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In this paper, we study the dynamics of epidemic processes taking place in adaptive networks
of arbitrary topology. We focus our study on the adaptive susceptible-infected-susceptible (ASIS)
model, where healthy individuals are allowed to temporarily cut edges connecting them to infected
nodes in order to prevent the spread of the infection. In this paper, we derive a closed-form ex-
pression for a lower bound on the epidemic threshold of the ASIS model in arbitrary networks with
heterogeneous node and edge dynamics. For networks with homogeneous node and edge dynamics,
we show that the resulting lower bound is proportional to the epidemic threshold of the standard
SIS model over static networks, with a proportionality constant that depends on the adaptation
rates. Furthermore, based on our results, we propose an efficient algorithm to optimally tune the
adaptation rates in order to eradicate epidemic outbreaks in arbitrary networks. We confirm the
tightness of the proposed lower bounds with several numerical simulations and compare our optimal
adaptation rates with popular centrality measures.

I. INTRODUCTION

The analysis of dynamic processes taking place in com-
plex networks is a major research area with a wide range
of applications in social, biological, and technological sys-
tems [1–3]. The spread of information in online social
networks, the evolution of an epidemic outbreak in hu-
man contact networks, and the dynamics of cascading
failures in the electrical grid are relevant examples of
these processes. While major advances have been made
in this field, most modeling and analysis techniques are
specifically tailored to study dynamic processes taking
place in static networks. However, empirical observations
in social [4–6], biological [7–9], and financial networks [10]
illustrate how real-world networks are constantly evolv-
ing over time [11]. Unfortunately, the effects of temporal
structural variations in the dynamics of networked sys-
tems remain poorly understood.

In the context of temporal networks, we are specially
interested in the interplay between the dynamics on net-
works (i.e., the dynamics of processes taking place in the
network) and the dynamics of networks (i.e., the tem-
poral evolution of the network structure). Although the
dynamics on and of networks are usually studied sepa-
rately, there are many cases in which the evolution of
the network structure is heavily influenced by the dy-
namics of processes taking place in the network. One of
such cases is found in the context of epidemiology, since
healthy individuals tend to avoid contact with infected
individuals in order to protect themselves against the
disease—a phenomenon called social distancing [12, 13].
As a consequence of social distancing, the structure of the
network adapts to the dynamics of the epidemics taking
place in the network. Similar adaptation mechanisms
have been studied in the context of power networks [14],
biological and neural networks [15, 16] and on-line social
networks [17].

∗ ogura@seas.upenn.edu
† preciado@seas.upenn.edu

Despite the relevance of network adaptation mecha-
nisms, their effects on the network dynamics are not well
understood. In this research direction, we find the sem-
inal work by Gross et al. in [18], where a simple adap-
tive rewiring mechanism was proposed in the context of
epidemic models. In this model, a susceptible node can
cut edges connecting him to infected neighbors and form
new links to any randomly selected susceptible nodes—
without structural constraint in the formation of new
links. Despite its simplicity, this adaptation mechanism
induces a complex bifurcation diagram including healthy,
oscillatory, bistable, and endemic epidemic states [18].
Several extensions of this work can be found in the lit-
erature [19–25], where the authors assume homogeneous
infection and recovery rates in the network. Another
model that is specially relevant to our work is the adap-
tive susceptible-infected-susceptible (ASIS) model pro-
posed in [26]. In this model, edges in a given contact
network can be temporarily removed in order to prevent
the spread of the epidemic. An interesting feature of the
ASIS model is that, in contrast with Gross’ model, it
is able to account for arbitrary contact patterns, since
links are constrained to be part of a given contact graph.
Despite its modeling flexibility, analytical results for the
ASIS model [26, 27] are based on the assumption of ho-
mogeneous contact patterns (i.e., the contact graph is
complete), as well as homogeneous node and edge dy-
namics (i.e., nodes present the same infection and recov-
ery rates, and edges share the same adaptation rates).

As a consequence of the lack of tools to analyze net-
work adaptation mechanisms, there is also an absence
of effective methodologies for actively utilizing adapta-
tion mechanisms for containing spreading processes. Al-
though we find in the literature a few attempts in this
direction, most of them rely on extensive numerical simu-
lations [28], on assuming a homogeneous contact patterns
[29], or a homogeneous node and edge dynamics [30]. In
contrast, while controlling epidemic processes over static
networks, we find a plethora of tools based on game the-
ory [31, 32] or convex optimization [33, 34].

In this paper, we study adaptation mechanisms over
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arbitrary contact networks. In particular, we derive an
explicit expression for a lower bound on the epidemic
threshold of the ASIS model for arbitrary networks, as
well as heterogeneous node and edge dynamics. In the
case of homogeneous node and edge dynamics, we show
that the lower bound is proportional to the epidemic
threshold of the standard SIS model over a static network
[35]. Furthermore, based on our results, we propose an
efficient algorithm for optimally tuning the adaptation
rates of an arbitrary network in order to eradicate an
epidemic outbreak in the ASIS model. We confirm the
tightness of the proposed lower bonds with several nu-
merical simulations and compare our optimal adaptation
rates with popular centrality measures.

II. HETEROGENEOUS ASIS MODEL

In this section, we describe the adaptive susceptible-
infected-susceptible (ASIS) model over arbitrary net-
works with heterogeneous node and edge dynamics (het-
erogeneous ASIS model for short). We start our ex-
position by considering a spreading process over a
time-varying contact graph G(t) = (V , E(t)), where
V = {1, . . . , n} is the set of nodes and E(t) is the time-
varying set of edges. For any t ≥ 0, A(t) = [aij(t)]i,j
corresponds to the adjacency matrix of G(t), and
the neighborhood of node i at time t is defined as
Ni(t) = {j : {i, j} ∈ E(t)}. In the standard SIS epidemic
model, the state of node i at time t is described by a
Bernoulli random variable xi(t) ∈ {0, 1}, where node i
is said to be susceptible if xi(t) = 0, and infected if
xi(t) = 1. When the contact graph evolves over time,
the evolution of xi is described by a Markov process with
the following transition probabilities:

P (xi(t+ h) = 1 | xi(t) = 0) = βi
∑

k∈Ni(t)

xk(t)h+ o(h),

P (xi(t+ h) = 0 | xi(t) = 1) = δih+ o(h), (1)

where the parameters βi > 0 and δi > 0 are called the
infection and recovery rates of node i.

In the heterogeneous ASIS model, the epidemics takes
place over a time-varying network that we model as a
continuous-time stochastic graph process G = {G(t)}t≥0,
described below. Let G(0) = (V , E(0)) be an
initial connected contact graph with adjacency ma-
trix A(0) = [aij(0)]i,j . We assume that G(0) is strongly
connected. Edges in the initial graph G(0) appear and
disappear over time according to the following Markov
processes:

P (aij(t+ h) = 0 | aij(t) = 1) =

φijxi(t)h+ φjixj(t)h+ o(h),
(2)

P (aij(t+ h) = 1 | aij(t) = 0) = aij(0)ψijh+ o(h), (3)

where the parameters φij > 0 and ψij = ψji > 0 are
called the cutting and reconnecting rates. Notice that
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Figure 1: Adaptation mechanisms in the ASIS model.

disappear over time according to the following Markov
processes:

P (aij(t+ h) = 0 | aij(t) = 1) =

φijxi(t)h+ φjixj(t)h+ o(h),
(2)

P (aij(t+ h) = 1 | aij(t) = 0) = aij(0)ψijh+ o(h), (3)

where the parameters φij > 0 and ψij = ψji > 0 are
called the cutting and reconnecting rates. Notice that
the transition rate in (2) depends on xi and xj , induc-
ing an adaptation mechanism of the network structure
to the state of the epidemics. The transition probability
in (2) can be interpreted as a protection mechanism in
which edge {i, j} is stochastically removed from the net-
work if either node i or j is infected. More specifically,
because of the first summand (respectively, the second
summand) in (2), whenever node i (respectively, node j)
is infected, edge {i, j} is removed from the network ac-
cording to a Poisson process with rate φij (respectively,
rate φji). On the other hand, the transition probability
in (3) describes a mechanism for which a ‘cut’ edge {i, j}
is ‘reconnected’ into the network according to a Poisson
process with rate ψij (see Figure 1). Notice that we in-
clude the term aij(0) in (3) to guarantee that only edges
present in the initial contact graph G(0) can be added
later on by the reconnecting process. In other words, we
constrain the set of edges in the adaptive network to be
a part of the arbitrary contact graph G(0).

III. EPIDEMIC THRESHOLDS

In this section, we derive a lower bound on the epi-
demic threshold for the heterogeneous ASIS model. For
γ > 0, let Nγ denote a Poisson counter with rate γ [36].
In what follows, we assume all Poisson counters to be
stochastically independent. Then, from the two equa-
tions in (1), the evolution of the nodal states can be
described by the following set of stochastic differential
equations

dxi = −xi dNδi + (1− xi)
∑

k∈Ni(0)

aikxk dNβi , (4)

for all i ∈ V . Similarly, from (2) and (3), the evolu-
tion of the edges can be described by the following set of
stochastic differential equations:

daij = −aij(xi dNφij
+ xj dNφji

) + (1− aij) dNψij
, (5)
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∑
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, (4)

for all i ∈ V . Similarly, from (2) and (3), the evolu-
tion of the edges can be described by the following set of
stochastic differential equations:

daij = −aij(xi dNφij + xj dNφji) + (1− aij) dNψij , (5)

for all {i, j} ∈ E(0).
By (4), the expectation E[xi] obeys the differential

equation

d

dt
E[xi] = −δiE[xi] + βi

∑

k∈Ni(0)

E[(1− xi)aikxk].
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Let pi(t) = E[xi(t)] and qij(t) = E[aij(t)xi(t)]. Then, it
follows that

dpi
dt

= −δipi + βi
∑

k∈Ni(0)

qki − fi, for i = 1, . . . , n, (6)

where

fi(t) = βi
∑

k∈Ni(0)

E[xi(t)xk(t)aik(t)]

contains positive higher-order terms. In what follows,
we derive a set of differential equations to describe the
evolution of qij . From (4) and (5), we obtain the following
equation using Itô rule for jump processes (see, e.g., [37])

d(aijxi) =− aijxi dNφij
− aijxixj dNφji

+ (1− aij)xi dNψij
− aijxi dNδi

+ aij(1− xi)
∑

k∈Ni(0)

aikxk dNβi
.

Therefore,

dqij
dt

=− φijpij + ψij(pi − qij)

− δiqij + βi
∑

k∈Ni(0)

qki − gij , (7)

for all {i, j} ∈ E(0), where

gij(t) =φjiE[xi(t)xj(t)aij(t)]

+ βi
∑

k∈Ni(0)

E
[
xi(t)xk(t)aik(t)

+ (1− aij(t))aik(t)xk(t)
]
,

which contains positive higher-order terms. The differ-
ential equations (6) and (7) describe the joint evolution
of the spreading process and the network structure.

For further analysis, it is convenient to express the
differential equations (6) and (7) using vectors and ma-
trices. For this purpose, let us introduce the follow-
ing notation. Let Ir and 1s be, respectively, the r × r
identity matrix and the s-dimensional column vector of
all ones. Given two matrices M1 and M2, their Kro-
necker product [38] is denoted by M1 ⊗M2. Given a se-
quence of matrices A1, . . . , An, their direct sum, denoted
by
⊕n

i=1Ai, is defined as the block diagonal matrix hav-
ing A1, . . . , An as its block diagonals [38]. If A1, . . . , An
have the same number of columns, then the matrix ob-
tained by stacking A1, . . . , An in vertical (A1 on top) is
denoted by col1≤i≤nAi = col(A1, . . . , An). Based on this
notation, we define the vector-variable p = col1≤i≤n pi,
which contains the infection probabilities of all the nodes
in the graph. Similarly, let qi = colj∈Ni(0) qij and de-
fine the column vector q = col1≤i≤n qi. Define Ti as the
unique row-vector satisfying

Tiq =
∑

k∈Ni(0)

qki. (8)

Note that the length of the row vector Ti and the column
vector q equals 2m, where m is the number of the edges
in the initial graph G(0).

Using this notation, we define the following matrices:

B1 =



β1T1

...
βnTn


 , B2 =



β11d1 ⊗ T1

...
βn1dn ⊗ Tn


 ,

D1 =

n⊕

i=1

δi, D2 =

n⊕

i=1

(δiIdi),

where di denotes the degree of node i in the initial
graph G(0). Furthermore, we also define the following
matrices

Φ =

n⊕

i=1

⊕

j∈Ni(0)

φij ,

Ψ1 =

n⊕

i=1

(
col

j∈Ni(0)
ψij

)
, Ψ2 =

n⊕

i=1

⊕

j∈Ni(0)

ψij .

Stacking the set of n differential equations in (6) into a
single vector equation, and ignoring the negative higher-
order term −fi, we obtain the following entry-wise vector
inequality for the probabilities of infection:

dp

dt
≤ −D1p+B1q. (9)

Also, stacking the set of differential equations in (7)
with respect to j ∈ Ni(0), and ignoring the negative
term −gij , we obtain the following entry-wise vector in-
equality:

dqi
dt
≤ col
j∈Ni(0)

(ψijpi)− (φij + δi)qi−ψjqi + βi(1di ⊗ Ti)q,

where ψi =
⊕

j∈Ni(0)
ψij . We can further stack the above

inequalities with respect to the index i to obtain the fol-
lowing entry-wise vector inequality:

dq

dt
≤ Ψ1p+ (B2 −D2 − Φ−Ψ2)q.

Combining this inequality and (9), we obtain

d

dt

[
p
q

]
≤M

[
p
q

]
, (10)

where M is an irreducible matrix (see Appendix A for
the proof of irreducibility) defined as

M =

[
−D1 B1

Ψ1 B2 −D2 − Φ−Ψ2

]
. (11)

Therefore, the evolution of the joint vector vari-
able col(p, q) is upper-bounded by the linear dynamics
given by the matrix M . Moreover, the upper bound is
tight around the origin, since both fi and gij consist of
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higher-order terms. From (11), we conclude that the epi-
demics dies out exponentially fast in the heterogeneous
ASIS model if

λmax(M) < 0, (12)

where λmax(M) is defined as the maximum among the
real parts of the eigenvalues of M . Furthermore, since M
is a Metzler matrix (i.e., has nonnegative off-diagonals)
and irreducible, there is a real eigenvalue of M equal
to λmax(M) [38].

In the homogeneous case, where all the nodes share
the same infection rate β > 0 and recovery rate δ > 0,
and all the edges share the same cutting rate φ > 0 and
reconnecting rate ψ > 0, the condition (12) reduces to
the following inequality:

β

δ
<

1 + ω

ρ
, (13)

where ρ is the spectral radius of the initial graph G(0)
and

ω =
φ

δ + ψ
,

which we call the effective cutting rate. The proof of
the extinction condition (13) is given in Appendix B.
We remark that, in the special case when the network
does not adapt to the prevalence of infection, i.e., when
φ = 0, we have that ω = 0 and, therefore, the condition
in (13) is identical to the extinction condition β/δ < 1/ρ
corresponding to the homogeneous networked SIS model
over a static network [35].

It is worth comparing the condition in (13) with the
epidemic threshold τc given in [26] for the case in which
G(0) is the complete graph:

τc =
ω1 − 1

n(h(ω1; ξ/δ)− 2 + n−1)
, ω1 =

2ζ

ξ
, (14)

where ξ is the link-creating rate, ζ is the link-breaking
rate, and h is a positive and “slowly varying” function
depending on the metastable long-time average of the
number of infected nodes (for details, see [26]). We first
notice that our lower bound in (13) can be checked di-
rectly from the parameters of the model, namely, the
adjacency matrix of the initial graph G(0) and the rel-
evant rates of the model. This is in contrast with the
threshold in (14), since it depends on the metastable av-
erage of the number of infected nodes and, thus, can only
be computed via numerical simulations. We also remark
that the lower bound on the epidemic threshold in (13)
and the epidemic threshold in (14) both exhibit affine de-
pendence on the effective link-breaking rates ω and ω1,
respectively. Finally, we see that the recovery rate δ ap-
pears in different places in the two conditions, namely, in-
side the expression of ω in (13) and inside the function h
in (14). However, the consequences of this difference are
not obvious, since h is defined via the metastable state
and, therefore, does not allow an analytical investigation.

We now check the tightness of the lower bound in (13)
with numerical simulations. To find the metastable num-
ber of infected nodes, we compute the long-time average
of the number of infected nodes, defined as

y(t) =
1

t

∫ t

0

n∑

i=1

xi(τ) dτ (15)

(for a sufficiently large t). In practice, the epidemics
can die out during the simulation due to random fluc-
tuations. To prevent this from happening, we use the
procedure in [39], where randomly chosen nodes are im-
mediately reinfected after the infection process dies (i.e.,
when all the variables x1(t), . . . , xn(t) become zero). To
make sure that the process has reached the metastable
state, we use the method in [39], where two independent
simulations are simultaneously run on the same network.
One simulation starts with a 10% of randomly chosen in-
fected nodes, whereas the second simulation starts with
all the nodes infected. For each simulation, we com-
pute the long-time average of infected nodes using (15),
which we denote by y1(t) and y2(t), respectively. Simi-
larly, we compute the long-time average of the number
of edges present in the networks using the expression

z(t) = t−1
∫ t
0

∑
i<j aij(τ) dτ , for each one of the two sim-

ulations, which we denote by z1(t) and z2(t), respectively.
Following the procedure in [39], the simulation is stopped
when the following condition is satisfied

|y1(t)− y2(t)|
y1(t) + y2(t)

+
|z1(t)− z2(t)|
z1(t) + z2(t)

< 10−4.

Once the simulation is stopped, the metastable number
of infected nodes is determined by

y∗ = y(t)− 1,

where the subtraction of one compensates the effect of
the re-infection procedure used in our simulations.

Let the initial graph G(0) be realizations of the fol-
lowing random graph models with n = 40 nodes: 1 ) an
Erdős-Rényi graph with edge probability p = 0.1, 2 ) an
Erdős-Rényi graph with edge probability p = 0.2, and
3 ) a Barabàsi-Albert random graph with average degree
3.65. We fix the recovery rate to δ = 1 for all nodes in the
graph, for the purpose of illustration. For three different
values of the reconnecting rate, ψ ∈ {1/2, 1, 2}, we show
in Table I the contour plots of the metastable number y∗

of infected nodes as we vary the values of the infection
rate β and the cutting rate φ. We see how the analytical
lower bounds (represented as dashed straight lines in the
figures in Table I) are in good accordance with the numer-
ical contour corresponding y∗ = 1 (orange thick curves),
in particular for the Erdős-Rényi graph with edge prob-
ability p = 0.1. For the specific case of ψ = 1, Figure 2
shows the values of y∗ when φ = 1 (blue line), 2 (orange
dashed line), and 3 (green dotted line), and β varies from
0 to 2. The vertical lines in the figure show the theoret-
ical epidemic threshold values of β predicted from the



5

Table I: y∗ versus β and φ, with δ = 1. The dashed straight lines show the analytically derived lower bound
(1 + ω)/ρ = β on the epidemic threshold. The contour plots are obtained by spline-interpolations of the discrete

data obtained from the simulations.
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Rényi
graph

(p = 0.1)

β
0.18 0.24 0.3

φ

0.5

1

1.5

2

2.5

y
∗
= 0.5

y
∗
= 1

y
∗
= 1.5

y
∗
= 3

β
0.18 0.24 0.3

φ

0.5

1

1.5

2

2.5

y
∗
= 0.5

y
∗
= 1

y
∗
= 1.5

y
∗
= 3

β
0.18 0.24 0.3

φ

0.5

1

1.5

2

2.5

y
∗
= 0.5

y
∗
= 1

y
∗
= 3

y
∗
= 1.5

2) Erdős-
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lower bound (13). We confirm that these thresholds are
in good accordance with the numerical thresholds, which
corresponds to the values for which the curves cross the
horizontal line y∗ = 1.

IV. COST-OPTIMAL ADAPTATION FOR
EPIDEMIC ERADICATION

Based on our theoretical results in the last section, in
this section we study the problem of tuning the rates of
the heterogeneous ASIS model in order to eradicate an
epidemic outbreak. Specifically, we consider the situation
where we can tune the values of the infection, recovery,
and cutting rates in the network (for technical reasons,
we cannot tune the reconnecting rates in our framework,
as we discuss at the end of Appendix C). In this setup,
we assume that there is a cost associated with tuning
the values of these rates. These costs are described using
the following collection of cost functions. The first cost
function f(β) accounts for the cost of tuning the infection

rates in the network to the values in the vector β = (βi)i.
In other words, if we want to have a network where the
infection rates are those in the vector β, we need to pay
f(β) monetary units. Similarly, the functions g(δ) and
h(φ) account for the cost of tuning the recovery and the
cutting rates to the vectors δ = (δi)i and φ = (φij)i,j ,
respectively. Using these cost functions, our objective
is to find the cost-optimal investment profile for tuning
these rates in order to eradicate the disease at a desired
exponential decay rate. From our theoretical analysis,
this exponential decay rate is given by λmax(M) in (12).
Hence, the optimal tuning problem can be stated as fol-
lows:

Problem 1 (Cost-optimal eradication). Given a desired
exponential decay rate λ̄ > 0, and positive numbers

¯
β,

β̄,
¯
δ, δ̄,

¯
φ, and φ̄, find the set of rates (βi)i, (δi)i, and

(φij)i,j satisfying the following feasibility bounds

¯
β ≤ βi ≤ β̄,

¯
δ ≤ δi ≤ δ̄,

¯
φ ≤ φij ≤ φ̄, (16)

such that the infection probabilities pi in the heteroge-
neous ASIS model decay to zero exponentially fast at a



6

β
0.15 0.2 0.25 0.3 0.35 0.4 0.45

y
∗

0

1

2

3

0 1 2
0

10

20

30

φ = 2

φ = 3

φ = 1

1)

β
0.05 0.1 0.15 0.2 0.25 0.3

y
∗

0

1

2

3

0 1
0

10

20

30
φ = 1

φ = 3

φ = 2

2)

β
0.15 0.2 0.25 0.3 0.35 0.4 0.45

y
∗

0

1

2

3

0 1 2
0

10

20

30

φ = 2

φ = 1

φ = 3

3)

Figure 2: Metastable number of infected nodes versus β for φ = 1, 2, 3 with δ = ψ = 1. 1) Erdős-Rényi graph
(p = 0.1), 2) Erdős-Rényi graph (p = 0.2), and 3) Barabàsi-Albert model.

rate λ̄, while the total tuning cost

C = f(β) + g(δ) + h(ψ)

is minimized.

In what follows, we show how this problem can be cast
into a type of optimization problems called geometric
programs [40], which allows us to find the cost-optimal
rates in polynomial time. The techniques herein pre-
sented extend those in [34, 41], where the authors pro-
posed the use of convex programming to find the cost-
optimal allocation of resources to eradicate an epidemic
outbreak in arbitrary static networks. The techniques
presented below work for a wide family of cost functions,
called posynomial functions (see [40] for more details).
For simplicity in our exposition, we illustrate the idea
behind our approach with these particular cost functions:

f(β) = c1 + c2

n∑

i=1

1

βpii
,

g(δ) = c3 + c4

n∑

i=1

1

(qi − δi)ri
,

h(φ) = c5 + c6
∑

{i,j}∈G(0)

1

(sij − φij)uij
,

where c1,. . . , c6 are a set of parameters that are chosen
to normalize the cost functions to satisfy the following
equalities:

f(β̄, . . . , β̄) = 0, f(
¯
β, . . . ,

¯
β) = 1,

g(δ̄, . . . , δ̄) = 1, g(
¯
δ, . . . ,

¯
δ) = 0,

h(φ̄, . . . , φ̄) = 1, h(
¯
φ, . . . ,

¯
φ) = 0,

and the constants pi, qi, ri, sij , and uij are positive real
parameters that can be used to modify the shape of the
cost functions. The parameters in f , the function repre-
senting the cost of tuning the infection rates, are chosen
to make the function decreasing with respect to each βi.
In other words, the higher the tuning investment, the
smaller the resulting infection rate (as we should expect
in practical situations). Following a similar reasoning,
the functions g and φ are set to be increasing.

Once the cost functions are selected, we must solve
the problem of finding the optimal tuning investment to
achieve a desired exponential decay rate in the probabili-
ties of infection. From the inequality in (10), the infection
probabilities p1, . . . , pn decay exponentially at a rate (at
least) λ̄ if

λmax(M) ≤ −λ̄. (17)

Since M is an irreducible and Metzler matrix, we can
use Perron-Frobenius theory [38] to prove that (17) is
satisfied if there exists an entry-wise positive vector v
satisfying the following entry-wise vector inequality (see
[34] for more details):

Mv < −λ̄v. (18)

Therefore, Problem 1 can be reduced to the following
equivalent optimization problem:

minimize
β, δ, φ, v

f(β) + g(δ) + h(φ)

subject to (16), (18), and v > 0.
(19)

As we show in Appendix C, we can equivalently trans-
form this optimization problem into a geometric pro-
gram [40], which can be efficiently solved using standard
optimization software. The computational complexity of
solving the resulting geometric program is O((n+m)7/2),
where n is the number of nodes and m is the number of
edges in the initial network G(0).

In the rest of this section, we compute the optimal
tuning profiles for three different graphs and compare
our results with several network centralities. In our sim-
ulations, we consider the following three graphs with
n = 247 nodes: 1 ) an Erdős-Rényi graph with 916 edges,
2 ) a Barabàsi-Albert random graph with 966 edges, and
3 ) a social subgraph (obtained from Facebook) with 947
edges. For simplicity in our simulations, we assume that
all nodes share the same recovery rate δ = 0.1 and in-
fection rate β = δ/(1.1ρ), where ρ denotes the spectral
radius of each initial graph. Since δ/β = 1.1 ρ > ρ, the
extinction condition (13) indicates that the infection pro-
cess does not necessarily die out without adaptation, i.e.,
when φij = 0. The rest of parameters in our simula-
tions are set as follows: we let

¯
φ = 0, φ̄ = 4β, and
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Table II: Cost-optimal cutting rates φij
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ψij = β. Also, the parameters in the cost functions are
pi = qi = ri = uij = 1 and sij = 2φ̄. The desired
exponential decay rate is chosen to be λ̄ = 0.005.

Using this set of parameters, we solve the optimiza-
tion problem (19) following the procedure described in
Appendix C. Our numerical results are illustrated in var-
ious figures included in Table II. Each figure is a scatter
plot where each point corresponds to a particular edge
{i, j} ∈ E(0); the ordinate of each point corresponding to
its optimal cutting rate φij , and the abscissa of each point
corresponds to a particular edge-centrality measure. In
these figures, we use three different edge-centrality mea-
sures: a) the product of the degrees of nodes i and j (left
column), b) the product of the eigenvector-centralities of
nodes i and j (center column), and c) the betweenness
centralities of edge {i, j} (right column).

In our numerical results, we observe how both degree-
based and eigenvector-based edge-centralities are good
measures for determining the amount of investment in
tuning cutting rates. In contrast, betweenness centrality
does not show a significant dependency on the optimal

cutting rates. In particular, for the synthetic networks in
rows 1) and 2) in Table II, we observe an almost piece-
wise affine relationship with the centrality measures in
columns a) and b). In particular, in these subplots we
observe how edges of low centrality require no invest-
ment, while for higher-centrality edges, the tuning in-
vestment tends to increase affinely as the centrality of
the edge increases – as expected. For the real social net-
work in row c), the relationship between investment and
centralities is still strong – although not as clear as in
synthetic networks. In the scatter plot corresponding
to the relationship between the optimal investment and
the eigenvector-based centrality in the real social network
(lower center figure in Table II), we observe a collection of
several stratified parallel lines. We conjecture that each
line corresponds to a different community inside the so-
cial network; in other words, the relationship between
centrality and optimal investment is almost affine inside
each community.
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V. CONCLUSION

We have studied an adaptive susceptible-infected-
susceptible (ASIS) model with heterogeneous node and
edge dynamics and arbitrary network topologies. We
have derived an explicit expression for a lower bound
on the epidemic threshold of this model in terms of the
maximum real eigenvalue of a matrix that depends ex-
plicitly on the network topology and the parameters of
the model. For networks with homogeneous node and

edge dynamics, the lower bound turns out to be a con-
stant multiple of the epidemic threshold in the standard
SIS model over static networks (in particular, the inverse
of the spectral radius). Furthermore, based on our re-
sults, we have proposed an optimization framework to
find the cost-optimal adaptation rates in order to eradi-
cate the epidemics. We have confirmed the accuracy of
our theoretical results with several numerical simulations
and compare cost-optimal adaptation rates with popular
centrality measures in various networks.
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Appendix A: Irreducibility of M

We show that the matrix M defined in (11) is irre-
ducible, that is, there is no similarity transformation that
transforms M into a block upper-triangular matrix. For
this purpose, define

L =

[
O T

J S

]
,

where J =
⊕n

i=1 1di , T = col1≤i≤n Ti, and
S = col1≤i≤n(1di ⊗ Ti). Since the rates βi and ψij are
positive, if Mij = 0, then Lij = 0 for all distinct i and j.
Therefore, to prove the irreducibility of M , it is sufficient
to show that L is irreducible.

In order to show that L is irreducible, we shall
show that the directed graph H on the nodes
1, . . . , n + 2m, defined as the graph having adjacency
matrix L ∈ R(n+2m)×(n+2m), is strongly connected. We
identify the nodes 1, . . . , n+2m and variables p1, . . . , pn,
q1j (j ∈ N1(0)), . . . , qnj (j ∈ Nn(0)). Then, the upper-
right block T of the matrix L indicates that the graph H
contains the directed edge (pi, qji) for all i = 1, . . . , n and
j ∈ Ni(0). Similarly, from the matrices J and S in M ,
we see that H contains the directed edges (qij , pi) and
(qij , qki) for all i = 1, . . . , n and j, k ∈ Ni(0).

Using these observations, let us first show that H has
a directed path from pi to pj for all i, j ∈ {1, . . . , n}.
Since G(0) is strongly connected, it has a path (i0, . . . , i`)
such that i0 = i and i` = j. Therefore, from the
above observations, we see that H contains the directed
path (pi, qi1,i0 , qi2,i1 , . . . , qi`,i`−1

, pj). In the same way,
we can show that H also contains the directed path
(pi, qji, qij , pi) for every {i, j} ∈ E(0). These two types of
directed paths in H guarantees that H is strongly con-
nected. Hence the matrix L is irreducible, as desired.

Appendix B: Derivation of (13)

In the homogeneous case, the matrix M takes the form

M =

[
−δI βT

ψJ βS − (δ + φ+ ψ)I

]
.

In what follows, we show that λmax(M) < 0 if and only
if (13) holds true.

Since G(0) is strongly connected by assumption, its
adjacency matrix A(0) is irreducible and therefore has
an entry-wise positive eigenvector v corresponding to the
eigenvalue ρ (see [42]). Define the positive vector w =
col1≤i≤n(vi1di). Then, the definition of Ti in (8) shows

Tiw =
∑
k∈Ni(0)

wki =
∑
k∈Ni(0)

vk = (Av)i = ρvi and

therefore Tw = λv. In the same manner, we can show
that Sw = ρw. Moreover, it is straightforward to check
that Jv = w. Therefore, for a real number c, it follows
that

M

[
cv

w

]
=

[
(βρ− cδ)v

(cψ + βρ− (δ + φ+ ψ))w

]
.

Hence, if a real number λ satisfies the following equations:

βρ− cδ = cλ, cψ + βρ− (δ + φ+ ψ) = λ, (B1)

then col(cv, w) is an eigenvector of M . Since M is ir-
reducible (shown in Appendix A), by Perron-Frobenius
theory [38], if c > 0 then λmax(M) = λ (see [42, Theo-
rem 17]). This, in particular, shows that λmax(M) < 0
if and only if there exist c > 0 and λ < 0 such that (B1)
holds.

The two equations in (B1) have two pairs of solu-
tions (c1, λ1) and (c2, λ2) such that c1 < 0, λ1 < 0,
and c2 > 0. Therefore, we need to show λ2 < 0 if
and only if (13) holds true. To see this, we notice that
λ1 and λ2 are the solutions of the quadratic equation
λ2 + (2δ + φ+ ψ − βρ)λ+ δ(δ + φ+ ψ)− βρ(δ + ψ) = 0
following from (B1). Since λ1 < 0, we have λ2 < 0 if
and only if the constant term δ(δ+φ+ψ)−βρ(δ+ψ) of
the quadratic equation is positive, which is indeed equiv-
alent to (13). This completes the proof of the extinction
condition stated in (13).

Appendix C: Geometric Programming

We first give a brief review of geometric programs [40].
Let x1, . . . , xn denote positive variables and define
x = (x1, . . . , xn). We say that a real function g(x) is
a monomial if there exist c ≥ 0 and a1, . . . , an ∈ R
such that g(x) = cxa11 · · ·x

an
n . Also, we say that a func-

tion f(x) is a posynomial if it is a sum of monomials of x
(we point the readers to [40] for more details). Given a
collection of posynomials f0(x), . . . , fp(x) and monomi-
als g1(x), . . . , gq(x), the optimization problem

minimize
x

f0(x)

subject to fi(x) ≤ 1, i = 1, . . . , p,

gj(x) = 1, j = 1, . . . , q,

is called a geometric program. A constraint of the form
f(x) ≤ 1 with f(x) being a posynomial is called a posyn-
omial constraint. Although geometric programs are not
convex, they can be efficiently converted into equivalent
convex optimization problems [40].

In the following, we rewrite the optimization prob-
lem (19) into a geometric program using the new vari-

ables δ̃i = qi − δi and φ̃ij = sij − φij . By (16), these
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variables should satisfy the constraints

qi − δ̄ ≤ δ̃i ≤ qi −
¯
δ, (C1)

sij − φ̄ ≤ φ̃ij ≤ sij −
¯
φ. (C2)

Also, using these variables, the cost function C can be
written as C(β, δ̃, ψ̃) = f(β) + g̃(δ̃) + h̃(ψ̃), where

g̃(δ̃) = c3 + c4

n∑

i=1

1

δ̃rii
, h̃(φ̃) = c5 + c6

∑

{i,j}∈G(0)

1

φ̃
uij

ij

are posynomials. In order to rewrite the constraint (18),

we first define the matrices

D̃1 =

n⊕

i=1

δ̃i, D̃2 =

n⊕

i=1

(δ̃iIdi),

Φ̃ =

n⊕

i=1

⊕

j∈Ni

φ̃ij , Ψ̃2 =

n⊕

i=1

⊕

j∈Ni(0)

ψ̃ij .

We also introduce the positive constants q̄ = maxi qi,
ψ̄ = maxi,j ψij , s̄ = maxij s̄ij . Now, adding (q̄ + ψ̄ + s̄)v
to both sides of (18), we equivalently obtain

M̃v < (q̄ + ψ̄ + s̄)v, (C3)

where M̃ = M + (q̄ + ψ̄ + s̄)I is given by

M̃ =

[
D̃1 + (q̄I −Q1) + (ψ̄ + s̄)I B1

Ψ1 B2 + D̃2 + (q̄I −Q2) + Φ̃ + (s̄I − S) + (ψ̄I −Ψ2) + λI

]
.

Summarizing, we have shown that the optimization
problem (19) is equivalent to the following optimization
problem with (entry-wise) positive variables:

minimize
β, δ̃i, φ̃ij , v

f(β) + g̃(δ̃) + h̃(ψ̃)

subject to (16), (C1), (C2), and (C3).
(C4)

In this optimization problem, the objective function is
a posynomial in the variables β, δ̃, and φ̃. Also, the
box constraints (16), (C1), and (C2) can be written as
posynomial constraints [40]. Finally, since each entry

of the matrix M̃ is a posynomial in the variables β, δ̃,

and φ̃, the vector-constraint (C3) yields n + 2m posyn-
omial constraints. Therefore, the optimization problem
(C4) is a geometric program, as desired. Furthremore,
a standard estimate on the computational complexity of
solving geometric program (see, e.g., [43, Proposition 3])
shows that the computational complexity of solving the
optimization problem in (C4) is given by O((n+m)7/2).

Finally we remark that M̃ contains both the terms ψij
and −ψij so that we cannot use ψij as the decision vari-
able in the geometric program (C4) due to the positivity
constraint on decision variables. By this reason, we can-
not design the reconnecting rates ψij under the frame-
work presented in this paper. This issue is left as an
open problem.


