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We analyze ultrasensitivity in a model of V. harveyi quorum sensing. We consider a feedforward
model consisting of two biochemical networks per cell. The first represents the interchange of a
signaling molecule (autoinducer) between the cell cytoplasm and an extracellular domain, and the
binding of intracellular autoinducer to cognate receptors. The unbound and bound receptors within
each cell act as kinases and phosphotases, respectively, which then drive a second biochemical
network consisting of a phosphorylation-dephosphorylation cycle. We ignore subsequent signaling
pathways associated with gene regulation and the possible modification in the production rate
of autoinducer (positive feedback). We show how the resulting quorum sensing system exhibits
ultrasensivity with respect to changes in cell density. We also demonstrate how quorum sensing can
protect against the noise amplification of fast environmental fluctuations in comparison to a single
isolated cell.

PACS numbers: 87.10.-e, 87.18.Fx, 87.18.Mp, 05.40.-a

I. INTRODUCTION

Quorum sensing is a form of system stimulus and re-
sponse that is correlated to population density. Many
species of bacteria use quorum sensing to coordinate var-
ious types of behavior including bioluminescence, biofilm
formation, virulence, and antibiotic resistance, based on
the local density of the bacterial population [1–8]. In an
analogous fashion, some social insects use quorum sens-
ing to determine where to nest [9]. Roughly speaking,
quorum sensing can function as a decision-making pro-
cess in any decentralized system, provided that individ-
ual components have some mechanism for determining
the number or density of the population and a stereo-
typical response once some density threshold has been
reached.

In the case of bacteria, quorum sensing involves the
production and extracellular secretion of certain signal-
ing molecules called autoinducers. Each cell also has re-
ceptors that can specifically detect the signaling molecule
via ligand-receptor binding, which then activates tran-
scription of certain genes, including those for inducer
synthesis. However, since there is a low likelihood of
an individual bacterium detecting its own secreted in-
ducer, the cell must encounter signaling molecules se-
creted by other cells in its environment in order for gene
transcription to be activated. When only a few other
bacteria of the same kind are in the vicinity (low bacte-
rial population density), diffusion reduces the concentra-
tion of the inducer in the surrounding medium to almost
zero, resulting in small amounts of inducer being pro-
duced. On the other hand, as the population grows, the
concentration of the inducer passes a threshold, causing
more inducer to be synthesized. This generates a posi-
tive feedback loop that fully activates the receptor, and
induces the up-regulation of other specific genes. Hence,
all of the cells initiate transcription at approximately the
same time, resulting in some form of coordinated behav-
ior. The basic process at the single-cell level is shown in
Fig. 1.

Most models of bacterial quorum sensing are based
on deterministic ordinary differential equations (ODEs),
in which both the individual cells and the extracellular
medium are treated as well-mixed compartments (fast
diffusion limit) [10–18]. (Examples of spatial models can
be found in Refs. [12, 19–22].) From a dynamical sys-
tems perspective, two distinct forms of collective behav-
ior are typically considered: either the population acts as
a biochemical switch [12] or as a synchronized biochemi-
cal oscillator [14, 17, 18]. In this paper, we focus on the
former. At least two distinct mechanisms for a biochem-
ical switch have been identified. The first mechanism
involves the occurrence of bistability in a gene regula-
tory network, as exemplified by the mathematical model
of quorum sensing in the bacterium Pseudomonas aerug-
inosa developed by Dockery and Keener [12]. P. aerugi-
nosa is a human pathogen that monitors its cell density
in order to control the release of various virulence factors
[2, 3]. That is, if a small number of bacteria released tox-
ins then this could easily be neutralized by an efficient
host response, whereas the effectiveness of the response
would be considerably diminished if toxins were only re-
leased after the bacterial colony has reached a critical size
via quorum sensing. Multiple steady-steady states have
also been found in a related ODE model of quorum sens-
ing in the bioluminescent bacteria V. fisheri [10]. In this
system, quorum sensing limits the production of biolu-
minescent luciferase to situations where cell populations
are large; this saves energy since the signal from a small
number of cells would be invisible and thus useless.

Recent experimental studies of quorum sensing in the
bacterial species V. harveyi and V. cholerae [4, 6, 7] pro-
vide evidence for an alternative switching mechanism,
which can provide robust switch-like behavior without
bistability. In these quorum sensing systems two or more
parallel signaling pathways control a gene regulatory net-
work via a cascade of phosphorylation-dephosphorylation
cycles (PdPCs). PdPCs are a very common signaling
mechanism within cells, consisting of a protein that can
exist in an unmodified (unphosphorylated) or a modi-



2

low population density high population density

autoinducer
receptor

coordinated behavior

synthesis

FIG. 1. (Color online) A schematic illustration of quorum
sensing at the single-cell level.

fied (phosphorylated) state. Interconversion of the inac-
tivated and activated protein states is catalyzed by two
enzymes, kinases that phosphorylate the inactivated pro-
tein and phosphotases that dephopshorylate the activated
protein. Within the context of quorum sensing, the bind-
ing of an autodinducer to its cognate receptor switches
the receptor from acting like a kinase to one acting like
a phosphotase. Thus the PdPCs are driven by the level
of autoinducer which itself depends on the cell density.
One characteristic feature of a PdPC is that it exhibits
ultrasenstivity, that is, its response to a stimulus takes
the form of a sharp, switch-like sigmoid function [23–27].

In this paper, we analyze ultrasensitivity in V. har-
veyi quorum sensing. For simplicity, we focus on a sin-
gle phosphorylation pathway by adapting the Goldbeter-
Koshland of phosphorylation-dephosphorylation cycles
[23]. We consider a feedforward model consisting of two
biochemical networks per cell. The first represents the in-
terchange of an autoinducer between the cytoplasm and
an extracellular domain, and the binding of intracellu-
lar autoinducer to cognate receptors. The unbound and
bound receptors within each cell act as kinases and phos-
photases, respectively, which then drive a second bio-
chemical network consisting of a PdPC. We ignore sub-
sequent signaling pathways associated with gene regula-
tion and the possible modification in the production rate
of autoinducer (positive feedback). We show how the
resulting quorum sensing system can exhibit ultrasensiv-
ity with respect to changes in cell density. However, the
resulting switch-like behavior can make the system vul-
nerable to fast fluctuations in the environment, which
could be detrimental. Therefore, we also demonstrate
how quorum sensing can protect against the noise ampli-
fication of fast fluctuations in comparison to the PdPC
of a single isolated cell.

The structure of the paper is as follows. In Sec. II we
consider a general ODE model of quorum sensing and de-
rive conditions for the global convergence of the system.
Our basic model of quorum sensing in V. harveyi is pre-
sented in Sec. III, where we prove global convergence of
the model equations and use this to establish ultrasensi-

tivity with respect to population density. In Sec. IV we
address the issue of noise amplification in the presence
of receptor fluctuations, and show how quorum sensing
suppresses the effects of noise.

II. DIFFUSIVELY COUPLED MODEL OF

QUORUM SENSING

We begin by formulating a general model of quorum
sensing and analyzing the global convergence properties
of the model using the contraction theory tools of Russo
and Slotine [28]. Suppose that there are N cells la-
beled i = 1, . . . , N . Let U(t) denote the concentration
of signaling molecule in the extracellular space and let ui
be the corresponding intracellular concentration within
the i-th cell. Suppose that there are K other chem-
ical species within each cell, which together with the
signaling molecule comprise a regulatory network. Let
vi = (vi,1, . . . , vi,K) with vi,k the concentration of species
k within the i-th cell. A deterministic model of quorum
sensing can then be written in the general form [14]

dui
dt

= F (ui,vi)− κ(ui − U), i = 1, . . . , N (2.1a)

dvi,k
dt

= Gk(ui,vi), k = 1, . . . ,K (2.1b)

dU

dt
=
ακ

N

N∑

j=1

(uj − U)− γU, (2.1c)

Here F (u,v) and Gk(u,v) are the reaction rates of the
regulatory network based on mass action kinetics, the
term κ(uj − U) represents the diffusive exchange of sig-
naling molecules across the membrane of the j-th cell
with diffusive conductance κ, and γ is the rate of degra-
dation of extracellular signaling molecules. Finally, α =
Vcyt/Vext is a cell density parameter equal to the ratio of
the total cytosolic and extracellular volume. Note that
Vcyt = vcytN , where vcyt is the single-cell volume. In this
paper we treat N and α as independent variables.
The global convergence properties of quorum sensing

networks, where coupling between nodes in the network
is mediated by a common environmental variable, has
been analyzed within the context of nonlinear dynamical
systems in Ref. [28]. These authors consider a more
general class of model than given by Eqs. (2.1), including
non-diffusive coupling and non-identical cells. In order
to develop our model of ultrasensitivity in V. harveyi
quorum sensing, it is useful to apply the analysis of Ref.
[28] to the system of Eqs. (2.1). This requires recalling
some basic results of nonlinear contraction theory [29].
Consider the m-dimensional dynamical system

dx

dt
= f(x, t), x ∈ R

n, (2.2)

with f : Rn → R
n a smooth nonlinear vector field. Intro-

duce the vector norm |x| for x ∈ R
n and let ‖A‖ be the
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induced matrix norm for an arbitrary square matrix A,
that is,

‖A‖ = sup{|Ax| : x ∈ Rn with |x| = 1}.

Some common examples are as follows:

|x|1 =

n∑

j=1

|xj |, ‖A‖1 = max
1≤j≤n

n∑

i=1

|aij |,

|x|2 =




n∑

j=1

|xj |2



1/2

, ‖A‖2 =
√
λmax(A∗A)

|x|∞ = max
1≤j≤n

|xj |, ‖A‖∞ = max
1≤i≤n

n∑

j=1

|aij |,

where A∗ is the transpose of A and λmax(A
∗A) is the

largest eigenvalue of the positive semi-definite matrix
A∗A. Define the associated matrix measure µ as

µ(A) = lim
h→0+

1

h
(‖I + hA‖ − 1),

where I is the identity matrix. For the three above norms
on R

n, the associated matrix measures are

µ1(A) = max
1≤j≤n

{ajj +
∑

i6=j

|aij |}

µ2(A) = max
1≤i≤n

{λi([A+A∗]/2)}

µ∞(A) = max
1≤i≤n

{aii +
∑

j 6=i

|aij |}.

Given these definitions, the basic contraction theorem
is as follows [28]:

Theorem 1 The n-dimensional dynamical system (2.2)
is said to be contracting if any two trajectories, starting
from different initial conditions, converge exponentially
to each other. A sufficient condition for a system to be
contracting is the existence of some matrix measure µ for
which there exists a constant λ > 0 such that

µ(J(x, t)) ≤ −λ, Jij =
∂fi
∂xj

(2.3)

for all x, t. The scalar λ defines the rate of contraction.

A related concept is partial contraction [28]. Consider
a smooth nonlinear dynamical system of the form ẋ =
f(x,x, t) with x ∈ R

n. Suppose that the so-called virtual
non-autonomous system ẏ = f(y,x, t) with x(t) evolving
as specified, is contracting with respect to y. If a par-
ticular solution of the virtual system has some smooth
specific property, then all trajectories of the original x
system exhibit the same property in the large t limit.
This follows from the fact that y(t) = x(t), t ≥ 0, is
another particular solution of the virtual system, and all
trajectories of the y system converge exponentially to a
single trajectory.

In order to apply the above results to Eqs. (2.1), we
rewrite the latter in the form

dxi

dt
= f(xi)− κ((xi)1 − U)e1, i = 1, . . . , N (2.4a)

dU

dt
=
ακ

N

N∑

j=1

((xj)1 − U)− γU, (2.4b)

with xi = (ui,vi) ∈ R
1+K , (xi)1 = ui, f =

(F,G1, . . . , GK) and e1 = (1, 0, . . . , 0). From the con-
traction theorem and the notion of partial contraction,
one can show that the global convergence condition

|xi(t)− xj(t)| → 0 as t→ ∞

holds provided that f(x) − κ(x)1e1 is contracting. The
proof follows from considering the reduced order virtual
system

ẏ = f(y) − κ(y)1e1 + κU(t)e1,

where U(t) is treated as an external input. Setting
y(y) = xi(t) in the virtual system recovers the dynamics
of the ith cell. Hence, xi(t) for i = 1, . . . , N are particular
solutions of the virtual system so that if the virtual sys-
tem is contracting in y, then all of its solutions converge
exponentially toward each other, including the solutions
xi(t). In this asymptotic limit, we effectively have a sin-
gle cell diffusively coupled to the extracellular medium,
that is ui(t) → u(t) and vi(t) → v(t) with:

du

dt
= F (u,v)− κ(u− U), (2.5a)

dvk
dt

= Gk(u,v), (2.5b)

dU

dt
= ακ(u− U)− γU. (2.5c)

III. ULTRASENSITIVITY IN V. HARVEYI

QUORUM SENSING

The bioluminescent bacterium V. harveyi has three
parallel quorum sensing systems, each consisting of a dis-
tinct autoinducer (HAI-1, AI-2, CAI-1), cognate receptor
(LuxN, LuxP/Q, CqS), and associated enzyme (LuxM,
LuxS, CqsA) that helps produce the autoinducer, see
Fig. 2. (The human pathogen V. cholerae has a simi-
lar quorum sensing network, except there appear to be
only two parallel pathways. Note, however, that a re-
cent study suggests there could be up to four parallel
pathways [30].) Each autoinducer moves freely between
the intracellular and extracellular domains. At low cell
densities there are relatively low levels of autinducer due
to diffusion, so that there is a low probability that the
autoinducer can bind to its cognate receptor. Conse-
quently, the receptor acts as a kinase that autophospho-
rylates, and subsequently transfers its phosphate to the
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FIG. 2. (Color on-line) Summary of the V. harveyi quorum sensing circuit. Three phosphorylation cascades work in parallel
to control the ratio of LuxO to LuxO-P based on local cell-population density. Five sRNA, qrr1-5, then regulate expression of
quorum sensing target genes including the master transcriptional regulator LuxR, which upregulates downstream factors.

cytoplasmic protein LuxU. LuxU-P then passes its phos-
phate to the DNA-binding regulatory protein LuxO to
yield LuxO-P. The upshot is that at low cell densities,
the ratio of [LuxO-P] to [LuxO] is high and this acti-
vates transcription of the genes encoding five regulatory
small RNAs (sRNAs) termed Qrr1-Qrr5 (Quorum Reg-
ulatory RNA). Bacterial sRNAs are small (50-250 nu-
cleotide) non-coding RNA molecules that can either bind
to a protein and alter its function or bind to mRNA and
regulate gene expression. In the case of quorum sens-
ing in V. harveyi, the small sRNAs Qrr1–Qrr5 desta-
bilize the transcriptional activator protein LuxR, thus
preventing the activation of target genes responsible for
the production of various proteins, including biolumines-
cent luciferase. Hence, at low cell density the bacteria
do not bioluminesce. On the other hand, at high cell
density, the concentration of intracellular autodinducers
is increased so that they have a higher probability of
binding to their receptors, which then switch from be-
ing kinases to being phosphotases, significantly reducing
the ratio of [LuxO-P] to [LuxO]. The sRNAs are thus
no longer expressed, allowing the synthesis of LuxR and
the expression of bioluminescence, for example. Both
the phosphorylation-dephosphorylation cascades and the
sRNA regulatory network provide a basis for a sharp, sig-
moidal response of the concentration of LuxR to smooth
changes in cell density.

A. Single-cell model

We will analyze the occurrence of ultrasensitivity in
the above quorum sensing system by focusing on a single
phosphorylation pathway and adapting the Goldbeter-
Koshland of phosphorylation-dephosphorylation cycles
(PdPCs) [23]. (For a corresponding model of switching
due to the action of sRNAs see Hunter et al. [31]. In their
model, the fraction of phosphorylated LuxO is taken to
be the external input to the sRNA network. The lat-
ter itself depends on the level of phosphorylated LuxU,
which is the output of our model. Note that we could
also consider ultrasensitivity in a bicyclic PdPC cascade
involving both LuxU and LuxO.) In particular, we con-
sider the phosphorylation-dephosphorylation of LuxU by
the enzymatic action of a particular quorum sensing re-
ceptor, which is denoted by R when acting as a kinase

and by R̂ when it is it is bound by an autoinducer (A)
and acts like a phosphotase. Denoting the protein LuxU
by W, we define the following reaction schemes:

W +R
a1

⇋

d1

WR
k1→W ∗ +R (3.1a)

W ∗ + R̂
a2

⇋

d2

W ∗R̂
k2→ W + R̂, (3.1b)

R+A
k+

⇋

k−

R̂. (3.1c)

For simplicity, we assume that both the phosphorylation
and the dephosphorylation steps are irreversible. (See the
work of Qian and collaborators for an analysis of more
detailed, reversible models of PdPCs [25–27].) Introduc-
ing the concentrations u = [A], w = [W ], w∗ = [W ∗],
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r = [R], r̂ = [R̂], v = [WR] and v∗ = [W ∗R̂], the corre-
sponding kinetic equations for a single cell with a fixed
intracellular concentration of autoinducer, are

dw

dt
= −a1w(r − v) + d1v + k2v

∗ (3.2a)

dv

dt
= a1w(r − v)− (d1 + k1)v (3.2b)

dw∗

dt
= −a2w∗(r̂ − v∗) + d2v

∗ + k1v (3.2c)

dv∗

dt
= a2w

∗(r̂ − v∗)− (d2 + k2)v
∗ (3.2d)

dr

dt
= k−r̂ − k+ur. (3.2e)

These are supplemented by the conservation Eqs.

WT = w + w∗ + v + v∗, (3.3a)

RT = r + r̂, (3.3b)

where RT is the total concentration of receptors and WT

is the total concentration of LuxU.
In the various models considered in this paper, the

conversion of the receptors from kinase to phosphotase
activity is taken to be independent of the PdPC. That
is, we ignore any positive feedback pathways, in which
the regulation of gene expression by the phosphoryla-
tion/dephsophorylation of LuxU alters the production of
the autoinducer [32]. This allows us to treat the receptor-
ligand dynamics given by Eq. (3.2e), or subsequent ex-
tensions, independently of the PdPC dynamics given by
Eqs. (3.2a-d). In particular, for fixed concentration u, we
can take the concentration of kinases and phosphotases
to be at equilibrium:

req =
k−

k+u+ k−
RT ≡ R(u), r̂eq = RT −R(u). (3.4)

The system of Eqs. (3.2) then reduces to the classical
Goldbeter-Koshlandmodel of PdPCs [23], and we can ap-
ply their analysis based on a generalization of Michaelis-
Menten kinetics. The first step is to assume that the con-
centration of W and W ∗ is much larger than that of the
receptor, that is,WT ≫ RT or equivalentlyWT = w+w∗.
This implies that the time scale for the dynamics of the

complexes WR and W ∗R̂ is much faster than that for
the dynamics of W and W ∗. Performing a separation of
time-scales, we can treat the concentrations w and w∗

as constants when analyzing Eqs. (3.2b,d), while we can
take the steady-state values of the concentrations v, v∗

when solving Eqs. (3.2a,c). Hence, setting dv/dt = 0
and r = R(u) in (3.2b) we can solve for v in terms of
w. Similarly, setting dv∗/dt = 0 and r̂ = RT − R(u) in
(3.2d) we can solve for v∗ in terms of w∗. We thus obtain
the reduced kinetic scheme

W
f1(w)
⇋

f2(w∗)
W ∗, (3.5)

m
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FIG. 3. Molar fraction of modified protein W ∗ at steady-state
as a function of the autoinducer concentration u for different
values of K, with K = K1 = K2 and k−k1 = k+k2.

with

f1(w) =
k1R(u)w

K1 + w
, f2(w

∗) =
k2[RT −R(u)]w∗

K2 + w∗
, (3.6)

and

K1 =
d1 + k1
a1

, K2 =
d2 + k2
a2

.

Imposing the conservation condition WT = w + w∗ thus
yields the single independent kinetic equation

dw∗

dt
= f1(WT − w∗)− f2(w

∗). (3.7)

The steady-state concentration w∗
eq of LuxU-P is thus

obtained by solving f1(WT −w∗) = f2(w
∗), which yields

a quadratic equation for w∗. Taking the positive root,
and expressing it as a function of the fixed autoinducer
concentration u, we find that

[LuxU-P]

[LuxU-P]+[LuxU]
= φ(V (u)), (3.8)

with

V (u) =
k1R(u)

k2[RT −R(u)]
=

k−
k+u

k1
k2

(3.9)

and φ given by

φ =
−B +

√
B2 + 4AC

2AWT
, (3.10)

for V 6= 1, where

A = V (u)− 1, B =
1

WT
(K1 +K2V (u))− (V (u)− 1) ,

C =
K2

WT
V (u).
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A plot of φ, as a function of the autoinducer concentra-
tion u is shown in Fig. 3 for K1 = K2 = K. At low
values of K, there is a sharp change from high to low
levels of modified protein over a very small change in u
(ultrasensitivity); this corresponds to a regime in which
the two enzymes are saturated. On the other hand, for
large values of K, the curve is relatively shallow, and one
obtains a response similar to first-order kinetics.

Note on units

In this paper we are concerned with certain qualita-
tive features of the quorum sensing network. Therefore,
we treat all parameters and variables as dimensionless.
We fix the units of autoinducer concentration by taking
the PdPC switch to occur at u = 1. (Typical intracellu-
lar molar concentrations are of order nM.) The receptor
concentration r is expressed in terms of the fraction of
receptors that act as kinases by setting RT = 1. Simi-
larly, the concentration of LuxU-R is expressed in terms
of the fraction of phosphorylated LuxU proteins by set-
ting WT = 1. Finally, the units of time are taken to be
of the order minutes, comparable to typical unbinding
times k−1

− . In all figures variables are dimensionless.

B. Global convergence of population model

Now consider a population of N identical cells that are
coupled via a common extracellular domain due to the
transfer of the autoinducer A across the cell membrane.
Eq. (3.2e) for a single cell is then replaced by a system
of equations of the form (2.1),

dui
dt

= Γ+ k−(RT − ri)− k+uiri − κ(ui − U), (3.11a)

dri
dt

= k−(RT − ri)− k+uiri i = 1, . . . , N (3.11b)

dU

dt
= ακ(uav − U)− γU, (3.11c)

where

uav =
1

N

N∑

j=1

uj, (3.12)

is the population-averaged intracellular concentration of
A, U is the extracellular concentration of A, and Γ is the
rate of production of A due to the action of enzymes.
We would like to use contraction analysis (section II)

to derive conditions that ensure global convergence of the
system (3.11). In order to achieve this, it is first necessary
to obtain an upper bound on ui for any i. (Since ui is a
concentration, the lower bound is given by ui ≥ 0.) Eq.
(3.11c) implies that

U(t) ≤ ακuav(t)

ακ+ γ
,

with uav(t) evolving according to

duav
dt

= Γ+
k−
N

N∑

i=1

(RT −ri)−
k+
N

N∑

i=1

(uiri)−κ(uav−U).

The latter is obtained by summing Eq. (3.11a) with re-
spect to i. It follows that

duav
dt

≤ Γ+k−RT −κ(uav−U) ≤ Γ+k−RT − κγ

ακ+ γ
uav,

Hence, using a comparison principle, if uav(0) ≤ v(0)
then uav(t) ≤ v(t) for all t > 0 with

dv

dt
= Γ+ k−RT − κγ

ακ+ γ
v,

Moreover, if

v(0) ≤ Θ ≡ (Γ + k−RT )(ακ+ γ)

κγ
,

then v(t) ≤ Θ for all t > 0 and thus

uav(t) ≤ Θ, for all t > 0.

This in turn means that

U(t) ≤ α

γ
(Γ + k−RT ),

which leads to an upper bound on each ui(t):

ui(t) ≤ Θ. (3.13)

Let us now consider global convergence of Eqs. (3.11).
The reduced virtual system takes the form

dy1
dt

= Γ + k−[RT − y2]− k+y1y2 − κ(y1 − U), (3.14a)

dy2
dt

= k−[RT − y2]− k+y1y2, (3.14b)

with U(t) treated as an external input. The Jacobian of
the virtual system is

J(y, t) =

(
−k+y2 − κ −k− − k+y1
−k+y2 −k− − k+y1

)
. (3.15)

Suppose that we take the ℓ2 norm for y. In order to
determine the corresponding matrix measure µ2(J), we
need to calculate the eigenvalues of the symmetric matrix

J + J∗

2

=

(
−k+y2 − κ −[k− + k+(y1 + y2)]/2

−[k− + k+(y1 + y2)]/2 −k− − k+y1

)
.

These are given by

λ± =
1

2

[
−b(y)±

√
b(y)2 − c(y)

]
,
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with

b(y) = κ+ k− + k+(y1 + y2)

c(y) = 4(κ+ k+y2)(k− + k+y1)− [k− + k+(y1 + y2)]
2.

Since b(y) > 0, the matrix measure is

µ2(J) = max{λ±} = λ+.

Hence, the virtual system is contracting provided that
c(y) > 0.
We now derive conditions for c(y) to be positive defi-

nite. First, note that

c(0) = k−(4κ− k−) > 0

provided κ > k−/4. Assuming this inequality holds, we
can ensure positivity of c(y) by imposing the following
conditions:

∂c

∂y1
≡ 2k+[2κ− 2k− − k+(y1 − y2)] > 0,

∂c

∂y2
≡ 2k+[k− + k+(y1 − y2)] > 0.

for all y. The minimum possible value of ∂2c occurs
when y2 = RT and y1 = 0, which will be positive definite
provided

k+RT < k− < 4κ. (3.16)

The minimum possible value of ∂1c occurs when y1 = Θ,
see Eq. (3.13), which will be positive definite provided

k− + k+Θ < 2κ. (3.17)

We have thus proven that if conditions (3.16) and (3.17)
hold, then µ2(J) < 0 and the y dynamics is contract-
ing. Applying the notion of partial contraction, we thus
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FIG. 4. (Color online) Global convergence of the intracellular
autoinducer concentration for N = 10 coupled cells. Param-
eter values are k− = k+ = Γ = 1, RT = 1, κ = 1, and
α = 0.05.

deduce that the quorum sensing system (3.11) is glob-
ally convergent with ui(t) → u(t) and ri(t) → r(t) in
the limit t → ∞, with (u, r) evolving according to the
effective single-cell model

du

dt
= Γ + k−[RT − r]− k+ur − κ(u− U) (3.18a)

dr

dt
= k−[RT − r]− k+ur (3.18b)

dU

dt
= ακ(u − U)− γU, (3.18c)

An illustration of global convergence is presented in Fig.
4, where we plot the evolution of the inducer concen-
tration for 10 coupled cells based on numerically solving
Eqs. (3.11).

C. Ultrasensitivity in population model

Global convergence of the quorum sensing system
means that, ignoring transients, we can explore the ef-
fects of the extracellular coupling on ultrasensitivity of
the PdPC pathway by taking the cells to be synchro-
nized and evolving according to Eqs. (3.18). The latter
have a unique stable fixed point ueq with

ueq = Γ
(ακ+ γ)

κγ
≡ ψ(α). (3.19)

Putting u = ueq in Eq. (3.8) finally shows that

[LuxU-P]

[LuxU-P]+[LuxU]
= φ

(
k−

k+ψ(α)

k1
k2

)
≡ Ψ(α), (3.20)

In order that the system exhibit switch-like behavior as a
function of cell density α, we require a critical value αc,
0 < αc <∞ such that (for Γ = 1)

χ ≡ k−
k+

k1
k2

=
αc

γ
+

1

κ
,

that is

αc = γ(χ− κ−1).

Assuming that χ = 1 and taking αc = 0.05 [14], we
require κ > 1 and γ = γc = 0.05(1− κ−1). For low cell
densities (α ≪ αc) we have Ψ(α) ≈ 1, which follows from
the functional form of φ, see Fig. 3. Hence the fraction of
phosphorylated LuxU-P is high, which ultimately means
that the expression of the gene regulator protein LuxR
is suppressed. On the other hand, for large cell densities
(α ≫ αc) we find that Ψ(α) ≈ 0. Now the fraction of
phosphorylated LuxU-P is small, allowing the expression
of LuxR and downstream gene regulatory networks. The
α-dependence is illustrated in Fig. 5. Since, α and u
are lineraly related, we will focus on the u-dependence in
subsequent sections and choose γ and Γ such that αc =
0.05 for all κ.
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FIG. 5. Molar fraction of modified protein W ∗ at steady-state
as a function of the cell density α for different values of K,
K = K1 = K2. Other parameter values are chosen so that
k−k1 = k+k2, Γ = 1, κ = 10, αc = 0.05.

IV. NOISE AMPLIFICATION OF INTRINSIC

FLUCTUATIONS

One of the characteristic features of ultrasensitive bio-
chemical signaling networks is that they tend to amplify
noise [24, 26, 33, 34]. On the other hand, collective be-
havior at the population level, as exhibited by quorum
sensing networks, can mitigate the effects of noise [28, 35].
In this section we explore the amplification of intrinsic
fluctuations in the V. harveyi quorum sensing model in-
troduced in Sec. III. Note that our analysis is distinct
from some recent studies based on stochastic versions
of Eqs. (2.1), in which the mass-action kinetics of the
auxiliary species within each cell is replaced by a mas-
ter equation describing the stochastic reactions of a finite
number of molecules [36, 37]. We will assume through-
out that the population model is contracting as defined
in Sect. II.

A. Linear response of single-cell model

We begin by returning to the single cell model with
fixed concentration u of autoinducer. In the deterministic
case, with r given by the equilibrium solution (3.4), the
dynamics of LuxU is given by equation (3.7), which we
write explicitly in the form

dw∗

dt
= F(w∗, r) ≡ k1r(WT − w∗)

K1 + [WT − w∗]
− k2[RT − r]w∗

K2 + w∗
.

(4.1)
A number of recent studies have investigated noise signal
amplification in ultrasensitive signal transduction based
on stochastic versions of Eq. (4.1) [24, 26, 33, 34]. A more
detailed analysis would need to start from a stochastic

version of the full system of Eqs. (3.2), since r(t) is now
time-dependent. Here, however, we will follow along sim-
ilar lines to previous authors and consider the effects of
fluctuations in receptor concentration by applying linear
response theory to Eq. (4.1).
Suppose that r(t) undergoes small fluctuations about

the equilibrium state req of Eq. (3.4). This can be incor-
porated by replacing Eq. (3.2) for fixed u by the Langevin
equation

dr

dt
= k−(RT − r) − k+ur + σ0ξ(t), (4.2)

with ξ(t) a white noise process,

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t− t′),

and σ0 a fixed noise intensity. One possible source of
noise is fluctuations in the autoinducer concentration u;
these will be modeled explicitly in the population model
of quorum sensing in Sec. IIIB. Under the linear noise
approximation, we set r(t) = req +R(t) such that

dR

dt
= −(k− + k+u)R+ σ0ξ(t). (4.3)

Similarly, linearizing equation (4.1) about the equilib-
rium solution by setting w∗ = w∗

eq +W , w∗
eq = φ(V (u)),

gives

dW

dt
= −β1W + β2R, (4.4)

with

β1 = − ∂F
∂w∗

∣∣∣∣
eq

=
k1K1req

[K1 + [WT − w∗
eq]]

2
+
k2K2[RT − req]

[K2 + w∗
eq]

2

(4.5)
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FIG. 6. Plot of deterministic gain g of single-cell model as a
function of autoinducer concentration u for different values of
K, K = K1 = K2. Other parameter values are k− = k+ =
k1 = k2 = 1, and RT = WT = 1.
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and

β2 =
∂F
∂r

∣∣∣∣
eq

=
k1(WT − w∗

eq)

K1 + [WT − w∗
eq]

+
k2w

∗
eq

K2 + w∗
eq

(4.6)

Note that the gain of the underlying deterministic system
(4.1) at equilibrium is given by

g =
∆W/w∗

eq

∆R/req
=
β2
β1

req
w∗

eq

. (4.7)

Incorporating the u-dependence of req and β1,2 we deter-
mine g = g(u). In Fig. 6 we plot the gain g as a function
of u. It can be seen that there is a sharp gain around the
critical concentration u = 1.
In order to determine the variance of the concentration

of LuxU-P, w∗, we use Fourier transforms. Taking

R(ω) =

∫ ∞

−∞

eiωtR(t)dt

etc., we Fourier transform the linear equations (4.3) and
(4.4) to obtain

W (ω) =
β2

β1 + iω
R(ω), R(ω) =

σ0
k− + k+u+ iω

ξ(ω),

where ξ(ω) is the Fourier transform of a white noise pro-
cess with

〈ξ(ω)〉 = 0, 〈ξ(ω)ξ(ω′)〉 = 2πδ(ω − ω′).

Using the Wiener-Khinchine theorem, the variance of the
receptor concentration is given by the integral of the
power spectrum defined by

2πSR(ω)δ(ω − ω′) = 〈R(ω)R(ω′)〉

That is,

σ2
R =

∫ ∞

−∞

SR(ω)
dω

2π

=

∫ ∞

−∞

σ2
0

[k− + k+u]2 + ω2

dω

2π

=
σ2
0

2[k− + k+u]
. (4.8)

Similarly, the variance of the Lux-P concentration is

σ2
W =

∫ ∞

−∞

SW (ω)
dω

2π

=

∫ ∞

−∞

β2
2

β2
1 + ω2

σ2
0

[k− + k+u]2 + ω2

dω

2π

=
β2
2

β2
1 − [k− + k+u]2

σ2
0

2[k− + k+u]

+
β2
2

2β1

σ2
0

[k− + k+u]2 − β2
1

=
β2
2σ

2
0

2β1[k− + k+u]

1

k− + k+u+ β1
. (4.9)

0

1

2

3

4

5

6

s
to

c
h

a
s
ti
c
 g

a
in

 G

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

inducer concentration u

K=0.01

K=0.1
K=1

K=0.01

K=0.1K=1

0.2

0.4

0.6

0.8

1

re
la

ti
v
e

 g
a

in
 G

/g

(a)

(b)

FIG. 7. Plot of (a) relative gain G/g and (b) stochastic gain
G as a function of autoinducer concentration u for different
values of K, K = K1 = K2. Other parameter values are
k− = k+ = k1 = k2 = 1, and RT = WT = 1.

If we interpret σW /w∗
eq as the relative noise intensity

of the output and σR/req as the relative noise inten-
sity of the output, then the noise amplification of the
PdPC in response to receptor fluctuations is defined by
the stochastic gain [33]

G =
σW /w∗

eq

σR/req
=

req
w∗

eq

√
β2
2

β1

1

k− + k+u+ β1

= g

√
β1

k− + k+u+ β1
, (4.10)

where g is the deterministic gain (4.7). In Fig. 7 we
plot the relative gain G/g and the stochastic gain G as a
function of u. It can be seen that the sharp amplification
around the critical density u = 1 in the ultrasensitive
regime (K = 0.01) is suppressed relative to the deter-
ministic gain.
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B. Linear response of population model

We now extend the analysis of noise amplification to
the population model, where we explicitly model the
stochastic dynamics of the autodinducer concentration.
We show how filtering of the noise by the quorum sensing
network can greatly reduce the effects of noise amplifica-
tion. The first point to note is that in a stochastic model
of quorum sensing, we cannot identify the state of all the
cells, even if the deterministic system (2.1) is globally
convergent. Therefore, in the case of V. harveyi, we have
to consider a stochastic version of Eqs. (3.11a,b):

dui
dt

= Γ + k−(RT − ri)− k+uiri − κ(ui − U) + θ0ξi(t),

(4.11a)

dri
dt

= k−(RT − ri)− k+uiri, (4.11b)

dU

dt
= ακ(uav − U)− γU (4.11c)

for i = 1, . . . , N , with

〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = δ(t− t′)δij .

We assume that each cell is driven by an independent
white noise term with constant noise intensity θ0; one
source of the noise could be fluctuations in the production
of the autoinducer. Linearizing about the global steady-
state by setting

ui(t) = ueq+Ui(t), ri(t) = req+Ri(t), U(t) = Ueq+V(t),

yields

dUi

dt
= −k−Ri − k+(Uireq + ueqRi)− κ(Ui − V)

+ θ0ξi(t), (4.12a)

dRi

dt
= −k−Ri − k+(Uireq + ueqRi), (4.12b)

dV
dt

= ακ(Uav − V)− γV , Uav =
1

N

N∑

i=1

Ui. (4.12c)

Fourier transforming this linear system of equations
gives

ΓU (ω)Ui(ω) = −(k− + k+ueq)Ri(ω) + κV(ω) + θ0ξi(ω),
(4.13a)

ΓR(ω)Ri(ω) = −k+reqUi(ω), (4.13b)

ΓV (ω)V(ω) = ακUav(ω). (4.13c)

where

ΓU (ω) = iω + κ+ k+req, ΓR(ω) = iω + k− + k+ueq,

ΓV (ω) = iω + γ + ακ.

Summing both sides of Eqs. (4.13a,b) with respect to i
and using Eq. (4.13c) we obtain the result

Rav(ω) = −k+reqUav(ω)

ΓR(ω)
, Uav(ω) =

θ0ξav(ω)

Γ̂U (ω)
, (4.14)

where

Γ̂U (ω) = ΓU (ω)−
k+req(k− + k+ueq)

ΓR(ω)
− ακ2

ΓV (ω)
.

It follows that
(
Γ̂U (ω) + Λ(ω)

)
Ui(ω) = θ0ξi(ω) + Λ(ω)Uav(ω),

(4.15)

where

Λ(ω) =
ακ2

ΓV (ω)
.

Multiplying Eq. (4.15) by its complex conjugate and
averaging with respect to the noise gives

(Γ̂U (ω) + Λ(ω))(Γ̂U (ω′) + Λ(ω′))〈Ui(ω)Ui(ω′)〉 = θ20〈ξi(ω)ξi(ω′)〉+ Λ(ω)Λ(ω′)〈Uav(ω)Uav(ω′)〉
+ θ0(Λ(ω′)〈ξi(ω)Uav(ω′)〉+ Λ(ω)〈Uav(ω)ξi(ω′)〉.

From Eq. (4.14), we find that

〈Uav(ω)Uav(ω′)〉 = 2πθ20

N |Γ̂U (ω)|2
δ(ω − ω′),

〈ξi(ω)Uav(ω′)〉 = 2πθ0

N Γ̂U (ω)
δ(ω − ω′).

Each cell thus has the same spectrum SU with

SU (ω) =
θ20

|Γ̂U (ω) + Λ(ω)|2
(4.16)

×
(
1 +

|Λ(ω)|2

N |Γ̂U (ω)|2
+

2

N
Re

[
Λ(ω)

Γ̂U (ω)

])

Now suppose that N is sufficiently large so that the
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O(1/N) terms can be dropped. The remaining denomi- nator can be simplified by noting that

Γ̂U (ω) + Λ(ω) = iω + κ+ k+req −
k+req(k− + k+ueq)

iω + k− + k+ueq
=

(iω + z+)(iω + z−)

iω + k− + k+ueq
,

with

z± =
1

2

[
(k− + k+(ueq + req) + κ)±

√
(k− + k+(ueq + req) + κ)2 − 4κ(k− + k+ueq)

]
.

Noting that z± are real with z± > 0, we see that the denominator of SU (ω) has simple poles at w = −iz−± and
w = iz± with iz± lying in the upper-half complex plane. Hence, using Eq. (4.13b), the variance in the receptor
concentration ri at the single cell level is (after closing the contour C in the upper-half plane)

σ2
R =

(k+req)
2

|ΓR(ω)|2
∫ ∞

−∞

SU (ω)
dω

2π
=

∮

C

σ2
0

|iω + z+|2|iω + z−|2
dω

2π
=

σ2
0

2z−(z2+ − z2−)
− σ2

0

2z+(z2+ − z2−)
=

σ2
0

2z+z−(z+ + z−)
,

(4.17)

where we have taken σ0 = k+reqθ0/Γ with Γ = 1. It is
straightforward to show that σ2

R → 0 as κ→ ∞. This is
illustrated in Fig. 8, where we plot the ratio σ2

R/σ
2
0 as a

function of ueq for various κ. Hence, the receptor fluctu-
ations vanish in the limit N, κ→ ∞, which is consistent
with the nonlinear analysis of Sec. IVC.
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FIG. 8. Plot of variance σ2
R in receptor fluctuation G as a

function of autoinducer concentration ueq for different values
of κ. Other parameter values are k− = k+ = k1 = k2 = 1,
and RT = WT = 1. Also shown is the corresponding quantity
in the single-cell model (dashed curve).

We now calculate the gain of individual cell PdPCs
driven by the receptor fluctuations of the population

model. Following along identical lines to Sec. IIIB,

σ2
W =

∫ ∞

−∞

SW (ω)
dω

2π

=

∫ ∞

−∞

β2
2

β2
1 + ω2

σ2
0

|iω + z+|2|iω + z−|2
dω

2π

=
β2
2

2β2
1

β2
1σ

2
0

(β2
1 − z2+)(β

2
1 − z2−)

×
[
β2
1 − (z2− + z−z+ + z2+)

(z+ + z−)z+z−
+

1

β1

]
. (4.18)

The gain G is then

G =
σW /w∗

eq

σR/req
= g

β1σW
β2σR

,

= g

√
β1

(β2
1 − z2+)(β

2
1 − z2−)

(4.19)

×
√
β1[β2

1 − (z2− + z−z+ + z2+)] + (z+ + z−)z+z−.

Expressing req and β1,2 in terms of ueq, we plot the
stochastic gain G of the population model as a function
of ueq for K = 0.01 and various coupling strengths κ,
see Fig. 9. We find that the stochastic gain G is only
weakly dependent on κ, and approaches the gain of the
single-cell model as κ increases. Given that the recep-
tor fluctuations σ2

R are suppressed in the quorum sensing
model for large κ, while the gain is hardly changed, we
conclude that the fluctuations in the LuxU-P concentra-
tion w∗ are greatly suppressed compared to an isolated
cell.
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C. Nonlinear stochastic analysis

In Sec. IVB we showed that within the framework of
linear response theory, the variance in receptor fluctu-
ations vanishes in the limit N → ∞ and κ → ∞. It

turns out that this result also holds for the full nonlinear
model, which can be established by applying the con-
traction analysis of Refs. [28, 35]. First, we rewrite Eqs.
(4.11a,b) in the more compact form

dxi

dt
= f(xi) + e1θ0ξi(t), (4.20)

with x = (u, r), e1 = (1, 0),

f1(x) = Γ + k−(RT − r) − k+ur − κ(ui − U),

f2(x) = k−(RT − r)− k+ur.

Summing both sides of Eq. (4.20) with respect to i and

setting xav = N−1
∑N

i=1 xi, we have

dxav

dt
= f(xav) + ε+ e1

θ0
N

N∑

i=1

ξi(t), (4.21)

where

ε =
1

N

N∑

i=1

f(xi)− f(xav).

In order to estimate ‖ε‖2 we use the Taylor expansion
formula with integral remainder:

fk(xi) = fk(xav) +

∫ 1

0

∇fk(xi(s)) ·
dxi

ds
ds

where xi(s) = (1− s)xav + sxi. Integrating by parts,

fk(xi) = fk(xav) + (xi − xav) · ∇fk(xav) +

∫ 1

0

∑

l,l′=1,2

(xi(s)− xav)lHk,ll′ (xi(s))(xi(s)− xav)l′ds

where H is the Hessian matrix

Hk,ll′ (x) =
∂2fk
∂xlxl′

.

We shall assume that for k = 1, 2, the largest eigenvalue
λmax(Hk) of the Hessian matrix is uniformly bounded

from above by a constant Hbd/
√
2. This means in par-

ticular that for all x,

x ·Hkx ≤ Hbd√
2
‖x‖2.

Averaging both sides with respect to i and taking abso-

lute values then implies

∣∣∣∣∣
1

N

N∑

i=1

fk(xi)− fk(xav)

∣∣∣∣∣ ≤
Hbd√
2N

∫ 1

0

N∑

i=1

‖xi(s)− xav‖2ds

≤ Hbd

2
√
2N

N∑

i=1

‖xi − xav‖2.

It immediately follows that

‖ε‖2 ≤
Hbd

2N

N∑

i=1

‖xi − xav‖2.

Following Ref. [28, 35], suppose that after a transient
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phase,

E

[
N∑

i=1

‖xi − xav‖2
]
=

1

N
E




N∑

i<j

‖xi − xj‖2

 ≤ ρ

N
.

(4.22)
This then implies

E[‖ε‖2] ≤
Hbd

2N2
ρ (4.23)

for some finite ρ. We find that ρ ∼ N2/κ so that
E[‖ε‖2] → 0 as κ → ∞ Finally, returning to Eq. (4.21),
we note that since the noise terms ξi(t) are independent,

σ

N

N∑

i=1

ξi(t) ≈
1√
N
ξ(t).

Hence, in the limit N, κ → ∞, the difference between
trajectories xav(t) and those of the deterministic system
y = f(y) tend to zero, and this then carries over to indi-
vidual trajectories xi(t).
It remains to establish the inequality (4.22). We will

adapt the analysis of coupled FitzHugh-Nagumo oscilla-
tors presented in Ref. [35]. Let us first consider two cells
(N = 2) with states (u1, r1), (u2, r2). We construct the
following linear virtual system, for which (u1, r1, u2, r2)
are treated as external inputs:

dx1
dt

= −k−x2 − k+(r1 + r2)x1 − k+(u1 + u2)x2 − κx1

+ θ0ξ(t) (4.24a)

dx2
dt

= −k−x2 − k+(r1 + r2)x1 − k+(u1 + u2)x2.

(4.24b)

Comparison with Eqs. (4.20) for i = 1, 2 implies that
(x1, x2)

⊤ = (u1 − u2, r1 − r2)
⊤ is a particular solution of

Eqs. (4.24). The evolution matrix in Eqs. (4.24) takes
the form

M =

(
−a− κ −b
−a −b

)
,

with a = k+(r1 + r2) and b = k− + k+(u1 + u2). The
associated eigenvalues are µ = −λ± with

λ± =
1

2

[
a+ b + κ±

√
(a+ b+ κ)2 − 4κb

]
> 0,

and corresponding eigenvectors are

v+ = (λ+ − b, a)⊤, v− = (−b, λ+ − b)⊤.

Since were interested in the large κ limit, we will assume
that κ ≥ a, b. It follows that

λ+ ≈ κ, λ− ≈ b

κ
, (4.25)

and we can take v+ ≈ (λ+, a)
⊤,v2 ≈ (−b, λ+)⊤. Di-

agonalizing Eqs. (4.24) by setting y = Tx with T =

(v1,v2)
⊤ then yields the following pair of uncoupled

Langevin Eqs.

dy1
dt

= −λ+y1 + θ0λ+ξ(t) (4.26a)

dy2
dt

= −λ+y2 − θ0bξ(t). (4.26b)

It follows that [35]

E[y21 ] ≤
θ20λ+
2

, E[y22 ] ≤
θ20b

2

λ−
.

Now considering the inverse transform x = T−1y for
large κ, that is,

x1 ≈ y1
λ+

− a

λ2+
y2, x2 ≈ b

λ2+
y1 +

1

λ+
y2,

we see obtain the approximate upper bounds

E[x21] ≤
θ20
2λ+

, E[x22] ≤
θ20b

2

λ−λ2+
.

Finally, since (x1, x2)
⊤ = (u1−u2, r1−r2)⊤ is a particular

solution of Eqs. (4.24), we conclude that

E[(u1 − u2)
2] ≤ θ20

2κ
, E[(r1 − r2)

2] ≤ θ20b

2κ
.

We have used the approximations (4.25).
A similar argument can be applied for N > 2 by choos-

ing any pair 1 ≤ i, j ≤ N, i < j and showing that

E[(ri − rj)
2] + E[(ui − uj)

2] ≤ θ20(1 + b)

κ
.

Summing over i, j then yields

E[
∑

i<j

‖xi − xj‖2] ≤
N(N − 1)θ20(1 + b)

2κ
.

It follows that for large κ,N , Eq. (4.22) holds with

ρ/N2 ∼ θ20(1 + b)/κ,

which converges to zero as κ→ ∞.
The suppression of receptor fluctuations for large cou-

pling κ is further confirmed by carrying out simulations
of the stochastic model given by Eqs. (4.11). Even for a
relatively small population (N = 10) it can be seen that
fluctuations in the concentration ri(t) about the equi-
librium state req are negligible for large κ, see Fig. 10.
Note that for simplicity, we take noise throughout the
paper to be white noise. This means that even for suffi-
ciently small noise intensities θ0 and σ0 there is a small
but non-zero probability that a trajectory can become
negative, see Fig. 10(a). A more realistic model would
require some form of multiplicative noise to ensure that
concentrations remain positive. However, this makes the
analysis more difficult, without changing the basic re-
sults.
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FIG. 10. (Color online) Plots of autoinducer and receptor concentrations for the stochastic quorum sensing model consisting
of N = 10 coupled cells. The time evolution of two cells are represented by the green (light) and blue (dark) trajectories,
respectively. (a,b) Solutions for κ = 1. (c,d) Solutions for κ = 8. Other parameter values are k− = k+ = 1, and RT = WT = 1,
α = 0.05 and θ0 = 0.5.

V. DISCUSSION

In this paper we investigated how collective cell be-
havior in a quorum sensing model system affects ultra-
sensitivity and noise amplification in a feedforward signal
transduction pathway. The latter was taken to be a clas-
sical phosphorylation-dephosphorylation cycle, in which
the ratio of kinases to phosphotases within each cell is
controlled by the binding of autoinducers to their cog-
nate receptor. We showed how global convergence of the
quorum sensing network can greatly reduce the level of
fluctuations in the number of kinases within a cell. Al-
though we focused on one specific example of PdPCs,
the results of our analysis should be applicable to other
examples of switch-like biochemical networks.
Within the specific context of V. harveyi quorum sens-

ing, we made a number of simplifications that warrant
a closer look. First, we only considered a single signal-
ing pathway, whereas V. harveyi and V. cholerae have
several parallel pathways that converge to control down-
stream gene regulatory networks. It has been suggested

that this “many-to-one” circuitry allows theses cells to
survey heterogenous populations involving different bac-
terial species, and to program gene expression based on
the make up of the population [30, 32]. Second, we
ignored another potential source of switch-like behav-
ior, involving the action of the small sRNAs Qrr1–Qrr5
[31]. Third, we neglected feedback pathways in which
the downstream gene regulatory network controlled by
the phosphorylation-dephopshorylation of LuxU modi-
fies the rate of synthesis of the autoinducers. A number
of feedback loops have recently been identified in V. har-
veyi and V. cholerae, and it has been suggested that they
contribute to reducing the detrimental effects of sudden
fluctuations in the environment [32].
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