temperatures
{T1, T2, . . . , TN} in parallel with attempts to exchange
structural conformations between different temperature
threads every 400 sweeps. The ith temperature thread
alternates between attempting exchange with the i + 1
thread and the i − 1 thread. Because both T1 and TN

have only one neighbor, they each remain idle during half
of the exchanges. During a single exchange attempt the
polymer structure is passed between thread i and thread
j with probability

PPT = min
(

1, e−(βi−βj)[E(Xj)−E(Xi)]
)

. (3)

FIG. 2. (Color online) Definition of the order parameters
q1 and q2. The black monomer interacts with the green
monomers via the FENE potential and with the blue and red
monomers via the LJ potential. The total energy of the LJ in-
teractions between nonbonded monomers separated from the
black monomer by 6 or fewer bonds, as represented by red
monomers, contributes to q1. Consequently, q2, accounts for
the LJ contributions from the monomers more than 6 bonds
away (blue monomers).

Ideally, temperatures are chosen such that exchanges
and rejections both occur frequently. We find that
Ti = 1.15Ti−1 leads to acceptable exchange rates in all
threads. It is also important that TN is large enough that
structures are fully melted in the Nth simulation thread.

III. STRUCTURAL TRANSITIONS IN

ORDER-PARAMETER SPACE

A. Classifying Structures

Examining structures from ensembles simulated at val-
ues of torsion strengths Sτ ∈ [0, 40] and temperatures in
the interval T ∈ [0.1, 3.0], with and without the bending
restraint Sθ = 200 and Sθ = 0, respectively, we find a va-
riety of different structure types. Single helices, two-helix
bundles, three-helix bundles, four-helix bundles, disor-
dered helical conformations, and amorphous solids can
form at low temperatures, depending on the values of Sτ

and Sθ. We introduce parameters q1 and q2 to quanti-
tatively distinguish between different structure types. In
a single conformation, the average over all monomers of
the Lennard-Jones interaction between a monomer and
all of the monomers within 6 bonds of itself reads

q1(X) = ǫ
1

N

N−2
∑

i=1

N
∑

j=i+2

Θ6,j−i vLJ(rij), (4)

where we have introduced the symbol

Θk,l =

{

1, if k ≥ l,
0, otherwise.

(5)

The average over all monomers of one monomer’s inter-
action with all monomers separated from it by more than
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six bonds is given by

q2(X) = ǫ
1

N

N−2
∑

i=1

N
∑

j=i+2

Θj−i,7 vLJ(rij). (6)

In Fig. 2, the Lennard-Jones interactions between the
black monomer with all red monomers contribute to q1
and its interaction with blue monomers contributes to
q2. To understand the usefulness of this set of parame-
ters, consider the contrast between a single helix and a
two-helix bundle. In a single helix, monomers will inter-
act via the Lennard-Jones potential only with monomers
which are in the helix turn below and above its own.
For a helix with 4 monomers per turn, this means that
nonbonded interaction will only occur between monomers
separated by 6 or fewer bonds. The two-helix bundle will
sacrifice some of the local LJ and torsional interaction in
favor of contacts between monomers in separate helices
which are separated by more than 6 bonds. So, in going
from a single-helix to a two helix bundle, the q1 value in-
creases as interactions between monomers close to each
other along the chain become weaker and q2 decreases as
energetic contacts between separate helical segments are
formed.

B. Distributions in Structure-Parameter Space

Figure 3 depicts in gray the regions in order-parameter
space populated by structures found in the entire gen-
eralized ensemble of the parallel-tempering simulations,
parameterized by torsion strength Sτ and temperature
T for semiflexible [Fig. 3(a)-(d)] and flexible polymers
[Fig. 3(e)-(h)]. Black regions correspond to polymer con-
formations with specific torsion strengths Sτ . Red re-
gions account for structures found at the lowest simula-
tion temperature T ≤ 0.1 only and represent the folded
(and biologically potentially active) states.
For Sτ = 0, as shown in panels (a) and (e), low-

temperature structures collect at lowest q2 values and
as the temperature increases so does q2, while the dis-
tribution in q1 space barely changes. It is apparent that
there are several distinct structural clusters formed which
entail a multi-welled free-energy landscape in the solid
phase, i.e., lowest-energy states are degenerate. These
amorphous structures do not possess any obvious sym-
metry, but they are highly compact. Thus, primarily
energetic contacts form between monomers distant along
the chain. Local ordering which would be required for he-
lical segments hardly occurs. Note that the amorphous
conformations are morphologically different for flexible
and semiflexible polymers. Due to the large bending con-
straint of the semiflexible polymer (Sθ = 200), bond an-
gles are close to the reference angle θ0 and “bending” the
chain is only possible by a sequence of properly adjusted
torsion angles (since Sτ = 0, deviations from the refer-
ence torsion angle Sτ are not penalized energetically).
As there is no such bending constraint for the flexible

FIG. 3. (Color online) Regions of structure formation in
(q1, q2) space for the (a)-(d) semiflexible (bending-restrained)
and (e)-(h) flexible (bending-unrestrained) polymers with 40
monomers. Light-gray regions represent the generalized en-
semble of all conformations found at all temperatures T and
torsion strengths Sτ simulated. Black regions correspond to
the most populated states at given Sτ values. Red regions
represent only the states populated for T ≤ 0.1. Represen-
tative conformations for each low-temperature ensemble are
shown.

polymer, compact packing is only restricted by volume
exclusion.

The structural behavior of semiflexible polymers
changes noticeably if torsion is restrained. In panel (b),
for Sτ = 2, we observe the formation of helical segments
which organize into bundles. The population of low-
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temperature structures corresponds to unique bundling
configurations with three and four helices. The order pa-
rameter values of these stable conformations (red dots)
differ significantly from the Sτ = 0 case. While q2 in-
creases, q1 becomes smaller. This means, contacts be-
tween monomers which are separated by 6 or less bonds
become dominant and arrange in helical structures. How-
ever, contacts of monomers that are more distant in the
sequence are relevant as well. In consequence, helix bun-
dles form.
Further increasing Sτ stiffens the helical segments,

leading to a dominance of two-helix bundles. This is ap-
parent from panel (c) for Sτ = 8. The two-helix bundle
offers fewer possible orientations and variations, therefore
exhibiting a single well-defined low-temperature cluster,
which corresponds to a single structure type.
For Sτ = 30 [panel (d)], we find that the low-energy

ensemble contains only the single stiff helix. This state is
uniquely characterized by q2 = 0 and minimal q1 value.
In contrast to the bending-restrained case, the pop-

ulations shown in Fig. 3(e)-(h) do not exhibit particu-
larly distinct features. This means that a large variety
of structure types possess sufficient entropy, such that no
structure type is of any relevance and stability. The q1
values hardly depend on Sτ and therefore helical confor-
mations are not significant. While we do see helical order
emerge as Sτ increases, the lack of a bending restraint
lends no stiffness to the helical segments. For this reason
there exists far less predictability and organization in the
evolution of structures as Sτ varies.

C. Folding Trajectories in the Free-Energy

Landscape

A more detailed analysis of the free-energy landscape
in q1-q2 order-parameter space gives further insight into
the folding pathways and their dependence on Sτ . We de-
termine the free-energy for each canonical ensemble from
the inverse frequency of states in each bin of the parti-
tioned q1-q2 space. The free energy for a specific model
parameter Sτ and temperature T can then be introduced
as

FSτ ,T (q1, q2) = −kBT logZSτ ,T (q1, q2), (7)

where

ZSτ ,T (q
′
1, q

′
2) =

∫

DXδ(q′1 − q1(X))δ(q′2 − q2(X))e−E(X)/kBT
(8)

is the restricted partition function in the space of all
structures present in the ensemble.
For each given Sτ -T ensemble, the global free-energy

minimum corresponds to the dominant structural con-
formation of the polymer. If the structural features, as-
sociated with the order parameters q1 and q2, do not
change significantly, a subset of the Sτ -T space forms

a stable structural phase. Note that the system is fi-
nite and rather small (as all biomolecules) and, therefore,
structural phases should not be confused with phases in
the strict thermodynamic sense. In Fig. 4, structural
phases in q1-q2 space, corresponding to the dominant
structure types, are shown in different colors for semi-
flexible bending-restrained (left) and flexible bending-
unrestrained polymers (right). The boundaries of these
regions, which represent the structural transition lines,
were obtained by a canonical statistical analysis of ex-
tremal fluctuations of energy (i.e., peaks in the heat-
capacity landscapes as shown in Fig. 5, parameterized
by Sτ and T ).
Each black point represents the global free-energy min-

imum for a single canonical ensemble, with black lines
signifying the folding pathway for fixed torsion strength
Sτ = const. For all pathways, the high-temperature
ensembles in the random-coil phase are located in the
upper-right hand corner of the panel (phase C). As
structural ordering begins by cooling, free-energy min-
ima move down one particular branch, which depends
on the value of Sτ . If Sτ = 0, the folding pathway
passes the liquid phase L and the ground state is an
amorphous solid (A) in both scenarios (semiflexible and
flexible). For Sτ > 0, a clear separation of distinct folding
pathways can only be observed for semiflexible (bending-
restrained) polymers. The Sτ value determines and dis-
criminates the stable structure type the polymers fold
into, such as four-helix (4h) and three-helix bundles (3h),
double-helices (2h), as well as single helices (1h).
In certain cases, e.g., the bending-restrained polymer

with Sτ = 20, a crossover from one solid phase to an-
other is possible as temperature decreases. In that par-
ticular case, structures transition predominantly from the
random coil phase into the single-helix phase, but upon
further cooling, single-helix and double-helix phases co-
exist. Eventually, the single-helix phase dies out com-
pletely, leaving structures in only the double-helix phase
at lowest temperatures.

IV. HYPERPHASES IN THE SPACE OF

TEMPERATURE AND TORSION STRENGTH

A. Extremal Fluctuations in Energy as Indicators

of Structural Transitions

While transitions in Sτ are nicely revealed by the dis-
crete branches seen in q1-q2 space, transitions in tem-
perature are not nearly as apparent. To detect these
transitions we consider how the heat capacity behaves
in temperature. Figure 5 shows the heat-capacity curves
for the semiflexible model on the left and the flexible
model on the right across a variety of Sτ values. For the
semiflexible case, starting from the top panel where the
torsion potential is quite strong, we see a single strong
transition in the specific-heat curve. It corresponds to
the well-known helix-coil transition between random-coil
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FIG. 4. (Color online) Structural phase diagrams for bending-restrained semiflexible (left) and unrestrained flexible polymers
(right) in (q1, q2) order-parameter space for the temperature and torsion strength space (T, Sτ ) covered in our simulations.
Colored regions represent structural phases. Black dots locate free-energy minima at given T and Sτ values. Trajectories
show the helical folding pathways at fixed torsion strengths Sτ by decreasing the temperature (Sτ values are attached to each
trajectory).

conformations and the solid single-helix phase. Moving
down in Sτ , a second sharper transition emerges which
can be identified as a transition between single helices
and double-helices. This solid-solid transition comes in
at low temperatures starting at Sτ = 24. At Sτ = 14,
it merges with the freezing transition. As we continue to
decrease Sτ , the transition splits into a Θ transition and a
freezing transition which spread apart to form an increas-
ingly large liquid phase between them. For Sτ ≤ 8, the
temperature region to the right of both transitions corre-
sponds to the random-coil phase. In between the peaks
the structural phase resembles a liquid: highly entropic
compact structures, but without well-defined global or-
der. Below the liquid-solid transition low-entropy solid
phases, corresponding to either double-helix, three-helix,
and four-helix bundles, or amorphous solids are found.
As discussed in the previous section, these structures
are easily distinguishable by the q1-q2 branch in which

they lie (cf. Fig. 4). For Sτ < 4, transitions in tempera-
ture become increasingly complicated with the introduc-
tion of multi-welled low-temperature ensembles. Due to
the limited chain length, three-helix and four-helix bun-
dles compete, and amorphous structures start mixing in.
However, it should be noted that for longer chains, stable
helix bundles with four and more segments can form and
remain well-separate from the amorphous phase. The
system-size dependence of helix formation will be inves-
tigated in detail elsewhere [67].

Analysis of transitions, e.g., recognizable in the
specific-heat curves in Fig. 5, gives insight into not only
the temperatures at which each transition occurs but also
the region of q1-q2 space, as shown in Fig. 4, in which we
find solid, liquid, and random coil phases. Repeating this
analysis for an array of torsion strengths Sτ reveals the
structure of the hyperphase diagram that contains the
structural phases of an entire class of helical polymers.
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FIG. 5. Heat-capacity curves CV as functions of temperature T for an array of Sτ values, for polymers with bending restraint
on the left and without on the right.

B. Hyperphase Diagram in System-Parameter

Space

Using information gathered in both the folding trajec-
tory study and the heat-capacity curves, we construct
a hyperphase diagram parameterized by torsion strength
and temperature. In Fig. 6, the structural phases present
for all values of Sτ and T are colorized differently. The
left-hand figure shows the structural phase diagram for
semiflexible helical polymers; the right-hand figure con-
tains the hyperphases for the flexible model.

In the semiflexible case (left), a much more robust or-
ganization of unique structural phases is observed. For
Sτ ≥ 7, we see a clear distinction between random coil,
liquid, single-helix, and double-helix phases. In each of
the regions specified, the dominant structures are qual-
itatively distinguishable and recognizable. Moving to
lower values of Sτ the phase boundaries are less clear.

For Sτ = 6, low-temperature structures are clearly dom-
inated by three-helix bundles but the four-helix bundles
and amorphous solids exhibit more variability, which is
due to the small size of the system. For longer chains,
bundles composed of four or more helices become also
more stable [67]. For example, we find for a 60-mer that
the instability in the three-helix bundle reduces, with the
three-helix branch forming at larger Sτ values and sep-
arating more obviously from the four-helix branch. The
bundling also becomes less variable in orientation and
helix-segment length. The variability of the four-helix
bundle reduces as well, but to a lesser extent. Conversely,
in the case of the 30-mer we see disappearance of the
four-helix phase, and in the small parameter space that
allows for the formation of three-helix bundles, we find
that these structures are highly unstable.

As shown in the right-hand side of Fig. 6 for flexible
polymers, the folding process is not influenced strongly
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FIG. 6. (Color online) Hyperphase diagrams of bending-restrained semiflexible (left) and unrestrained flexible polymers (right)
with 40 monomers. Regions are represented in the space of the torsion strength Sτ as a material parameter distinguishing classes
of polymers and the temperature T as an external control parameter for the formation of structural phases. The color code is
the same as in Fig. 4. The width of the white spaces between the structural phases corresponds to the general uncertainty in
locating the precise transition lines using canonical statistical analysis for this finite system [9].

by the torsion strength. Again, while helical order
emerges for increased Sτ values, there is no organiza-
tion of helical segments, so the tertiary folding process is
not strongly influenced by the formation and organiza-
tion of helical segments. Also in contrast to the bending-
restrained case, we no longer observe the disappearance
of the liquid phase at high torsion strengths.

C. Low-Temperature Structural Analysis

At low temperatures, the dependence of the structure
type on the torsion strength can be easily analyzed and
compared for the bending-restrained and unrestrained
polymers by means of the parameter qfrac2 = q2/(q1+ q2),
which is defined as the fraction of Lennard-Jones ener-
gies which occur between monomers separated by more
than 6 bonds and the total Lennard-Jones interaction en-
ergy between nonbonded monomers. In Fig. 7, we plot
the canonical average 〈qfrac2 〉 at each value of Sτ for dif-
ferent fixed temperatures. The behavior of 〈qfrac2 〉 high-
lights the structural transitions in Sτ , which as a material
(or model) parameter determines the dominant structure
type of the respective polymer.
In Fig. 7(a) we show the behavior of 〈qfrac2 〉 for T =

0.1. In the bending-restrained case (black), 〈qfrac2 〉 for the
amorphous solid at Sτ = 0 drops to about the half for the
three- and four-helix bundles once the torsion potential
is turned on. It reduces further to about 〈qfrac2 〉 ≈ 1/4
at Sτ ≈ 7 when the double-helix becomes the dominant
structure. For Sτ > 25, it is zero, which corresponds to

the single helix. As already discussed, there is no well-
defined separation between three- and four-helix bundles
for this system size, whereas the single- and double-helix
regions are both highly consistent over the extent of their
domain. In the unconstrained case (red), the structural
ambiguity is evident from the erratic behavior of qfrac2

with Sτ and no helical structure type is dominant.
As temperature is increased to T = 0.3 [Fig. 7(b)], we

see spreading out of the crossover between the structure
types due to the increased variability within each helical
phase. For T = 0.6 [Fig. 7(c)], the change between stable
unique states has completely disappeared in favor of a
continuous evolution from globule-like Sτ = 0 structures
towards single-helix or coil-like conformations for torsion
strengths Sτ > 20 with q2 = 0.
No notable change in behavior of 〈qfrac2 〉 is observed

in the bending-unrestrained case if temperature is in-
creased, because this order parameter is not sufficiently
sensitive to discriminate amorphous and globular struc-
tures.
Helical structure types that semiflexible polymers with

torsional barriers can form are more likely to occur in na-
ture if the range of torsion strengths that lead to the same
stable structure type is comparatively large. For this pur-
pose, we now investigate (putative) ground-state struc-
tures, as found in our simulations, more closely. Low-
est energies E0 obtained for bending-restrained polymers
with different torsion strengths Sτ are plotted as dots in
Fig. 8. The color indicates the structure type as defined
in Fig. 6.
First, we observe that the ground-state energy is a
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FIG. 7. (Color online) Structural parameter 〈qfrac2 〉 plotted for a single temperature for each value Sτ . Regions of constant
〈qfrac2 〉 represent consistent phases over a range of Sτ . (a) For T = 0.1 there is strong division between distinct states in the
bending-restrained case. This behavior is not present in the unrestrained case. At higher temperature (b) we see the sharpness
of the transitions decrease as the structural variability increase and in (c) the distinct states are no longer discernible.

monotonously growing function of Sτ . This means that
for larger values of Sτ the torsion barrier increasingly
confines the helical structure type and stabilizes it. This
becomes even more apparent if we hypothetically extrap-
olate the ground-state energy of a polymer at a given

FIG. 8. (Color online) Energies E0 of putative ground-state
structures at different values of torsion strength Sτ (dots) for
bending-restrained polymers (N = 40) with torsional barriers.
The color of the dots and curves is consistent with the key in
Fig. 4. The solid lines are hypothetic extrapolations of the en-
ergy Eext(Sτ ) if the torsion strength in the torsion potential
of a given ground-state structure is changed. The intersec-
tion points of lines with different color mark the crossover
between different structure types of ground-state conforma-
tions. The thus identified Sτ threshold values agree with the
zero-temperature transition points in the hyperphase diagram
shown in Fig. 6.

value of torsion strength, say S0
τ , to different values of

Sτ :

Eext(X0;Sτ ) = E(X0, S
0
τ ) + (Sτ − S0

τ )

N−3
∑

l=1

vtor(X0(τl)),

(9)
where X0 is the lowest-energy conformation at S0

τ , and
E(X0, S

0
τ ) ≡ E0 is the ground-state energy at S0

τ . The
slope of this linear function acts like a lever and can be
considered as an indicator for the sensibility of the given
structure type. This means, if the slope is rather large, it
is more likely that there is a qualitatively different struc-
ture type associated with the ground state of a polymer
with slightly increased torsion strength Sτ > S0

τ . The
linear curves Eext through the individual ground-state
energy values are also depicted in Fig. 8 and the ini-
tially somewhat puzzling result is that the slopes decrease
with increasing torsion strength. The obvious reason
is that the ground-state structures change qualitatively.
Combining these observations, we can conclude that the
lowest-energy structures at small torsion strengths (i.e.,
amorphous structures, four-helix, and three-helix bun-
dles) are more unstable and unlikely to occur for the
40-mer investigated in this study than the two-helix bun-
dles and single helices. This shows also how occurrence
and stability of helical structure types depend on mini-
mal system sizes. In exemplary simulations of a 60-mer, a
stabilization of three-helix and four-helix bundles was ob-
served. It is worth noting that in the helix-bundle phases
different helix alignment types occur as subphases.
As a quantitative feature of this representation, the in-

tersection points of the linear curves mark the crossover
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points from one ground-state structure type into another
in Sτ space. These threshold values are consistent with
the location of the low-temperature transition points dis-
cussed above in the context of the structural phases in
the hyperphase diagram shown in Fig. 6.

V. SUMMARY

We have simulated bead-spring models of homopoly-
mers with propensity for helical order with and without
bending restraints by means of parallel tempering Monte
Carlo simulations. This enabled us to systematically ex-
plore the structural space of flexible and semiflexible he-
lical polymers. The tendency to form helical segments is
controlled via a torsion potential. Its strength was var-
ied in a way that the competition between the energy
scales associated with torsion potential, bending energy
(if present), and nonbonded Lennard-Jones interaction
facilitates conditions under which different stable struc-
tural phases can form.
We find that with the inclusion of both a torsion and

bending potential, rather stiff helical segments can form.
The helical segments can vary in length and may align
into bundles. The stiffness of the helical segments, and
consequently the number of helices per bundle, is deter-
mined by the strength of the torsion potential.
We also find that without an effective bending re-

straint, the polymer chain lacks helical segment stiffness
and does not form stable organized helix bundles. En-
sembles of structures without bending stabilization ex-
hibit a higher entropy of low-temperature structures, in-
dicating instability in the amorphous structures formed.
In this scenario, we also observe unpredictable sensitivity

to a change in environment such as torsion strength and
temperature.
The lack of stability and tolerance to environmental

variability provides insight into the preference of biopoly-
mers for effectively restrained bond angles, as it is promi-
nent for semiflexible polymers. DNA and most protein
structures possess such effective restraints; degrees of
freedom are typically limited to rotations about dihe-
drals. This reduced flexibility in polypeptides is essential
for functional structures to behave predictably and con-
sistently.
Our results, obtained by means of an extensive statisti-

cal analysis of a simple, generic and adaptive model, sup-
port the understanding of the way nature creates variety
and stability of biomacromolecular matter. While mod-
els, refined to atomistic scales, are essential for reveal-
ing specific details, only generic models like the one used
in our study can help to attain a more comprising and
qualitative understanding of general features in complex
biomolecular systems. Future work shall address the de-
tailed quantitative analysis of the folding landscape and
the estimation of free-energy barriers associated with the
different folding pathways into stable helical structures.
The set of order parameters discussed in this and pre-
vious work [4] forms a useful basis for the helical state
space, in which the free-energy landscape is represented.
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[51] S. W. Bruun, V. Iešmantavičius, J. Danielsson, and F. M.
Poulsen, Proc. Natl. Acad. Sci. U.S.A. 107, 13306 (2010).

[52] Z. Guo, C. L. Brooks, and E. M. Boczko, Proc. Natl.
Acad. Sci. U.S.A. 94, 10161 (1997).

[53] N. L. Harris, S. R. Presnell, and F. E. Cohen, J. Mol.
Biol. 236, 1356 (1994).
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