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We perform a theoretical study of the dynamics of the electric field excitations in a microtubule
by taking into consideration the realistic cylindrical geometry, dipole-dipole interactions of the
tubulin-based protein heterodimers, the radial electric field produced by the solvent, and a possible
degeneracy of energy states of individual heterodimers. The consideration is done in the frames of
the classical pseudo-spin model. We derive the system of nonlinear dynamical partial differential
equations of motion for interacting dipoles, and the continuum version of these equations. We obtain
the solutions of these equations in the form of snoidal waves, solitons, kinks, and localized spikes.
Our results will help to a better understanding of the functional properties of microtubules including
the motor protein dynamics and the information transfer processes. Our considerations are based
on classical dynamics. Some speculations on the role of possible quantum effects are also made.
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I. INTRODUCTION

Microtubules (MTs) are cylindrically shaped
cytoskeletal biopolymers. They are found in eu-
karyotic cells and are formed by the polymeriza-
tion of heterodimers built of two globular pro-
teins, alpha and beta tubulin [1]. The MTs can
grow up to 50 µm long (with an average length
of 25 µm). The MTs are highly dynamic. In the
growing phase, alpha and beta tubulins sponta-
neously bind one another to form a functional
subunit that is called a heterodimer. In the
shortening phase, the MT shrinks its length.
A single MT can also oscillate between grow-
ing and shortening phases. The MTs perform
many functions within the cell. In particular,
the MTs support the cytoskeleton, participate
in the intracellular transport, provide the trans-
portation of secretory vesicles, organelles, and
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intracellular substances, are involved in cell di-
vision, and are believed to participate in the
classical and quantum information transfer pro-
cesses.

Because a single MT is built of a set of macro-
scopic dipoles, the static and dynamic electric
fields, generated by these dipoles, are crucial
for understanding the functional properties of
a single MT and the interactions between the
MTs.

In [2], a classical one-dimensional model of
interacting dipoles with local φ2 − φ4 potential
and in the presence of a static electric field is
introduced, for describing the energy-transfer
by kinklike excitations in cell MTs, in terms
of a single variable (elastic degree of freedom).
A similar model was used in [3] to study the
influence of d.c. and a.c. electric fields on
the dynamics of MTs in living cells. In [4–6]
the extension of the model considered in [2, 3]
was proposed in order to elucidate the unidi-
rectional transport of cargo via motor proteins
such as kinesin and dynein, and for describing
the nonlinear dynamics within a MT and soli-
tonic ionic waves along the microtubule axis. In
[7], the physics of the dipole system of a neu-
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ron cytoskeleton MT is discussed, based of the
quantum approach, where the tunneling effects
on individual heterodimers are taken into ac-
count. The possible effects of quantum coher-
ence and entanglement in brain MTs and ef-
ficient energy and information transport were
studied in [8–12], where it was argued that un-
der certain circumstances, in particular in the
case of in vivo MT, quantum coherence may be
maintained up to microseconds before collaps-
ing in a classical state. This should be suffi-
cient for ‘quantum wiring’ of the MT system,
in analogy with recently claimed long-lasting
(femtoseconds) quantum correlation effects in
algae [13]. From a theoretical point of view,
quantum corrections to the classical solitonic
states (obtained as a solution of the dynami-
cal system of equations of MT models, as done
in the present article) have also been considered
in a WKB approximation in [8–10]. The dielec-
tric measurements of individual MTs using the
electroorientation method are described in [14].
The multi-level memory-switching properties of
a single brain MT were studied experimentally
in [15].
In spite of the many models of the MTs in-

troduced and studied in the literature, no con-
sensus is reached on the relations between the
outcomes of these models and the MT function-
ality.
In this paper, we introduce and study the-

oretically a generalized model of a single MT
which takes into account the realistic cylin-
drical geometry of the MT, the dipole-dipole
interactions of the tubulin-based protein het-
erodimers, the radial electric field produced by
the solvent, and a possible degeneracy of the en-
ergy states of the individual heterodimers. Our
consideration is done in the framework of the
classical “pseudo-spin” model, as the length of
the individual dipole of the heterodimer is as-
sumed to be constant.
We derive the system of nonlinear dynamical

partial differential equations of motion for in-
teracting dipoles of the heterodimers, and the
continuum version of these equations. We ob-
tain the partial solutions of these equations in
the form of snoidal waves, solitons, kinks, and
localized spikes, and describe their properties.
We hope that our results will help to better
understand the relations between the electric
excitations and the functional properties of the
MTs such as motor protein dynamics and the
information transfer processes.
The structure of the paper is the following.

In Section II, we describe our model. In Sec-
tion III, we apply our approach to analyze the

dynamics of the system, and present the results
of the numerical simulations for both exact and
approximate solutions. In the Conclusions sec-
tion we summarize our results and formulate
some challenges for future research.

II. DESCRIPTION OF THE MODEL

MTs are realized as hollow cylinders typically
formed by 13 parallel protofilaments (PFs) cov-
ering the wall of MT [4, 16]. The outer diam-
eter of a MT is about 25 nm, and the inner
diameter is about 15 nm. Each PF represents
a tubulin heterodimer with the electric dipole
moment, P. (See Fig. 1.) Due to their inter-

FIG. 1: The structure of the cytoskeleton micro-
tubule. The arrows indicate the orientation of
the permanent dipole moments of the tubulin het-
erodimers with respect to the surface of a micro-
tubule.

action with the complex biological environment
(solvent) the MTs may experience a strong ra-
dial electrostatic field leading to the additional
(radial) polarization of tubulins [17].
The tubulin heterodimer contains approxi-

mately 900 amino acid residues with the num-
ber of atoms about 14000. The total mass of
the heterodimer can be estimated as, (M ≈
1.84 · 10−19g). Each heterodimer can be con-
sidered as effective electric dipole with α and β
tubulin being a positive and a negative sides of
the dipole, respectively [18].
We treat each dipole as a classical pseudo-

spin, Si, with a constant modulus. The po-
tential energy of the system can be written as
follows:

U0 =
∑

〈i,j〉

Jij
(

Si · Sj − 3(Si · eij)(Sj · eij)
)

−B
∑

i

Si · er, (1)
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where eij is a unit vector parallel to the line
connecting the dipoles, Si and Sj . The scalar
product is understood as follows: Si · Sj =
S1
i S

1
j + S2

i S
2
j + S3

i S
3
j .

The coupling constants, Jij , are defined as
follows:

Jij =
1

4πǫǫ0r3ij
, (2)

where ǫ0 is the vacuum permittivity and rij is
the distance between sites i and j. The param-
eter, B, is the amplitude of the effective electric
field in the radial direction, er, produced by the
solvent environment.
Since the MTs may exhibit ferroelectric prop-

erties at room temperature, one can consider
the MT as a ferroelectric system [4, 19]. To in-
clude into consideration the ferroelectric prop-
erties of the MT, we adopt the approach devel-
oped in [20]. In this case, the overall effect of
the spin environment on the effective spin, Si,
is described by the on-site double-well quartic
potential,

V (Si) = P (Si · ez)2 +Q(Si · ez)4. (3)

It is convenient to parameterize the pseudo-
spin Si by the unit vector ni, as: Si = Sni.
Then, the total potential energy of the system
can be written as,

U = S2
∑

〈i,j〉

Jij
(

ni · nj − 3(ni · eij)(nj · eij)
)

+
∑

i

(

PS2(ni · ez)2 +QS4(ni · ez)4 −BSni · er
)

.

(4)

The dynamics of the system is described by
the discrete Euler-Lagrange equations [21]:

dni

dt
=

1

I
Li × ni, (5)

dLi

dt
= ni ×Ei, (6)

where Ei = −∂U/∂ni, and Li is the angular
momentum of the dipole located at the site i, its
moment of inertia being I. Substituting Li =
Ini × ṅi into Eq. (6), we obtain

I
d2ni

dt2
+ Ini

(

dni

dt

)2

= Ei − ni(ni ·Ei). (7)

The equations of motion can be obtained
from the classical action,

S =

∫

Lcdt, (8)

where Lc = T − U +Σiλi(ni · ni − 1).
The kinetic energy of the system is,

T = Σi
L
2
i

2I
= ΣiI

ṅ
2
i

2
, (9)

and the Lagrange multiplier, λi, provides the
constraint, ni · ni = 1, to be satisfied.
The Euler-Lagrange equations, following

from the variation of the action, δS = 0, take
the form,

d

dt

∂Lc

∂ṅi
− ∂Lc

∂ni
= 0. (10)

The computation yields,

I
d2ni

dt2
= Ei + λini. (11)

Multiplying both sides of this equation by ni,
we find

λi = −I

(

dni

dt

)2

− ni ·Ei. (12)

By substituting λi into (11), we obtain Eq. (7).
Using the local spherical coordinates (Θi,Φi)

to define the orientation of the dipole,

ni = (sinΘi cosΦi, sinΘi sinΦi, cosΘi), (13)

one can recast the Euler-Lagrange equations of
motion as follows:

d

dt

∂L

∂Θ̇i

− ∂L

∂Θi
= 0, (14)

d

dt

∂L

∂Φ̇i

− ∂L

∂Φi
= 0, (15)

where L = T −U , and the kinetic energy of the
system is:

T = Σi
I

2
(Θ̇2

i + sin2 Θi Φ̇
2

i ). (16)

It is commonly accepted that coupling con-
stants, Jij , are nonzero only for the nearest-
neighbor dipole moments. The system of MT
dimers can be represented on a triangular lat-
tice, as shown in Fig. 2, so that each spin
has six neighbors. We denote the constants of
interaction between the central dipole in Fig.
2 and nearest neighbors as, J0α, and the dis-
tance between the central spin and its near-
est neighbors as, dα (α = 1, 2, . . . , 6), setting
d01 = d04 = a, d02 = d05 = b, d03 = d06 = c.
The corresponding angles (between the central
dimer and others) are denoted as, θ1, θ2 and
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θ3, so that: e01 · e01 = cos θ1, e01 · e02 = cos θ2,
e01 · e06 = cos θ3.
Parameters of the MT. - The typical values

of parameters known from the literature are:
a = 8nm, b = 5.87 nm, c = 7.02 nm, θ1 = 0,
θ2 = 58.2 o, θ3 = 45.58 o, S = 1714D, where D
indicates the Debye. (See Fig. 2b.) The radius
of the MT can be estimated as, R ≈ 11.2 nm
[7, 19, 20, 22]. The unit cell, shown in Fig. 2,
consists of the central spin surrounded by six
neighbors. Its area is: Σ0 = 3ad = 120 nm2.
To estimate the moment of inertia of a dipole

we use the formula for the moment of inertia of
thick cylinder: I = Ml2/12, where M is the
mass of the dipole, and l is its length. In our
simulations, we take data known from the lit-
erature. Assuming: M ≈ (10−23 ÷ 10−22) g

and l ≈ 2nm [2, 5], we have: I ≈ 3(̇10−38 ÷
10−37)g · cm2. Using these data, we estimate
the parameter J (see Eq.(17)) as follows: J ≈
1.45 · 10−13 erg.

FIG. 2: (Color online) Tubulin neighborhood in the
hexagonal unit cell of the microtubule. The dis-
tance between dimers is d. The heterodimer helix
direction is defined by the height, h. The typical
values of parameters are: a = 8nm, b = 5.87 nm,
c = 7.02 nm, d = 5nm, h = 4.9 nm, θ1 = 0,
θ2 = 58.2 o, θ3 = 45.58 o [7, 19, 20, 22] .

A. Continuum approximation

A key question in the studyng of the MT’s
dynamics is a possibility of use a continuum
approximation. Recently it was shown [23]
that for the nonlinear model, introduced in
[2], the results obtained in the continuum ap-
proximation are in an excellent agreement with
the results of the corresponding discrete model.
These findings show that the MT can be treated
as the continuum system.
The continuum limit of the model, described

by the Lagrangian, L = T − U , is obtained by

allowing the area per a site, Σ0, tend to zero, so
that the total area, NΣ0, is kept fixed. In this
limit, the summation is replaced by the integral
over the MT surface:

∑

〈ij〉 → (1/2)
∫

Σ
d2x.

The variable, ni = n(ri), should be replaced
by a smooth function of the continuum coordi-
nates: n(ri) → n(r).
We find that in the continuum limit the po-

tential energy of the system (4) becomes,

U =
J

Σ0

∫

Σ

√
g dΩ

(

− Σ0

2
gmnGab∂mna∂nn

b

+Gabn
anb + g0(n

3)2 + g1(n
3)4 − g2n

1

)

,

(17)

where Σ0 = 3ad is the area of the unit cell
presented in Fig. 2, J = 2S2

∑3

α=1
J0α, g0 =

PS2/J , g1 = QS4/J and g2 = BS/J .
In (17), gmn, denotes the contravariant com-

ponents of the metric tensor on the surface of
the MT. In the cylindrical coordinates the met-
ric on Σ can be written as,

ds2 = R2dϕ⊗ dϕ+ dz ⊗ dz, (18)

where, R, is the radius of the MT. The local ba-
sis is chosen as follows: e1 = er, e2 = eϕ, and
e3 = ez, so that one has the following decom-
position: n = na

ea. Then, we obtain: g22 = 1,
g33 = R2, g22 = 1, and g33 = 1/R2. In what
follows, we use the abbreviation: ∇na · ∇nb =
gmn∂mna∂nn

b.
The metric in the intrinsic space of pseudo-

spins is given by: Gab = δab−hab (a, b = 1, 2, 3),
where

h22 =
6S2

J

3
∑

α=1

J0α sin2 θα, (19)

h23 =
3S2

J

3
∑

α=1

(−1)αJ0α sin θα cos θα, (20)

h33 =
6S2

J

3
∑

α=1

J0α cos2 θα. (21)

The computation of the constants yields: h22 =
1.55, h23 = 0.11, h33 = 1.45.
Further, it is convenient to introduce the di-

mensionless coordinates, ζ = z/
√
Σ0 and R̃ =

R/
√
Σ0. Now, the total action yielding the

equations of motion can be written as,

Stot = J

∫

dt

∫

Σ

LdΣ + Sλ, (22)

where dΣ = R̃dζdϕ and

Sλ = J

∫

dt

∫

Σ

λ(n · n− 1) dΣ. (23)
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We set: n · n = (n1)2 + (n2)2 + (n3)2.
The Lagrangian of the system is given by,

L =
ρ

2

(

∂n

∂t

)2

+
1

2
Gab∇na · ∇nb − V(n),

(24)

where ρ = I/J and

V(n) = Gabn
anb + g0(n

3)2 + g1(n
3)4 − g2n

1.
(25)

As one can see, in the continuum limit the elec-
tric properties of the MT are described by the
nonlinear anisotropic σ-model [24, 25]. The or-
der parameter, n, is the local polarization unit
vector specified by a point on the sphere, S2.
The equations of motion are obtained from

the variational principle, demanding the total
action to be stationary: δStot = 0. The result
is:

ρ
∂2

n

∂t2
=

δL
δn

+ λn, (26)

where

λ = −ρ

(

∂n

∂t

)2

− n · δL
δn

, (27)

and

δL
δn

=
∂L
∂n

−∇
(

∂L
∂∇n

)

. (28)

To simplify the Lagrangian, we will make the
following approximation (24). Taking into ac-
count that h23, |h33 − h22| ≪ 1, we neglect
by contributions of these terms and keep only
terms with h33. This approximation transforms
(24) into the following Lagrangian,

L =
ρ

2

(

∂n

∂t

)2

+
1

2
(∇n)2

− h

2
(∇n2 · ∇n2 +∇n3 · ∇n3)−W(n), (29)

where h = h33 and

W(n) = h(n1)2 + g0(n
3)2 + g1(n

3)4 − g2n
1.
(30)

Further, we use the local spherical coordi-
nates (Θ,Φ) to define the orientation of the
dipole: n = (sinΘ cosΦ, sinΘ sinΦ, cosΘ).
Then, the Lagrangian of the system can be re-
cast as follows:

L =
ρ

2
((∂tΘ)2 + sin2 Θ(∂tΦ)

2) +
1

2

((

∇Θ
)2

+
(

∇Φ
)2)− h

2
(cosΘ sinΦ∇Θ+ sinΘ cosΦ∇Φ)2

− h

2
sin2 Θ(∇Θ)2 −W(Θ,Φ), (31)

where

W(Θ,Φ) = (g0 − h) cos2 Θ+ g1 cos
4 Θ

− h sin2 Θsin2 Φ− g2 sinΘ cosΦ. (32)

The Euler-Lagrange equations are

d

dt

∂L
∂∂tΘ

− δL
δΘ

= 0, (33)

d

dt

∂L
∂∂tΦ

− δL
δΦ

= 0. (34)

One can rewrite these equations as,

ρ
∂2Θ

∂t2
=

δL
δΘ

, (35)

ρ
∂

∂t

(

sin2 Θ
∂Φ

∂t

)

=
δL
δΦ

. (36)

B. Ground state

The ground state of the MT, yielding the per-
manent dipole moment with Φ = 0, is defined

by the minimum value of the energy,

E(u) = E0 + J

∫

Σ

V(u) dΣ, (37)
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(a) (b)

(c) (d)

FIG. 3: Dimensionless energy density w as a func-
tion of u and parameters σ and κ. (a,b) w vs u and
σ: (a) κ = 0, (b) κ = 1; (c,d) w vs u and κ: (c)
σ = 0, (d) σ = 0.5.

where u = cosΘ,

E0 = −Jg1

∫

Σ

σ2 dΣ, (38)

and

V = g1
(

(σ − u2)2 − κ
√

1− u2
)

. (39)

Here we set σ = (h− g0)/(2g1) and κ = g2/g1.
One can see that there are three critical points:
u1 = 0, and u2,3 defined from the equation:

u6 − (1 + 2σ)u4 + σ(2 + σ)u2 + κ2/16− σ2 = 0.
(40)

The behavior of the dimensionless energy den-
sity of the system, w = V/g1, as a function of
u and parameters σ and κ is presented in Fig.
3.
First, we consider the case when the param-

eter κ = 0. In this case, the critical points of
the Hamiltonian are given by

u1 = 0, (41)

u2,3 = ±
√
σ. (42)

As one can see, if σ < 0, the ground state
of the MT is paraelectric, u1 = 0. It corre-
sponds to the radial orientation of the perma-
nent dipole moments of the tubulin dimers with
respect to the surface of the MT (Fig. 1). For
σ > 0, the homogeneous ground state is a dou-
bly degenerate ferroelectric state: u2,3 = ±√

σ
(see Fig. 3a).

As it follows from the phase diagram pre-
sented in Fig. 4, when κ > 4σ, the ground state
of the MT is paraelectric. It corresponds to the
radial orientation of the permanent dipole mo-
ments of the tubulin dimers with respect to the
surface of the MT. When κ < 4σ, the ground
state of the system is ferroelectric. Note, that
the consideration of the ground state is done
here at zero temperature. The finite tempera-
ture effects are discussed, for example, in [16].
In particular, it is argued in [16], that the criti-
cal temperature of the order-disorder transition
depends on the values of the dipole moment and
on the electric permittivity.

III. NONLINEAR DYNAMICS IN THE

CONTINUUM LIMIT

FIG. 4: The phase diagram.

In order to construct a solution for a nonlin-
ear wave moving along the MT with the con-
stant velocity, we use the traveling wave ansatz.
We assume that, in the cylindrical coordinates,
the field variables are functions of

ξ =

√

2

ηpΣ0

(z + h0ϕ/2π − vt), (43)

where η = h/g1 and p = 1 + (h0/2πR)2, the
velocity of the wave being v. Then, one can
show that the field equations (26) possess the
first integral of motion:

ρ

2

(

∂n

∂t

)2

+
1

2
Gab∇na · ∇nb + V(n) = const.

(44)

For the Lagrangian (29) we obtain,
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FIG. 5: Velocity of the excitation (m/s): M =
10−23 g ( blue (upper) line), M = 10−22 g (blue red
(lower) line), l = 2nm.

ρ

2

(

∂n

∂t

)2

+
1

2
(∇n)2 − h

2
(∇n2 · ∇n2 +∇n3 · ∇n3) +W(n) = const. (45)

In the local spherical coordinates (Θ,Φ), Eq. (45) can be rewritten as,

(u2

0 − cos2 Θ)

(

dΘ

dξ

)2

+ sin2 Θ
(

u2

0 −
1

h
cotΘ− sin2 Φ

)

(

dΦ

dξ

)2

+
1

2
sin(2Θ) sin(2Φ)

dΘ

dξ

dΦ

dξ

− (σ − cos2 Θ)2 + η sin2 Θsin2 Φ + κ sinΘ cosΦ = const, (46)

where u2
0 = 1 − 1/h − ρv2/(hpΣ0). This yield

a simple formula for the nonlinear wave propa-
gation velocity,

v =

√

(σ2
0
− u2

0
)
hpΣ0

ρ
, (47)

where we set σ2
0 = 1− 1/h.

In Fig. 5, the dependence of the velocity of
the wave on the parameter u0 is depicted. We
find that the velocity of the wave is limited:
v ≤ v0, where v0 ≈ 155m/s.

A. Particular solutions: Φ = 0

Employing (46), we will seek a solution of
Eqs. (33) - (34) in the form: Φ = 0 and Θ =
Θ(ξ). One can show that Φ = 0 satisfies Eq.

(34), and for the function, Θ(ξ), we obtain the
nonlinear differential equation,

(u2

0 − cos2 Θ)
d2Θ

dξ2
+

1

2
sin(2Θ)

(

dΘ

dξ

)2

− sin(2Θ)(σ − cos2 Θ) +
κ

2
cosΘ = 0. (48)

The qualitative properties of the system one
can elucidate by applying the standard tech-
nique for studying of the dynamical systems by
means of the phase space [26]. To depict the
phase portrait of the system we use Eq. (46)
written as,

(u2

0 − cos2 Θ)
(dΘ

dξ

)2

− (σ − cos2 Θ)2

+ κ sinΘ = const. (49)
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(a)

(b)

(c)

FIG. 6: Phase portrait of the system (49). The
momentum PΘ is defined as, PΘ = dΘ/dξ. (a)
σ = 0.75, u0 = 0.5; (b) σ = 0.2, u0 = 0.5; (c)
σ = 0.75, u0 = 0. In all cases: κ = 0

In Figs. 6 and 7, the phase portraits of
the system (49) are demonstrated in the plane
(Θ, PΘ), for different parameters, where PΘ =
dΘ/dξ. One can observe the occurrence of the
three elliptic points for σ > u2

0 (Fig. 6a). When
σ < u2

0, two elliptic points disappear.

By substitution u = cosΘ into Eq. (49), one

(a)

(b)

(c)

FIG. 7: Phase portrait of the system (49). The
momentum PΘ is defined as, PΘ = dΘ/dξ. (a)
σ = 0.75, u0 = 0.5; (b) σ = 0, u0 = 0.5, ; (c)
σ = 0.75, u0 = 0. In all cases: κ = 0.5.

can rewrite it as,

u2
0 − u2

(1− u2)

(du

dξ

)2

d− (σ − u2)2

+ κ
√

1− u2 = const. (50)

Denoting the constant of integration as, −ε, one
can rewrite this equation as,

(

du

dξ

)2

+ V (u) = 0, (51)
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where

V (u) = − ((σ − u2)2 − κ
√
1− u2 − ε)(1− u2)

u2
0
− u2

.

(52)

Thus, the dynamics of the dipoles on the sur-
face of the MT can be considered as the motion
of the effective particle of mass m = 2 in the
potential V (u), with the total energy of the sys-
tem being, E = 0. In Fig. 8, the phase portrait
of the system (51) is shown in the plane (Θ, Pu),
where Pu = du/dξ.

(a)

(b)

FIG. 8: Phase portrait of the system (50) in the
plane (u, Pu): (a) σ = u2

0 = 0.25, k = 0.5; (b)
σ = 0.6, k = 0.975. Parameters: u0 = 0.5, κ = 0.

1. Snoidal waves and kinks: κ = 0

Here we assume κ = 0, that implies absence
of the intrinsic radial electric field (g2 = 0).
Choosing the constant of integration in Eq.

(49) as, ε = (σ − u2
0)

2, we obtain,

(

du

dξ

)2

= (2σ − u2

0 − u2)(1 − u2). (53)

Assume u2
0 < 2σ < 1 + u2

0, then the analytical
solution of this equation is given by a snoidal
wave,

u = k sn(ξ − ξ0, k). (54)

Here k =
√

2σ − u2
0
, and sn(z, k) is the Jacobi

elliptic function. In Fig. 9 the sn-solutions for
different choices of the constant k are depicted.
In Fig. 8a, the orbit for k = 0.5 is presented by
the orange dash-dotted curve.

FIG. 9: The sn-solution: k = 0.1 (dotted blue
line), k = 0.5 (dashed orange line), k = 0.975
(dash-dotted black line), k = 0.9999 (red line)

The period of the sn-wave is given by T =
4K, where

K =

∫ π/2

0

dϕ
√

1− k2 sin2 ϕ
, (55)

is the complete elliptic integral of the first kind
[27].
For k2 ≪ 1 and k′2 = 1 − k2 ≪ 1, apply-

ing the Maclaurin Series in k2 and k′2 [27], we
obtain

u = k sin ξ − k3

4
(ξ − sin ξ cos ξ) cos ξ +O(k5),

(56)

u = tanh ξ − k′2

4
(ξ + sinh ξ cosh ξ)sech2ξ +O(k′4).

(57)

(For simplicity, here we set ξ0 = 0.)
In particular, for k = 0, we obtain u = 0.

This solution corresponds to the elliptic point
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located at the center of the phase space in Fig.
8. When k = 1, the sn-waves become the kink

u = tanh(ξ − ξ0), (58)

with the following boundary conditions:
u(±∞) = ±1. (See Fig. 15.) In Fig. 8b, the
corresponding orbit is presented by separatrix
(dashed red line).

(a)

(b)

FIG. 10: Kink. (a) analytical solution, σ = 0.25,
ε = −0.25. (b) numerical solution, σ = 0.625, ε =
0.141. Parameters: u0 = 0.5, κ = 0.

A topological classification of kinks is given
in terms of homotopy group [28]. The topo-
logical charge, π0, of kink is determined by the
magnitude, nz of the polarization vector at the
ends of the MT:

π0 =
1

2
(nz(+∞)− nz(−∞)). (59)

To change the topological charge one needs to
overcome the potential barrier, proportional to
the size of the MT (formally, infinite potential
barrier).

In Fig. 10 the analytical solution (58) is de-
picted. In Fig. 10b, the numerical kink solution
for ε = 0.141 is shown. In Fig. 8b, the corre-
sponding orbit is presented by the blue dashed
green line.

2. Spikes: κ = 0

A spike solution can be obtained as excitation
of the ground state, ug. To estimate the energy
carried by a spike, we approximate it by the
step function. Then, using Eq. (37), we obtain

∆wsp = −Jg1
Σ0

(u2

sp − u2

g)
2, (60)

where usp is the height of the spike. In Fig. 11,
the localized spike solution is presented. In the
phase space in Fig. 8 the corresponding orbit
is indicated by the red curve on the right.

FIG. 11: Spike: ε = 0.25, u0 = 0.5, σ = 0.25,
κ = 0.

In the mean-field approximation, the electric
field in the z-direction of the MT, being in the
ground state, can be obtained by using the rela-
tion: wg = −Sg ·E/Σ0, where wg = −Jg1u

4
g/Σ0

is the energy density of the ground state (see
Eq.(38)).
Let us assume that all dipoles are aligned

along the MT, that implies ug = 1. Then, the
electric field due to permanent dipole reaches
its maximum magnitude given by

Emax

z =
Jg1
S

. (61)

Using this result, one can estimate the electric
field produced by the spike as,

∆Ez = Emax

z (u2

sp − u2

g)
2. (62)

The maximum value of the electric field pro-
duced by spike can be estimated as follows:
∆Ez ≤ ∆Emax

z , where

∆Emax

z = Emax

z (1− u2

g)
2. (63)

Let Θ0 be the angle between the permanent
dipole and axis orthogonal to the surface of the
MT. Then, (63) can be rewritten as

∆Emax

z = Emax

z cos4 Θ0 ≤ Emax

z . (64)
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Thus, the maximum magnitude of the electric
field produced by spike is bounded by Emax

z .
As it is discussed in the literature, in the

ground state the orientation of the dipoles with
respect to the surface of the MT can be de-
fined by Θ0 ≈ 29 o [19]. Substituting these data
into Eq. (64), we obtain the following estima-
tion for the electric field produced by the spike:
∆Emax

z ≈ 0.6Emax
z . To evaluate Emax

z , we use
data available for the electric field inside of the
MT: Ez ∼ 105 ÷ 108 V/m [2]. Then, we ob-
tain the following estimate for the electric field
produced by the spike:

∆Emax

z . 0.6 · (105 ÷ 108) V/m

= (0.06÷ 60) mV/nm. (65)

To estimate the width of the spike, we employ
Eqs. (43) , (61). We obtain,

∆z ≈ ∆ξ

√

hJΣ0

2SEmax
z

. (66)

By substituting ∆ξ = 1, we find that for rather
strong electric field produced by the permanent
dipole, Emax

z . 106V/m, the width of the spike
is, ∆z & 15 nm. The same estimates are valid
for the kinks solutions presented in Fig. 10.

B. Particular solutions: Θ = π/2

1. Chiral solitons

In this section, we study solution related to
the paraelectric ground state. We seek a solu-
tion of Eqs. (33) - (34) in the form: Θ = π/2.
One can show that Θ = π/2 satisfies Eq. (33).
Substituting Θ = π/2 into Eq. (46), we obtain

(

u2

0 − sin2 Φ
)

(

dΦ

dξ

)2

+ η sin2 Φ + κ cosΦ = const, (67)

Introducing a new function, uϕ = sinΦ, one
can recast this equation as,

(duϕ

dξ

)2

+ U(uϕ) = 0, (68)

where

U(uϕ) =

(

ε− ηu2
ϕ − κ

√

1− u2
ϕ

)

(1− u2
ϕ)

u2
ϕ − u2

0

.

(69)

(a)

(b)

FIG. 12: Phase portrait of the system (68) in the
plane (uϕ, Pϕ): (a) η = 0.1, κ = 0.75; (b) η = 0.75,
κ = 0.25. Parameters: u0 = 0.5.

We denote by ε the constant of integration in
Eq. (67).
A chiral solutions correspond a boundary

conditions:

cosΦ| ±∞ =
κ

2η
±
√

κ2

4η2
− ε. (70)

A chirality is a topological charge, being de-
scribed by the relative homotopy group [28],
and defined as follows:

χ =
1

π

∫ ∞

−∞

dz ez · (n×
(

(∂n

∂z

)

)

. (71)

Chiral solitons can produce quantized charge
transport across the MT that is topologically
protected and controllable by the soliton’s chi-
rality.
Employing the spherical coordinates, one can
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FIG. 13: Phase portrait of the system (68) in the
plane (uϕ, Pϕ): η = 0.25, κ = 0, u0 = 0.5.

recast this equation as follows:

χ =
1

π

∫ ∞

−∞

dz sin2 Θ
∂Φ

∂z
. (72)

Taking into account that in our case Θ = π/2,
we obtain

χ =
1

π
(Φ(+∞)− Φ(−∞)). (73)

Chiral solitons in the phase space are presented
by orbits located in the interval (−u0, u0). (See
Figs. 12 and 13.)
Suppose that κ = 0, then taking the constant

of integration as, ε = ηu2
0, one can rewrite (67)

as:

(duϕ

dξ

)2

= η(1 − u2

ϕ). (74)

The analytical solution of this equation is given
by

uϕ = sin(
√
η(ξ − ξ0)). (75)

The corresponding orbit is presented in Fig. 13
by separatrix (red dashed curve).

C. Two-dimensional representation of

solutions

The solutions obtained in the previous sec-
tions have the form: Θ = Θ(z + νϕ − vt) and
Φ = Φ(z + νϕ − vt). Thus, they describe the
two-dimensional nonlinear waves propagated
on the surface of the MT, along the z-direction.
In Fig. 14a,b, the static helicoidal sn-solution

is depicted. In Fig. 14c, the helicoidal sn-wave

is presented. In Fig. 15, the solution, describ-
ing kink moving in the z-direction, is depicted.
All parameters are given in the corresponding
figure captions.

(u2

0 − cos2 Θ)
(dΘ

dξ

)2

− (σ − cos2 Θ)2

+ κ sinΘ = const. (76)

(a)

(b)

(c)

FIG. 14: Sn-solutions. (a) u vs z (v = ν = 0);
(b) Density plot of the helicoidal static snoidal so-
lution v = 0. Density plot of the propagating
sn-wave along the MT (ϕ = conts). Parameters:
v = 0.1m/s, ν = 100 nm, C = 0.5, k = 0.25.

IV. DISCUSSION AND CONCLUSION

In this paper, we introduced and studied the-
oretically a generalized pseudo-spin model for
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FIG. 15: Propagating kink excitation. Parameters:
v = 0.1m/s, ν = 100 nm, C = 0.5, k = 0.25.

describing the nonlinear static and dynamic
solutions in the tubulin-protein microtubule.
Starting from a discrete model of interacting
dipoles, we reduce our consideration to the con-
tinuum approximation, which results in nonlin-
ear partial differential equations for the pseudo-
spin. Note, that these equations are different
from the well-known Bloch equations for the
average spin.

The partial solutions of these equations in-
clude snoidal waves, solitons, kinks, and local-
ized spikes. These solutions have specific struc-
tures, and they can be useful for a better un-
derstanding of many effects associated with the
functional properties of microtubules. In order
to measure the electric properties of individual
microtubules, mentioned in this paper, differ-
ent experimental methods are recently avail-
able. (See, for example, [14, 15], and refer-
ences therein.) In particular, both the soliton
and spike solutions could be important for in-
formation and signal transduction, such as the
memory-switching properties of a single brain
microtubule. The relevant experimental meth-
ods can be found in [15]. Another application of
the solutions obtained in this paper, is the mo-
tor protein transport on a single microtubule
[2, 3]. In this case, the electric field generated
by the tubulin dimers can play a significant role
in the directed motor protein dynamics. So,
the experimental verification of the results ob-
tained in this paper will represent a significant
interest.

Before concluding, we would like to make
some remarks on the comparison of our solu-

tions with previously studied solitons in MT.
From a mathematical point of view such soli-
tons have also appeared in simplified confor-
mal chain models of MTs considered in [8–10],
where however the relevant degree of freedom
was the projection of the displacement vector of
a dimer along the z-axis of the MT, in the con-
text of simple ferroelectric-ferrodistortive lat-
tice models of MTs [2], upon taking the contin-
uum limit. In these models interactions among
the spin chains is also modeled by a double-well
potential of the displacement vector in simplest
cases, although more general models, leading
to more complicated solitonic states have been
proposed in [8–10]. The current model, using
the pseudo spin approach, appears to take bet-
ter account of realistic geometrical and physio-
logical features than the above conformal spin
chain models.
The classical solitonic solutions we have

found can be modified by quantum corrections,
as in the models considered in [8–12]. There are
standard WKB techniques that provide such
modifications, which may turn out to be physi-
cally important in MT, should quantum effects
play a role. In this sense, classical solitonic so-
lutions may be viewed as macroscopic coher-
ent states of a quantum spin system. For such
states to exist one needs sufficient isolation of
the MT dimer system from external entangle-
ment. We have argued in [8–12] that such an
isolation is possible as a result of string dipole-
dipole interactions between the ordered water
molecules in the interior of the MJT cavities
and the neighboring dimer walls. In in vivo sit-
uations such strong interactions may overcome
thermal losses and provide the necessary envi-
ronmental isolation, as proposed to happen in
the cavity model of MT [8–10], in which a thin
(a few Angstrom think) cavity layer between
the MT interior and the dimer wall acts like an
isolated cavity, leading to relatively long deco-
herence time (up to microseconds), for moder-
ately (micron long) MT.
The role of ordered water, and other details

of the structure of the MT have been ignored
in our treatment above. It would be interesting
to incorporate them in future studies of these
systems. It may well be that once this is
done, we can discover more realistic solitonic
structures of helical shape that are responsible
for information and signal transduction in
a dissipation-free way. Moreover, if such
quantum effects are at play, there may be
long distance correlations between parts of
the MT system (‘quantum wiring’) in analogy
with such claimed long lasting (femtoseconds)
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effects in algae [13], as mentioned previously.
Ferroelectricity might be important for sus-
taining such effects [8–12].
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[19] J. A. Tuszyński, J. A. Brown, E. Crawford, E.
J. Carpenter, M. L. A. Nip, J. M. Dixon and
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Phys. 36, 53 (2010).
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