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We analyze the connectivity of an M-layer network over a common set of nodes that are active only in a
fraction of the layers. Each layer is assumed to be a subgraph (of an underlying connectivity graph G) induced
by each node being active in any given layer with probability q. The M-layer network is formed by aggregating
the edges over all M layers. We show that when q exceeds a threshold qc(M), a giant connected component
appears in the M-layer network—thereby enabling far-away users to connect using ‘bridge’ nodes that are
active in multiple network layers—even though the individual layers may only have small disconnected islands
of connectivity. We show that qc(M) .

√
− ln(1 − pc) /

√
M, where pc is the bond percolation threshold of G,

and qc(1) ≡ qc is its site percolation threshold. We find qc(M) exactly for when G is a large random network with
an arbitrary node-degree distribution. We find qc(M) numerically for various regular lattices, and find an exact
lower bound for the kagome lattice. Finally, we find an intriguingly close connection between this multilayer
percolation model and the well-studied problem of site-bond percolation, in the sense that both models provide a
smooth transition between the traditional site and bond percolation models. Using this connection, we translate
known analytical approximations of the site-bond critical region, which are functions only of pc and qc of the
respective lattice, to excellent general approximations of the multilayer connectivity threshold qc(M).
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The last few years has seen a surge of interest in multi-
layer networks, several properties of various genres of which
have been studied, much of which has been covered in these
two review articles [1, 2]. Specific example studies in-
clude the diffusion dynamics of multilayer networks [3], cas-
cades [4, 5], spectral properties [6], robustness analysis stem-
ming from overlapping multilayer links [7], growing random
multilayer networks [8], epidemic spread [9], a tensorial for-
mulation [10], and algorithmic complexity of finding short
paths through co-evolving multilayer networks [11]. The con-
nectivity properties of random multilayer networks have also
been studied, such as the study of the properties of the giant
connected component (GCC) in a random network with corre-
lated multiplexicity, i.e., where the node degree distributions
across layers have positive (or negative) correlations [13].

The multilayer network model we study in this paper was
inspired by a multi-channel wireless adhoc communication
network [14], where each node only uses a small subset of
all the available channels at any given time (to save energy—
battery life of a radio transceiver for instance), and the con-
sideration of the minimum number of channels in which each
node should be active to ensure long range connectivity.

We consider a set of users connected via M co-existing net-
works G1, . . . ,GM . Let us assume that each user (node) is ac-
tive only in a subset of these networks. Consequently, a user
who is active in both G1 and G2 can help connect two other
users that are active in G1 alone, and in G2 alone, respectively,
by forming a bridge. Fig. 1 illustrates an example with M = 3
networks (‘layers’), where a path connecting v1 and v2 must
traverse all three layers, and one such path is shown to go
through the bridge nodes v3 and v4, both of which are occu-
pied in more than one layer.

Some concrete examples of such multilayer networks are:

FIG. 1: (Color online) Schematic of a 3-layer network. The numbers
of layers in which each node is occupied (active) are shown.

(1) a network of cities connected via different airline com-
panies where each city is served only by a subset of all the
airlines [11, 12], (2) a network of users with accounts on mul-
tiple online social networks [15], and (3) a military commu-
nication network of units equipped with radios that can listen
and transmit simultaneously on a subset of multiple frequen-
cies [14]. Each of these scenarios have one feature in com-
mon: the multilayer network is formed over a common set of
nodes via co-existing means of connectivity. In other words,
each node in the multilayer network is one single entity (e.g., a
city, a social network user, or a multi-channel radio) that may
be active simultaneously in a subset of multiple layers, where
each layer that a given node is active in, provides a distinct
mode for that node to connect to its neighboring nodes that



2

are also active in that layer.
In our analysis in this paper, we will make a simplifying

assumption, that each network layer is a subgraph of a com-
mon underlying connectivity graph G(V, E) whose edge set E
defines all the possible connections, some of which may be
dormant if the two nodes an edge connects are not active in at
least one common layer. The underlying connectivity graphs
for the aforesaid examples are: the network of airway pas-
sages connecting the cities, the underlying friendship network
(who is a friend of whom on social networks), and the Eu-
clidean geometric graph induced by the locations of the mul-
tichannel radios and their maximum range, respectively.

Each node will be assumed to be active in a given layer with
probability q, and the node occupancies in each layer will be
taken to be independent. The subgraph corresponding to the
m-th layer Gm(V, Em) is obtained by removing all the edges
of G(V, E) both of whose end nodes are not active in the m-
th layer. The merged (random) graph G(M)(V,∪M

m=1Em) ⊂ G
represents the effective multilayer network whose edges can
connect the nodes in V . So, the M-layer graph G(M) is formed
by directly aggregating the edges over all M layers. For an
edge to exist in G(M), the two nodes it connects must be ac-
tive in at least one common layer. Since each node is a single
physical entity, one can think of the inter-layer connectivity
graph at a given node to be a k-clique, where k is the number
of layers that node is occupied in. Our goal in this paper is to
study the threshold value of the single-layer node-occupation
probability q, which we will denote qc(M), when a GCC (or
a spanning cluster) appears in the M-layer network G(M), at
which point distant users can connect using a series of bridge
nodes that are active in multiple layers, even though the in-
dividual layers may only have small disconnected islands of
connectivity. Clearly, for M = 1, this model reduces to the
standard i.i.d. site percolation problem, and thus qc(1) = qc,
the site-percolation threshold of G. In Fig. 2, we show an il-
lustrative numerical example for 2 layers over a square grid.

As the reader may already have noted, the model we an-
alyze in this paper is insufficient to accurately model most
practical multilayer networks. For instance, the assumption
that each individual network layer is an induced subgraph of a
common underlying graph may not be accurate. For example,
in a multilayer social network, a node’s neighbors (friends)
in Linkedin may be different from its neighbors in Facebook.
On the other hand, in the multichannel wireless ad hoc net-
work example described above, the assumption that each layer
samples from one underlying connectivity graph is quite ac-
curate. Several other interesting extensions of our model are
described in the Conclusions section of this paper.

The first major contribution of this paper, described in Sec-
tion I, is the detailed study of the behavior of qc(M) for
a general underlying connectivity graph G. We show that
qc(M) ∼ 1/

√
M for M large. This implies that when each

node is occupied in roughly c
√

M (of the M) layers, c being
a constant, spanning connectivity emerges in the M-layer net-
work. We show that c approaches

√
− ln(1 − pc) as M → ∞,

where pc is the bond-percolation threshold of G. In Section II,
we find qc(M) exactly when G is a large random network with
an arbitrary node-degree distribution. In Section III, we eval-

FIG. 2: Two independent site-percolation instances (‘layers’) of a
square grid G are shown, for site-occupation probability (a) q = 0.4
and (b) q = 0.5. Each site in each layer is occupied with probability
q, and a bond is activated when both sites at its end points are occu-
pied. Active bonds are shown by black line segments. A 2-layer lat-
tice is formed by first marking as occupied all those sites in G that are
occupied in at least one of two independent layers (site-percolation
instances of G), and then activating all the bonds that have sites at
both their end points occupied. The site-percolation threshold of a
square grid, qc ≡ qc(1) ≈ 0.59, which is why the single layer graphs
do not have a giant connected component (GCC) either for q = 0.4
or q = 0.5. However, the 2-layer percolation threshold for the square
lattice, qc(2) ≈ 0.47. Thus, the 2-layer graph created with q = 0.4
does not exhibit a GCC, whereas the one created with q = 0.5 does.

uate qc(M) numerically for various regular lattices, and find
an analytical lower bound for qc(M) for when G is a reg-
ular kagome lattice. We show, for a general graph G, that
qc(M) .

√
− ln(1 − pc) /

√
M, where pc is the bond percola-

tion threshold of G, and that the inequality is asymptotically
tight when M → ∞. Clearly, for M = 1, qc(1) ≡ qc, where
qc is the site percolation threshold of G. Therefore as M goes
from 1 to ∞, qc(M) goes from being a function solely of qc
to being solely a function of pc. This suggests that our mul-
tilayer percolation model forms a smooth transition between
the standard site and bond percolation models. This leads to
our second main contribution, described in Section IV: an in-
triguingly close connection between the aforesaid multilayer
percolation model and the well-studied problem of site-bond
(or, mixed) percolation—a percolation process defined on the
single-layer graph G, in which each site and each bond in G is
independently activated with probability q and p, respectively.
Both models provide a smooth transition between the tradi-
tional i.i.d. site and bond percolation models. Using this con-
nection, we show a way to translate analytical approximations
to the site-bond critical region (the region in the (p, q) space
where a GCC exists with high probability) that are functions
solely of pc and qc, to an excellent general approximation of
the multilayer percolation thresholds, qc(M). We conclude the
paper in Section V.
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FIG. 3: Multilayer percolation thresholds for a square grid (blue
crosses) were numerically evaluated for M = 1, . . . , 100, where
qc(1) = qc = pc = 0.59274605079210(2) is the site percolation
threshold [16]. The upper bound

√
− ln(1 − pc)/

√
M, plotted in

black (solid), is a function only of the bond percolation threshold
pc = 0.5, and is an asymptotically tight bound in the large M limit.

I. MULTILAYER PERCOLATION IN A LARGE GRAPH

The multilayer (random) graph G(M) is completely specified
by the underlying connectivity graph G, the number of layers
M, and the site-occupation probability q (for each site in each
layer). It is simple to see that the induced marginal proba-
bility, p, of any given bond in G(M) to be active, is given by
p = 1 − (1 − q2)M . Now, suppose we choose q = c/

√
M,

with c a constant. In other words, each node is occupied,
on an average, in c

√
M layers. Then, in the limit M → ∞,

we have p = 1 − limM→∞(1 − q2)M = 1 − e−c2
. If the

bond activation events were statistically independent, then for
p ≥ pc, where pc is the bond percolation threshold of G,
a giant connected component (GCC) would appear in G(M).
Note here that p ≥ pc, in the M → ∞ limit, is equivalent to
c ≥

√
− ln(1 − pc). However, the bond activation events in

G(M) are not independent. They have a positive spatial corre-
lation. In other words, one bond being active makes it more
likely for its neighboring bond to be active. Since p is the frac-
tional size of the edge set in the underlying graph that is ac-
tive, introducing positive bond-to-bond nearest-neighbor spa-
tial correlations, for a given p, implies that the active bonds
will be closer together, and hence p > pc should be more
than sufficient for a GCC to exist in G(M), thereby making√
− ln(1 − pc)/

√
M an upper bound to the multilayer perco-

lation threshold qc(M), for any finite M. Note however that
the above argument (of why percolation should happen at a
strictly lower value of p for a correlated bond process) is not
rigorous. We conjecture however that it holds true for the par-
ticular correlated bond process induced by our multilayer per-
colation model on an arbitrary graph G that has a well defined
non-trivial i.i.d. bond percolation threshold.

Clearly, for M = 1, G(M) is a simple site-percolation in-
stance over G with site-occupation probability q. Hence
qc(1) = qc is the site-percolation threshold of G. In Fig. 3,
we plot the numerically-evaluated values of qc(M) as a func-
tion of M for a square grid. Note that as M grows large,
the aforesaid upper bound gets progressively tighter. This
indicates that the reason which caused in the first place√
− ln(1 − pc)/

√
M to be an upper bound (and not equal) to

qc(M)—that the bond-activation events of G(M) being posi-
tively correlated—dwindles away in the large M limit. One
can show that this is indeed true. In other words, if the site-
occupation probability is chosen to be q = c/

√
M in our

multilayer graph construction, for M large, the induced bond-
activation events on the multilayer graph G(M) approach to-
wards being statistically independent. Therefore, in this limit,
G(M) resembles an i.i.d. bond-percolation instance of G. Thus
when p > pc, the bond-percolation threshold of G, a GCC
appears in G(M). Therefore, q ∼

√
− ln(1 − pc)/

√
M in the

M → ∞ limit, showing that the upper bound is asymptoti-
cally tight. In Theorem 1 of Appendix A, we provide a rigor-
ous proof of the independence of the bond-activation events of
G(M) in the M → ∞, albeit only for the case when G is a tree.
We conjecture (and have ample numerical evidence in its fa-
vor), that this fact about the asymptotic independence of bond
activation events (of G(M) for q = c/

√
M in the M → ∞ limit)

holds true for any arbitrary graph G that has a well defined
and non-trivial bond-percolation threshold pc.

Further, recalling that the marginal probability of each
bond’s activation satisfies p = 1− (1−q2)M , it is simple to see
that in the M → ∞ limit, if the site-occupation probability q is
chosen to be any function of M that diminishes any faster than
1/
√

M, then all the bonds of G(M) are inactive with high prob-
ability (w.h.p.), whereas if q is chosen as any function of M
that diminishes even a little slower compared to 1/

√
M, then

all the bonds of G(M) are active w.h.p., thereby showing that
the 1/

√
M scaling of q is a sharp connectivity threshold.

For M = 1, the multilayer model is equivalent to stan-
dard i.i.d. site percolation, and as M increases, even though
our multilayer construction is inherently a site-based model
(i.e., defined and driven solely by site occupations), the site-
occupation thresholds for long-range connectivity are deter-
minable only from the bond-percolation threshold of the un-
derlying connectivity graph when the number of layers grows
large. The thresholds qc(M) decrease as M increases, but they
decrease as c/

√
M, where the constant c is only a function of

pc, the bond-percolation threshold, when M is large. There-
fore, bond percolation naturally emerges from a multi-layer
site percolation problem. This in turn suggests that there may
be a deeper connection of this problem to the traditional site-
bond (or, mixed) percolation problem, which is a model that
interpolates between the standard site and bond percolation
models in a natural way, with each site occupied indepen-
dently with probability q and each bond activated indepen-
dently with probability p. In Section IV, we will make this
connection quantitatively rigorous, and will show how one can
translate known results on the critical region for the site-bond
percolation problem to the multilayer problem, and vice versa.
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Finally, let us see how one can further tighten the upper
bound to qc(M) discussed above. The probability that any
given bond in G(M) is active, p = 1 − (1 − q2)M . The bonds in
G(M) can be thought of as generated by a positively-correlated
bond-percolation process on G with a marginal bond proba-
bility p. Hence, p > pc is sufficient for a GCC to appear in
G(M), where pc is the bond percolation threshold of G. It thus
follows that q ≥

√
1 − (1 − pc)1/M is sufficient for percola-

tion. Therefore the multilayer threshold must satisfy, qc(M) ≤√
1 − (1 − pc)1/M . One can further upper bound the right-hand

side of the above as
√

1 − (1 − pc)1/M ≤
√
− ln(1 − pc)/

√
M,

∀M ≥ 1, to obtain, qc(M) ≤
√
− ln(1 − pc)/

√
M. In Ap-

pendix B, we provide an additional intuition behind the above
upper bound.

II. ANALYTICAL RESULTS FOR A MULTILAYER
RANDOM GRAPH

In this section, we will consider multilayer percolation
on large random graphs with an arbitrary, but known, node-
degree distribution. This model of random graph analysis—
based on a probability-generating function (PGF) approach—
is known as the configuration model (CM) [17, 18]. The
CM has found use in modeling several real life networks that
have non-Poisson distributions, such as the truncated power-
law and exponential distributions [19, 21]. Newman studied a
multilayer random graph model, which is related but different
from ours [20].

Let pk denote the probability that a randomly selected node
has degree k. Let M denote the set of M layers and let qk
denote the probability that a node of degree k is occupied in
layer m ∈ M. As before, the events that a node is occupied
in different layers are assumed to be independent. pk(1 − (1 −
qk)M) is the probability of a node having degree k and being
occupied in at least one layer, and

F0(x) =

∞∑
k=0

pk(1 − (1 − qk)M)xk

is the PGF of this distribution. Let us follow a randomly cho-
sen edge e(u, v) starting from a node u, occupied in n ≤ M
layers, to node v. Node v has degree distribution proportional
to kpk [17]. Thus the PGF of the distribution of v having de-
gree k and being occupied in at least one of n layers that u is
occupied in, is given by

Fn(x) =

∑∞
k=1 kpk(1 − (1 − qk)n)xk−1

z

for 1 ≤ n ≤ M, where z =
∑

k kpk is the average node degree.
Let H0(x) denote the PGF of the cluster size that a randomly

selected node belongs to. It is easy to argue that,

H0(x) = 1−F0(1) + x
∞∑

k=0

pk

M∑
l=1

(
M
l

)
ql

k(1−qk)M−lHl(x)k. (1)

Let us define Hn(x) as the PGF for the size of a cluster that a
neighbor of the node belongs to provided that it is occupied

in at least one of the n layers in which the randomly selected
node is occupied in. It is given by

Hn(x) = 1 − Fn(1) + x
∞∑

k=1

kpk

z

×

M∑
l=1

[(
M
l

)
−

(
M − n

l

)]
ql

k(1 − qk)M−lHl(x)k−1

where
(

j
i

)
is defined to be zero whenever i > j. The com-

binatorial term in the inner sum corresponds to the number of
combinations of l layers at a neighbor that overlap the n layers
of the original node. When l > M − n, all possible combina-
tions of l layers at the neighbor overlaps the n layers in the
original node, yielding

(
M
l

)
whereas when l ≤ M − n, we have

to subtract out the number of l layer combinations that do not
overlap the n layer combinations at the original node,

(
M−n

l

)
.

We are interested in the average cluster size that a randomly
selected node belongs to, which is given by µ0 = H′0(1),

µ0 = F0(1) + x
∞∑

k=0

kpk

M∑
l=1

(
M
l

)
ql

k(1 − qk)M−lµl (2)

where µn = H′n(1), i.e.,

µn = Fn(1) +

∞∑
k=1

(k − 1)kpk

z

×

M∑
l=1

[(
M
l

)
−

(
M − n

l

)]
ql

k(1 − qk)M−lµl.

Consider the case qk = q. We introduce the matrix A(q) =

[Ai j] with

Ai j =

−C
((

M
j

)
−

(
M−i

j

))
q j(1 − q)M− j i , j

1 −C
((

M
j

)
−

(
M− j

j

))
q j(1 − q)M− j i = j

(3)

where C =
∑

k(k−1)kpk/z. Now µ =
[
µ1, . . . , µM

]
is a solution

of

A(q)µT = bT (4)

where b = (F1(1), . . . FM(1)). We define the critical occu-
pancy probability, qc(M), such that when q > qc(M), there
exists one infinite size spanning cluster (or, GCC) w.h.p., and
when q < qc(M), there exist only finite size clusters. Assume
that C > 1 (which is required for G to have a GCC w.h.p. even
with all nodes and bonds occupied). The size of a GCC is a
constant fraction of the size of the graph. Hence, for an infi-
nite random graph, appearance of a GCC in the M-layer graph
is equivalent to µ0 diverging (to infinity). As Eq. (2) shows, µ0
is a constant plus a linear combination of {µk}, k = 1, . . . ,M.
Hence, at least one element of µ must diverge for µ0 to di-
verge. Since b is a constant vector, this can only happen if A
is singular. Thus, qc(M) is given by the solution of

det(A(q)) = 0 (5)
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FIG. 4: Upper and lower bounds on the multilayer site-percolation
thresholds for a random graph with a truncated power law degree
distribution pk = 0, k = 0, pk = Ck−τe−k/κ, k ≥ 1, with κ = 10 and
τ = 2.5. The exact qc(M) values were obtained by solving Eq. (5).

within the interval [0, 1]. Numerically, it is easy to verify that
det(A(q)) has a unique zero in [0, 1] for all M ≥ 1 as long as
C > 1. We conjecture that this is always true. In Appendix C,
we provide a rigorous proof of the fact that qc(M) is given by
the smallest solution of det(A(q)) = 0 in the interval (0, 1).

For the case M = 1, this corresponds to finding the solution
of 1 − qC = 0, which yields the known result qc = 1/C [18].
For the case of M = 2, qc is the unique solution of the follow-
ing polynomial

C2q4 −C2q3 −Cq + 1 = 0 (6)

within the interval [0, 1], which is

qc(2) =
1
4

[
a + 1 −

√
3 + 2a − a2

]
(7)

with a =
√

1 + 8/C. It is easy to show that there exists at
least one real root in the interval [0, 1] provided that C > 1 as
det(A(0)) = 1 and det(A(1)) = 1 −C < 0.

In the supercritical regime, there is one infinite size cluster
and many small finite size clusters. The PGF of the size of
a small cluster is given by H0(x)/H0(1) with H0(x) given by
(1). The average size of these clusters is µ0/H0(1) with µ0
given by (2). Finally, the fractional size of the giant connected
component is given by S = 1−H0(1). For the M-layer random
graph, the fractional size of the giant connected component is
given by

S (q,M) = 1 − (1 − q)M −

∞∑
k=0

pk

M∑
l=1

(
M
l

)
ql(1 − q)M−luk

l (8)

where u = [u1, u2, . . . , uM]T ∈ [0, 1]M is given by the follow-
ing self-consistency matrix equality

u = s + Bv (9)

FIG. 5: (Color online) (a) The multilayer threshold qc(C,M) as a
function of C for M = 1, 2, . . . , 20 layers. (b) Comparing qc(C,M)
with

√
− ln(1 − pc)/

√
M (with pc = 1/C), which is seen to be an up-

per bound to qc(C,M) as argued in Appendix B. The random graphs
used for these evaluations were chosen from a truncated power law
node-degree distribution pk = 0, k = 0, pk = Ck−τe−k/κ, k ≥ 1, with
κ = 10 and τ = 2.5.

FIG. 6: (Color online) Size of the spanning cluster for multilayer per-
colation as a function of the single-layer site-occupation probability
q for a random graph with a truncated power law node-degree distri-
bution; pk = 0, k = 0, pk = Ck−τe−k/κ, k ≥ 1, with κ = 10 and τ = 2.5.
The theory plots were obtained by solving Eqs. (8) and (9). The nu-
merical plots were obtained by Newman-Ziff style simulations, via
averaging over 10 instances of a 5 million node random graph.

where sl = (1 − q)l, vl = f (ul) ≡
∑∞

k=1(kpk/z)uk−1
l , and Bi j =[(

M
j

)
−

(
M−i

j

)]
q j(1 − q)M− j.

In order to verify our theory, we performed numerical sim-
ulations of layered site percolation on random graphs with up
to M = 20 layers, and 5 million nodes, and compared with re-
sults obtained from the theory we developed above. We chose
random graphs with node degrees distributed according to the
truncated power law [22],

pk =

{
0 for k = 0,
Dk−τe−k/κ for k ≥ 1, (10)

where D =
[
Liτ(e−1/κ)

]−1
is a normalization constant, with the

polylogarithm function, Lis(x) ≡
∑∞

k=1 xk/ks. We chose this
distribution for our simulations since it is seen in a number of
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real-world social networks including collaboration networks
of movie actors [23] and scientific collaborations based on co-
authorship of publications [25]. The pure power-law distribu-
tions seen in Internet data are also included as a special case
κ → ∞ [24].

For our numerical evaluations of qc(M), we used the
Newton-Raphson method to extract the unique root of Eq. (5).
Fig. 4 shows an example calculation of qc(M) for a truncated
power law node degree distribution, and various bounds to
it discussed earlier. In order to solve for the largest cluster
size S (q,M), we solved Eq. (9) numerically using a multi-
dimensional iterative fixed-point method to search for the
unique solution of u ∈ [0, 1]M . One interesting thing to note
is that the multilayer threshold qc(C,M) is only a function of
M and C ≡

∑∞
k=1(k − 1)kpk/z, regardless of the actual distri-

bution {pk}. In Fig. 5, we plot qc(C,M) for different values of
C and M. The evaluations of the largest cluster size S (q,M)
as a function of q—both using the solution of Eq. (8) as well
as using efficient Newman-Ziff style Monte-Carlo simulations
on random graph instances with 5 million nodes—for a trun-
cated power law node-degree distribution, with κ = 10 and
τ = 2.5, are summarized in Fig. 6. Excellent agreement is
seen between theory and numerical simulations.

III. NUMERICAL RESULTS FOR REGULAR LATTICES

We numerically evaluated qc(M) for various regular lat-
tices, including the square, triangular, kagome, and archime-
dian lattices. The results for a regular square grid are shown in
Fig. 7, and for a regular kagome lattice in Fig. 8. The size of
the largest component for the M-layer lattice exhibits the usual
second-order phase transition at q = qc(M). In Section III A,
we will show a very compelling (yet, incorrect in general)
argument as to why the following general lower bound to
qc(M) should hold: qc(M) ≥ qc/

√
M, where qc ≡ qc(1)

is the site percolation threshold. In Section III B, we will
prove an analytical lower bound to qc(M) for the kagome
lattice—adapting the Scullard-Ziff triangle-triangle transfor-
mation technique,—which is seen to be extremely close to
qc/
√

M.

A. An intuitive lower bound to qc(M) that holds for most
regular lattices, but not in general

Consider an i.i.d. site-percolation process with site-
occupation probability Q, and an M-layer process with single-
layer site-occupation probability q, such that the marginal
probability of a single bond to be activated in either case are
identical, i.e., Q2 = 1 − (1 − q2)M . Recall now our argu-
ment above that as M increases from 1 to ∞, the multilayer
graph G(M), at percolation, transitions from being identical
to a pure site-percolation instance of G (where bond activa-
tion events have positive spatial correlation) to a pure bond-
percolation instance of G (where the bond activation events
are independent). Hence, one might argue that for the same
total number of bonds in the respective percolating instances

FIG. 7: (Color online) Thresholds and bounds for the multilayer
square lattice. Simulations performed on a 262144 node lattice.

of a graph, if the multilayer graph percolates, that the i.i.d.
site-occupied graph must also percolate (since the bond acti-
vations have higher positive spatial correlations in the latter).
Thus,

√
1 − (1 − q2

c)1/M ≤ qc(M). One can lower bound the
l.h.s. by qc/

√
M, thus obtaining qc(M) ≥ qc/

√
M.

The lower bound qc(M) ≥ qc/
√

M holds for various regu-
lar lattices with well-defined site-percolation thresholds [27].
However, the bound does break down for fully-triangulated
lattices [28], and similar graph constructions where there are
many more bonds connecting a smaller number of ‘key’ sites,
for which pc can be driven to zero, with qc held constant (see
Fig. 9). We conjecture that qc(M) ≥ qc/

√
M holds for all

vertex-transitive graphs, which is backed by extensive numer-
ical simulations.
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FIG. 8: (Color online) Thresholds and bounds for the multilayer
kagome lattice. Simulations performed on a 196608 node lattice.

FIG. 9: (Color online) Plots of qc(M) for order-k fully triangulated
lattices for k = 0, 1, . . . , 10, where k = 0 corresponds to the simple
triangular lattice. All these lattices have the same site-percolation
threshold, q(k)

c = 0.5, but their bond percolation thresholds, p(k)
c → 0,

as k → ∞. The red-dashed line plots 0.5/
√

M, therefore showing
qc(M) ≥ qc/

√
M does not hold for these lattices with k high enough.

B. Lower bound on qc(M) for the Kagome lattice using the
Scullard-Ziff triangle-triangle transformation

Numerical evaluations of qc(M) for the kagome lattice are
plotted in Fig. 8. For the kagome lattice, we will now prove a
lower bound for qc(M) leveraging a star-triangle transforma-
tion technique developed by Scullard and Ziff [26], which was
used to find exact site percolation thresholds for a large class
of regular lattices. We will derive the following lower bound
on qc(M):

qc(M) ≥ qLB, Kagome(M) (11)

for all M ≥ 1, where qLB, Kagome(M) is the unique root of the
following polynomial fM(q), in [0, 1]:

fM(q) = [(1 − q)(1 + q − q2)]M + 2(1 − 2q2 + q3)M

− [(1 − q)2)(1 + 2q)]M − (1 − q2)M − Mq2. (12)

qLB, kagome, is seen to be extremely close, but not exactly
equal, to qc/

√
M, where qc = 1 − 2 sin π/18 ≈ 0.6527 is

the site-percolation threshold of the kagome lattice [26] (see
Fig. 8). The fact that qLB, kagome ≈ qc/

√
M ≤ qc(M) for the

kagome lattice, is clearly not a coincidence, given the discus-
sion in Section III A.

The derivation of this bound uses a technique introduced
by Scullard [26], who developed a site-to-bond transforma-
tion technique that leverages the duality of the triangular and
honeycomb lattices to compute the critical surface for any
correlated bond percolation process on the triangular lattice
where the correlations are limited to within each triangular
face [26]. Fig. 10(c) shows the setup. Imagine a triangular
lattice formed by the shaded triangular faces, and for a mo-
ment ignore the dashed lines connecting the faces (i.e., col-
lapse the three dashed lines into one node). The purpose of
the dashed lines is to depict that there are no (bond or site ex-
istence) correlations in between faces. However, within each
face, could there be a very complex correlated bond or site
percolating network (but that network must be identical from
face to face). Scullard showed that the critical condition for
such a correlated-triangular lattice to percolate is given by the
condition P[A, B,C] = P[Ā, B̄, C̄], where P[A, B,C] is the
probability that all three end nodes of a face are connected,
and P[Ā, B̄, C̄] is the probability that none of the three nodes
are connected to one another. A special case of this is that
of correlated bond percolation, where each face has just three
bonds AB ≡ h, BC ≡ v, and CA ≡ l, whose occupation proba-
bility is given by the joint distribution P(h, v, l). The percola-
tion condition for this case translates to:

P(v) + P(v̄, h, l) = P(h̄, l̄). (13)

Scullard then observed that one way to generate such a cor-
related bond percolation on the triangular lattice—but one
where the correlations do not traverse the lattice faces—is to
consider a pure site percolating kagome lattice as shown in
Fig. 10(a), where all the orange (light) shaded triangles are the
faces of a triangular lattice where the faces are detached from
one another via the dashed lines as shown in Fig. 10(c). If the
site-occupation probability is q, it is easy to see that P(v) = q2,
P(h̄, l̄) = (1 − q) + q(1 − q)2, and P(v̄, h, l) = 0, substituting
which in (13) yields a solution qc = 1 − 2 sin π/18 ≈ 0.6527.
The last observation to be made is that if these orange (light)
shaded triangular faces percolate (meaning there is a spanning
cluster involving adjoining light-shaded faces), all the dashed
bonds in Fig. 10(c) in that spanning cluster must also be occu-
pied. Reason being, due to three-point correlations, a dashed
bond will be occupied with probability 1 if two bonds on ei-
ther side of it are open. More specifically, consider the bonds
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on triangles 2 and 3 in Fig. 10(c). Under the transformation
described above, if any one bond in each triangle is occupied,
then both bounding sites on each of these bonds will be occu-
pied. But if this is true, then it follows that the dashed bond
between triangles 2 and 3 will also be occupied. Thus the two
occupied bonds in the faces considered above are connected
to one another via the dashed bond, just by virtue of being oc-
cupied themselves. Thus, by inserting the separating dashed
triangles between the triangular faces, we have preserved the
conditions for Eq. (13) to be valid—that of neighboring trian-
gular faces to be independent. Hence, qc = 1 − 2 sin π/18, via
this construction, is the pure site percolation threshold of the
kagome lattice [26].

Now consider applying the above technique to the M-layer
merged kagome lattice. We can still use Eq. (13), but it will
only give a necessary condition for the M-layer lattice to per-
colate, since the existence of one bond each in triangles 2 and
3 will no longer necessitate the dashed bond separating them
to be occupied, because the end nodes of the dashed line could
now be occupied in non-intersecting layer sets. Therefore, the
solution to (13) will yield a lower bound to qc(M)—the min-
imum value of single-layer site occupation probability such
that the M-layer lattice will percolate. With a little combi-
natorics (detailed arguments omitted), one can calculate the
following probabilities:

P(v) = Mq2, (14)
P(h̄, l̄) = (1 − q)M(1 + q − q2)M , and (15)

P(v̄, h, l) = (1 − q2)M +
[
(1 − q)2(1 + 2q)

]M

−2(1 − 2q2 + q3)M , (16)

substituting which in Eq. (13), one obtains the condition stated
above to calculate the lower bound, qLB, Kagome(M) ≤ qc(M).
For completeness, we prove in Appendix D that fM(q) has a
unique root in (0, 1).

The lower bound qLB, kagome(M) is seen to be tantalizingly
close to qc(1)/

√
M (plotted with red dashes in Fig. 8), but the

two are not exactly equal. The magenta dots in Fig. 8 plot
the site percolation threshold qc,stacked(M) of the 3D stacked
kagome lattice (which is of interest due to its interesting
magnetic properties [33, 34]). The simulations indicate that
the site percolation threshold for a 50-layer stacked lattice
is roughly qc,stacked(50) ≈ 0.366. This is in agreement with
the numerically-evaluated site-percolation threshold of the in-
finite stacked kagome lattice, qc,stacked(∞) = 0.3346(4) [35].

One interesting thing to note is that when q >
qLB, Kagome(M), by the Scullard argument, all the orange (light)
shaded triangles in the infinite multilayer Kagome lattice
(see Fig. 10(a)) will form a spanning cluster amidst them-
selves, i.e., assuming the purple (dark) shaded triangles do
not come in the way of a pair of occupied nearest neighbor
light-shaded triangles to get ‘connected’. But then, because
of symmetry, when q > qLB, Kagome(M), all the purple (dark)
shaded triangles should also have a spanning cluster (‘ignor-
ing’ the light-shaded triangles). So, when q is in the regime,
qLB, Kagome(M) < q < qc(M), the light-shaded triangles per-
colate, and the dark-shaded triangles percolate, but the full

FIG. 10: (a) Casting the kagome lattice in the square grid, with one
of every 4 nodes in the grid removed. The dashed edges are ones
that ‘wrap around’. (b) A ‘unit cell’ of the kagome lattice showing
the three node types, and also the node numbering convention we
use to construct the nearest-neighbor matrix for use in the layered
grid connectivity simulations. (c) Scullard’s setup for calculating the
critical region for correlated-bond percolation on a triangular lattice,
with bond correlations limited within each face.

multilayer Kagome lattice does not percolate, which happens
only when q ≥ qc(M). This situation has some semblance
with the notion of explosive percolation, that has been studied
recently [32].

IV. RELATIONSHIP WITH SITE-BOND PERCOLATION
AND ANALYTICAL APPROXIMATIONS TO THE

MULTILAYER THRESHOLDS

As discussed above, the M-layer graph G(M) transitions
from resembling site percolation to resembling bond perco-
lation as M goes from 1 to ∞. Joint site-bond percolation is
a well-studied extension of site and bond percolation [29–31],
which is a more natural bridge between site and bond perco-
lation, where each site is occupied and each bond is activated
independently with probabilities Q and P, respectively, and a
path or a cluster can only be formed using occupied sites and
activated bonds. This suggests that the two percolation models
should be connected. The boundary separating the sub-critical
and super-critical phases for site-bond percolation, the critical
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line fc(P,Q) = 0, is not known exactly for any lattice. In Sec-
tion IV A, we will establish a quantitative connection between
site-bond and multilayer percolation, and show how one can
translate the site-bond critical line fc(P,Q) = 0 to an upper
bound to qc(M), which is tight both at M = 1 and M → ∞.
In Section IV B, we will leverage a good approximation to the
site-bond critical line to develop excellent approximations to
qc(M) for general regular lattices that is only a function of the
site and bond percolation thresholds qc and pc, of the respec-
tive lattices.

A. Translating the site-bond critical boundary to a tight upper
bound to the multilayer threshold

The multilayer graph can be thought of as being generated
by a site-bond percolation process, where sites are indepen-
dently occupied with probability Q(q,M) = 1 − (1 − q)M ,
and conditioned on two nearest-neighbor sites being both oc-
cupied, the bond between them being active with probability
P(q,M) =

[
1 − (1 − q2)M

]
/
[
1 − (1 − q)M

]2
. In other words,

P is the probability that two sites are occupied in at least one
common layer, given they are both occupied. For M = 1,
we get P = 1 as expected and this reduces to pure site per-
colation. For M > 1, there is one subtle difference between
site-bond percolation and multilayer percolation mapped on
the site-bond model as described above: the nearest neighbor
bond activations have greater spatial correlation in multilayer
percolation as compared to site-bond percolation, conditioned
on an instance of the underlying i.i.d. site process generated
with site-occupation probability Q(q,M). For example, given
three successive sites on a path are occupied, in the (P,Q) site-
bond process, the probability that both bonds between those
three sites are occupied is P2, whereas in multilayer perco-
lation, the probability that both of those bonds are occupied
(again conditioned on all three sites being occupied) is greater
than P2. This suggests that if the site-bond process on a graph
G percolates for a given (P,Q), then for the same (P,Q) value
(translated to q and M as above), the multilayer percolation
process on G should also percolate. This suggests that if we
know the site-bond critical line fc(P,Q) = 0 for a graph, and
solve for q∗(M) by substituting P(q,M) and Q(q,M) into the
critical line equation, then the solution q∗(M) will be an upper
bound to the true multilayer percolation threshold qc(M) for
that graph. If the critical line is only available numerically, we
can find q∗(M) by solving for the intersection of fc(P,Q) = 0
with PQ2 = 1−(1−q2)M . Note that the above argument is not a
formal proof that q∗(M) ≥ qc(M), but we haven’t found a sin-
gle graph for which this upper bound is violated. The brown
solid lines in Fig. 7(b) and Fig. 5 plot this upper bound for
the square grid and a random graph, respectively. This upper
bound, unlike the upper bound qc(M) ≤

√
− ln(1 − pc)/

√
M,

is tight both at M = 1 and M → ∞, since it interpolates
between pure-site and pure-bond percolation, which is a char-
acteristic of both multilayer, and site-bond percolation.

For a random graph with degree distribution {pk}, the criti-
cal line is a hyperbola given by fc(P,Q) = PQ−1/C = 0, with
C =

∑
k(k − 1)kpk/z, z =

∑
k kpk. The following thus readily

FIG. 11: Site-bond critical regions: comparison between true critical
region and the Tarasevich-van der Marck approximation, (a) Figure
from Ref. [31], (b) Refined simulations for the critical region for the
square lattice using Newman-Ziff method on a 25-million-node grid.

follows: For multilayer site-percolation on a random graph
with degree distribution {pk}, the M-layer thresholds satisfy,
qc(M) ≤ qUB,Random−Graph, where qUB,Random−Graph is given by
the unique root of the following polynomial gM(q), in (0, 1]:

gM(q) = (1 − q2)M −
1
C

(1 − q)M + (1/C) − 1. (17)

See Appendix E for proof of uniqueness of the root.

B. A general approximation to qc(M) that is only a function of
pc and qc of a regular lattice

Yanuka and Englman proposed an approximation to
fc(P,Q) = 0 for regular lattices purely in terms of qc and
pc [30], which was later improved by Tarasevich and van der
Marck [31], who showed that the critical line fc(P,Q) = 0
for any lattice is well-approximated by P(Q + A) = B,
with A = (pc − qc)/(1 − pc) and B = pc(1 − qc)/(1 − pc)
(see Fig. 11). Therefore as per the discussion above, it
is evident that substituting Q = 1 − (1 − q)M and P =[
1 − (1 − q2)M

]
/
[
1 − (1 − q)M

]2
into P(Q + A) = B would

result in a good approximation to qc(M) for a general lattice
whose site and bond percolation thresholds (qc and pc, respec-
tively) are known. We thus have the following.

The multilayer threshold qc(M) for any graph G is well-
approximated by the unique solution of the following polyno-
mial equation fSB(q) = 0 in (0, 1], where

fSB(q) =
[
1 − (1 − q2)M

] [
1 − (1 − q)M + A

]
−B

[
1 − (1 − q)M

]2

where A(pc, qc) and B(pc, qc) are as stated above.
The proof that fSB(q) has a unique root in (0, 1) for any

given pc, qc and M is given in Appendix F. Fig. 12 shows
the agreement of the approximations to qc(M) with the true
thresholds qc(M) for the square, triangular and kagome lat-
tices. Note that the approximations are neither strictly an up-
per nor a lower bound to qc(M) in general. The fact that the
analytical approximations to fc(P,Q) = 0 are lower estimates
of the true critical line, counters the fact that the translation of
the true site-bond critical line should give us an upper bound
to qc(M)—thereby producing very good estimates of qc(M).
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FIG. 12: (Color online) Comparison of qc(M)—for the square, trian-
gular and kagome lattices—to approximations obtained by using the
Tarasevich-van der Marck approximations to the site-bond threshold.

V. CONCLUSIONS

In this paper, we studied the emergence of long-range con-
nectivity in a specific kind of multilayer network, which have
the following two properties: (1) each node in the multilayer
network is a physical entity that is common to each of the M
layers, where the layers correspond to co-existing means of
connectivity and each node may only be active in a subset of
all the layers; and (2) each network layer is a subgraph of a
common underlying connectivity graph G(V, E), obtained by
making each node in G active in any given layer independently
with probability q. The edge set E defines all the possible con-
nections the nodes in V may have, some of which may remain
dormant in a particular instance of the multilayer network, if
the nodes an edge connects are not active in a common layer.

We studied the properties of qc(M), the threshold value of
the single-layer site-occupation probability q, when a span-
ning cluster begins to emerge in the M-layer network. We
showed that qc(M) = Θ(1/

√
M), i.e., for the M-layer net-

work to have long-range connectivity, each node must be ac-
tive in c

√
M layers on an average. We also showed that

c →
√
− ln(1 − pc) as M → ∞, where pc is the bond per-

colation threshold of G. This arises from a realization that if
each node is active in ∝

√
M layers, then the induced bond

activation events approach being i.i.d. as M becomes large.
We derived qc(M) exactly for random graphs with arbitrary
degree distributions. Since qc(1) ≡ qc is the site-percolation
threshold of G, and the observation that qc(M) only depends
upon the bond-percolation threshold pc when M is large, led
us to find a close relationship between the above multilayer
percolation model and site-bond percolation, using which we

translated a known approximation to the boundary of the site-
bond critical region, to an excellent approximation of qc(M).

One may consider various extensions of our work. For
ease of analysis, we assumed the underlying population for
generating each network layer to be identical, which could
be relaxed in order to study a wider class of multilayer net-
works. Even if the assumption about the underlying connec-
tivity graph is accurate, the occupation probability of each
node need not be the same in each layer. One could con-
sider alternative multilayer connectivity models driven by the
application, such as the compatibility across communication
modes or technologies, information traversal hierarchy (e.g.,
in military networks), causality of information flow (in tem-
porally evolving networks) where the vertical axis in Fig. 1
would represent time, or stacked lattices (where nodes connect
across nearest-neighbor layers only). Furthermore, the activ-
ity of users in each layer may evolve over time, and messages
could be stored at a node and forwarded to a neighboring node
at a later time instant when both nodes are simultaneously ac-
tive in a common layer. It would also be interesting to ana-
lyze multilayer versions of the susceptible-infected-recovered
(SIR) model of epidemic spread, such as in analyzing vacci-
nation strategies with limited supplies when nodes can carry
multiple viral strains. Finally, it may be interesting to incorpo-
rate ‘edge weights’ (i.e., the information about how many lay-
ers an edge is active in) into the structural analysis. This will
help study the ‘robustness’ of the giant component, or that of
a multilayer path. Our analysis in this paper was limited to the
first-order effect—connectivity—which does not pay heed to
the ‘strength’ of an edge. Aside from robustness analysis, an-
other interesting reason to consider edge weights would be to
study multiple simultaneous inter-layer information flows. In
such a scenario, if an edge that bridges two highly connected
islands is only active in one layer, it may become a “bottle-
neck” link, whereas being active in several layers would make
the multi flow information traversal easier.
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Appendix A: The constant c in the asymptotic scaling law for
the multilayer site-percolation threshold, qc(M) ∼ c/

√
M

In Section I, we showed that for our multilayer network
defined on any underlying graph G, the threshold on the
single-layer site-occupation probability which when exceeded
makes a GCC appear in the M-layer network G(M), satisfies
qc(M) ∼ c/

√
M for M large. We also argued that if q is cho-

sen to be any function that diminishes faster than 1/
√

M, then
all the bonds of G(M) are inactive with w.h.p., whereas if q
is chosen as any function of M that diminishes even a little
slower compared to 1/

√
M, then all the bonds of G(M) are ac-

tive w.h.p., thereby showing that the 1/
√

M scaling of q is a
sharp connectivity threshold for the M-layer network. In Sec-
tion I, we also presented an intuitive argument to show that
c =

√
− ln(1 − pc), where pc is the bond percolation threshold

of G. In this Appendix, we will prove this rigorously for the
case when G is a tree. We believe that this result is true for an
arbitrary graph G (i.e., even one that has cycles) as long as G
has a well-defined bond percolation threshold. We leave the
extension of the proof below, for this general case, for future
work.

Theorem 1 [Multilayer site percolation: the constant in
the scaling] For a homogenous multilayer network formed
via merging M random site-percolation instances of a graph
G with a tree topology and site-occupation probability q, the
threshold qc(M) on the single-layer site-activation probabil-
ity such that a spanning cluster appears satisfies: qc(M) ∼
c/
√

M as M → ∞, where c =
√
− ln(1 − pc) and pc is the

bond-percolation threshold of G.

Proof. Given the discussion in Section I, the only additional
argument that we need in order to complete the proof is the
fact that when q = aM−1/2 for a constant a > 0, the bond
activation events in the M-layer graph G(M) are statistically
independent, when M → ∞. In Proposition 3 below, we will
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prove this bond independence statement for the case when G
is a tree. Let us first begin with a few preliminaries.

If (Z,N, q) is a binomial rv with mean µ = Nq the following
Chernoff’s bounds hold:

P(Z ≤ (1 − δ)µ) ≤ e−µδ
2/2 (A1)

and

P(Z ≥ (1 + δ)µ) ≤ e−µδ
2/3 (A2)

for any δ ∈ (0, 1). From the above we get

P((1 − δ)µ ≤ Z ≤ (1 + δ)µ) ≥ 1 − e−µδ
2/3 − e−µδ

2/2.(A3)

For any mapping f : {0, 1, . . .} → [0, 1], define

F f (N) =

N∑
n=0

(
N
n

)
qn(1 − q)N−n f (n). (A4)

Lemma 2 For any δ ∈ (0, 1)

g f (N, δ)
(
1 − 2e−µδ

2/3
)
≤ F f (N) ≤ h f (N, δ) + 2e−µδ

2/3 (A5)

with

g f (N, δ) := min
b(1−δ)µc≤n≤d(1+δ)µe

f (n) (A6)

h f (N, δ) := max
b(1−δ)µc≤n≤d(1+δ)µe

f (n). (A7)

Proof. Fix δ ∈ (0, 1). We have

F f (N) = S f ,1(N, δ) + S f ,2(N, δ) + S f ,3(N, δ)

with

S f ,1(N, δ) =

d(1+δ)µe∑
n=b(1−δ)µc

(
N
n

)
qn(1 − q)N−n f (n)

S f ,2(N, δ) =

b(1−δ)µc−1∑
n=0

(
N
n

)
qn(1 − q)N−n f (n)

S f ,3(N, δ) =

N∑
n=d(1+δ)µe+1

(
N
n

)
qn(1 − q)N−n f (n).

(a) Upper bound.

With (A7) we get

S f ,1(N, δ) ≤ h f (N, δ)
N∑

n=0

(
N
n

)
qn(1 − q)N−n = h f (N, δ),

S f ,2(N, δ) ≤
b(1−δ)µc−1∑

n=0

(
N
n

)
qn(1 − q)N−n since f ∈ [0, 1]

= P(Z ≤ b(1 − δ)µc − 1)

≤ P(Z ≤ (1 − δ)µ) ≤ e−µδ
2/2,

by using Chernoff’s bound (A1), and

S f ,3(N, δ) ≤
N∑

n=d(1+δ)µe+1

(
N
n

)
qn(1 − q)N−n

= P(Z ≥ d(1 + δ)µe + 1)

≤ P(Z ≥ (1 + δ)µ) ≤ e−µδ
2/3,

by using Chernoff’s bound (A2). In summary,

F f (N) ≤ h f (N, δ) + 2e−µδ
2/3. (A8)

(b) Lower bound.

With (A6) we get

F f (N) ≥ S f ,1(N, δ)

≥ g f (N, δ)
d(1+δ)µe∑

n=b(1−δ)µc

(
N
n

)
qn(1 − q)N−n

= g f (N, δ) (P(b(1 − δ)µc ≤ Z ≤ d(1 + δ)µe)

≥ g f (N, δ)
(
1 − e−µδ

2/2 − e−µδ
2/3

)
from (A3)

≥ g f (N, δ)
(
1 − 2e−µδ

2/3
)
. (A9)

Combining (A8) and (A9) yields (A5).

Throughout ā = 1 − a for any a ∈ [0, 1]. Let us represent
a tree T as T = (v,T1, . . . ,TL), where Tl is a subtree hanging
off the root v. We denote by vl the root of subtree Tl.

Let us represent the state of a tree X(T ) by
X(T ) = {(X1, X(T1)), . . . , (XL, X(TL))} where Xl ∈ {0, 1}
is the state of link (v, vl) between v and subtree Tl. Here
Xl = 0 means the link is inactive, otherwise it is active. Last,
let T = ∅ denote the empty tree (L = 0). Suppose that there
are M layers and let q be the probability that a site is occupied
in one layer.

Let QT,x(T ) = P(X(T ) = x(T )) denote the probability that
the link state of the tree is x(T ). It can be expressed as

QT,x(T ) =

M∑
n=0

(
M
n

)
qn(1 − q)M−nQT,x(T )(n). (A10)

Here QT,x(T )(n) is the probability that the link state of tree T is
x(T ) conditioned on the number of occupied layers at the root
being n. It satisfies the recursion:

QT,x(T )(n) =

L∏
l=1

{
x̄l(1 − q)n

M−n∑
i=0

(
M − n

i

)
qi(1 − q)M−n−i

×QTl,x(Tl)(i) + xl

n∑
j=1

(
n
j

)
q j(1 − q)n− j

×

M−n∑
i=0

(
M − n

i

)
qi(1 − q)M−n−iQTl,x(Tl)(i + j)

}
(A11)
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with x(T ) = ((x1, x(T1)), . . . , (xL, x(Tl))). By convention
QTl,x(Tl)(·) = 1 if Tl is only composed of the node νl.

In the r.h.s. of (A11) the term x̄l(q̄n ∑M−n
i=0

(
M−n

i

)
qi(1 −

q)M−n−iQTl,x(Tl)(i) accounts for the fact that if link (v, vl) is
inactive (xl = 0) then node vl cannot share any layer with node
v (this occurs with probability (1−q)n) but otherwise can have
any other layers among the M − n remaining layers; the term
xl

∑M−n
i=0

(
M−n

i

)
qi(1 − q)M−n−i ∑n

j=1

(
n
j

)
q j(1 − q)n− jQTl,x(Tl)(i + j)

accounts for the fact that if link (v, vl) is active (xl = 1) then
node vl must share at least one layer with node v but otherwise
can take any other layers. The product accounts for the fact
that subtrees T1, . . . ,TL have stochastically independent
behavior conditioned on the state, n, of node v.

In particular,

QT,x(T )(n) =

N∏
l=1

(x̄l(1 − q)n + xl(1 − q̄n)) (A12)

if Tl = (νl) for l = 1, . . . , L or, equivalently, if T is only com-
posed of its root v and of its leaves v1, . . . , vL.

Interverting the last two sums in (A11) gives

QT,x(T )(n) =

L∏
l=1

{
x̄l(1 − q)n

M−n∑
i=0

(
M − n

i

)
qi(1 − q)M−n−i

×QTl,x(Tl)(i) + xl

M−n∑
i=0

(
M − n

i

)
qi(1 − q)M−n−i

×

n∑
j=1

(
n
j

)
q j(1 − q)n− jQTl,x(Tl)(i + j)

}
. (A13)

Proposition 3 Assume that q = aM−1/2(1 + o(1)). Then,

lim
M→∞

QT,x(T ) =

L∏
l=1

{(
x̄le−a2

+ xl

(
1 − e−a2))

×

nl∏
j=1

(
x̄l, je−a2

+ xl, j

(
1 − e−a2))}

(A14)

with x(T ) = ((x1, x(T1)), . . . , (xL, x(TL))), nl the number of
links in the subtree Tl and (xl, j, j = 1, . . . , nl) the state of these
links.

Eq. (A14) shows that the links become stochastically inde-
pendent of each other as M becomes large.

Proof. Throughout we assume that q = aM−1/2(1 + o(1)).
Consider first the tree T = (v, v1, . . . , vN) of height one,

composed of the root ν and of the leaves ν1, . . . , νN . From
(A12) we see that

lim
M→∞

QT,x(T )( f (M)) =

L∏
l=1

(
x̄le−a2

+ xl

(
1 − e−a2))

(A15)

for any mapping f such that f (M) = aM−1/2(1 + o(1)).

Let T = ((x1, x(T1)), . . . , (xL, x(TL))) be an arbitrary tree,
with nl the number of links in the subtree Tl and (xl, j, j =

1, . . . , nl) the state of these links. We will prove that:

lim
M→∞

QT,x(T )( f (M)) =

L∏
l=1

(
x̄le−a2

+ xl

(
1 − e−a2))

×

nl∏
j=1

(
x̄l, je−a2

+ xl, j

(
1 − e−a2))

(A16)

for any mapping f such that f (M) = aM−1/2(1 + o(1)).

We use an induction argument to prove (A16). We know
from (A15) that (A16) is true for any tree of height one.
Assume that it is true for any tree of height k and let us prove
that it is still true for a tree of height k + 1.

Let T = ((x1, x(T1)), . . . , (xL, x(TL))) be an arbitrary tree of
height k + 1, with nl the number of links in the subtree Tl and
(xl, j, j = 1, . . . , nl) the state of these links. Subtrees (Tl)l have
height at most k with at least one having a height of k.

Define µ(m) = mq and δ(m) = 1/mα with 0 < α < 1/4.
From (A10), (A13) and Lemma 2 we obtain the following
two-sided bounds for QT,x(T ) and QT,x(T )(n):

QT,x(T )(a0(M))(1 − γ(M)) ≤ QT,x(T ) ≤ QT,x(T )(a1(M)) + γ(M)
(A17)

with

a0(m) := arg min
{
QT,x(T )(i) : α(m) ≤ i ≤ β(m)

}
a1(m) := arg min

{
QT,x(T )(i) : α(m) ≤ i ≤ β(m)

}
,

and
l∏

l=1

(
x̄lq̄nQTl,x(Tl)(bl,0(M − n)) + xl(1 − q̄n)(1 − γ(M − m))L

≤ QT,x(T )(n) ≤
L∏

l=1

(
x̄lq̄nQTl,x(Tl)(bl,1(M − n)) + xl (1 − q̄n)

×QTl,x(Tl)(cl,1(M − n)) + 2γ(M − n)
)

(A18)

with

bl,0(m) := arg min
{

QTl,x(Tl)(i) : α(m) ≤ i ≤ β(m)
}

bl,1(m) := arg max
{

QTl,x(Tl)(i) : α(m) ≤ i ≤ β(m)
}

cl,0(m) := arg min
{

QTl,x(Tl)(i + r) : α(m) ≤ i ≤ β(m),

1 ≤ r ≤ m
}

cl,1(m) := arg max
{

QTl,x(Tl)(i + r) : α(m) ≤ i ≤ β(m),

1 ≤ r ≤ m
}
,



14

where α(m) := b(1 − δ(m))µ(m)c, β(m) := d(1 + δ(m))µ(m)e,
γ(m) := 2e−µ(m)δ(m)2/3.

Since bl,0(M − n), cl,0(M − n), bl,1(M − n) and cl,1(M − n)
all behave as a

√
M(1 + o(1)) when n = a

√
M(1 + o(1))

and M is large, we can use the induction assump-
tion to replace n by a

√
M(1 + o(1)) in both the lower

bound and the upper bound in (A18). By letting now
M → ∞ in the latter expressions we obtain from
the induction hypothesis that both bounds converge to∏L

l=1

{(
x̄le−a2

+ xl

(
1 − e−a2

))∏nl
j=1

(
x̄l, je−a2

+ xl, j

(
1 − e−a2

))}
,

which proves that

lim
M→∞

QT,x(T )( f (M)) =

L∏
l=1

{(
x̄le−a2

+ xl

(
1 − e−a2))

×

nl∏
j=1

(
x̄l, je−a2

+ xl, j

(
1 − e−a2))}

. (A19)

From a0(M) = a
√

M(1 + o(1)) and a1(M) = a
√

M(1 + o(1)),
(A19) and the bounds in (A17), we finally get

lim
M→∞

QT,x(T ) =

L∏
l=1

{(
x̄le−a2

+ xl

(
1 − e−a2))

×

nl∏
j=1

(
x̄l, je−a2

+ xl, j

(
1 − e−a2))}

, (A20)

which concludes the proof.
This concludes the proof of Theorem 1, for the case when

G is a tree.

Remark 4 We believe the asymptotic independence property
holds even when G is an arbitrary graph and that c takes the
same value as above. This is supported by extensive simula-
tions.

Remark 5 In Appendix B, we argue (without proof) that for
any (finite) M ≥ 1, qc(M) ≤

√
− ln(1 − pc)/

√
M.

Finally, it is intuitive that the cluster sizes must grow with
the number of layers M. In other words, the single-layer site-
occupation probability q at which the M-layer network perco-
lates (i.e., has a spanning cluster appear) should decrease as
M increases. The following monotonicity property on qc(M)
makes this intuition precise.

Proposition 6 qc(M) is a non-increasing function of M, i.e.,
qc(M) ≥ qc(M + 1),∀M.

Proof. This is easily proven using sample path arguments.
Given a site-occupation probability q for each of M layers, the
addition of the (M + 1)-st layer with the same site-occupation
probability can only increase the number of connected sites.
Consequently, if a spanning cluster appears in the network
with site-occupation probability q, then it can only increase
in size with the addition of the (M + 1)-st layer. One practical
import of this is that one can limit the search for qc(M + 1) to
the interval (0, qc(M)].

Appendix B: An intuitive argument, using the coupon-collector
problem, to show that: qc(M) ≤

√
− ln(1 − pc)/

√
M

In this Appendix, we provide an alternative intuitive argu-
ment to show that

√
− ln(1 − pc)/

√
M is an upper bound to

qc(M) for all M ≥ 1. In Section I, we provided one intuitive
argument for the same.

In the classic coupon collector problem, one draws, with
replacement, from a box containing n distinct coupons. It
is known that m draws fetch, roughly, n(1 − e−m/n) distinct
coupons. Let us say each of the n = |E| bonds of G is a
coupon. The expected number of bonds in each layer Gi is
nq2, since q2 is the marginal probability of a bond. There-
fore, each layer can be regarded as roughly nq2 coupon draws.
Hence M layers would be seen as m = Mnq2 coupon draws.
qc is the value of q that corresponds to the number of draws
that will fetch just enough distinct coupons (bonds) for the M-
layer graph to percolate. For standard i.i.d. bond percolation,
npc distinct bonds (on an average) would be sufficient for per-
colation. However, since bond activations are spatially corre-
lated in each layer, npc coupons will be more than enough for
percolation. Hence we get, npc ≥ n(1 − e−(Mnq2

c )/n), which
translates to qc(M) ≤

√
− ln(1 − pc)/

√
M. As the reader

would notice, there are several loose ends to the above argu-
ment in mapping multilayer percolation to the classic coupon
collector problem. To name some: (1) each layer does not
draw exactly nq2 coupons (it is an expected number); (2) fur-
thermore, the nq2 coupon draws within one layer are done
without replacement (duplicate bonds can arise only from dif-
ferent layers); (3) a graph with exactly npc distinct bonds does
not guarantee percolation. That number is the average num-
ber of bonds at percolation when each bond is drawn inde-
pendently at random; and finally (4) the bonds in multilayer
percolation are not drawn independently at random. Bond ac-
tivations are spatially correlated. However, it is this last point,
as we argue above, that leads to

√
− ln(1 − pc)/

√
M being an

upper bound to qc(M), and the first three points can be dealt
with using ideas similar to those used in the proof of Theo-
rem 1.

Appendix C: Multilayer random graph: proof that qc(M) is the
smallest solution of det(A(q)) = 0

Proposition 7 Assume that C > 1. For a random graph with
node degree distribution pk, qc(M) is the smallest solution of

det(A(q)) = 0 (C1)

within the interval [0, 1], with A defined in Eq. (3).

Proof. Since A(0) is the identity matrix, det(A(0)) = 1. On
the other hand, it is easy to see that det(A(1)) = 1 − C < 0
under the assumption that C > 1. Therefore, the mapping
q → det(A(q)) has at least one zero in [0, 1]. Let q0 be such a
zero. For q in the vicinity of q0, det(A(q)) , 0 since det(A(q))
is a polynomial in the variable q. By Cramer’s rule,

µn(q) =
det(An(q))
det (A(q))

(C2)
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for q in the vicinity of q0 with q , q0, where An(q) is the
matrix formed by replacing the n-th column of A(q) by bT .
We claim that there exists at least one n? ∈ {1, . . . ,M} such
that det(An? (q0)) , 0. Letting q → qc, we get from (C2)
that µn? (q0) := limq→q0 µn? (q) = ∞. Therefore, µ0(q0) = ∞

from (2) since µ0(q) is expressed as a linear combination of
µ1(q), . . . , µM(q) with positive coefficients. This shows that
there is an infinite size spanning cluster (a giant component)
when q = q0. Via sample path arguments one can show that
there exists an infinite size spanning cluster for q > qc(M),
where qC(M) is the smallest zero of det(A(q)) in [0, 1].

Numerically, it is easy to verify that det(A(q)) has a unique
zero in [0, 1] for all M ≥ 1 as long as C > 1. We conjecture
that this is always true.

Appendix D: Uniqueness of the root of fM(q) = 0, the analytical
lower bound to qc(M) for the kagome lattice

In this Appendix, we provide a proof for the fact that
fM(q) = 0 in Eq. (12) has a unique solution in (0, 1). Let
us take M ≥ 1. We can rewrite fM(q) as

fM(q) = 3(1−2q2 +q3)M − (1−3q2 +2q3)M − (1−q2)M −Mq2.

The derivative of fM(q) is f ′M(q) = 2MqgM(q) with

gM(q) =
3
2

(3q − 4)(1 − 2q2 + q3)M−1

+3(1 − q)(1 − 3q2 + 2q3)M−1

+(1 − q2)M−1 − 1. (D1)

We want to show that gM(q) ≤ 0 for all q ∈ [0, 1], or
equivalently that the mapping q → fM(q) is decreasing in
[0, 1], which will show that fM(q) has a unique zero in [0, 1]
since fM(0) = 1 and fM(1) = −M.

Since

(1 − 2q2 + q3) − (1 − 3q2 + 2q3) = q2(1 − q) ≥ 0

for all q ∈ [0, 1], we have that

(1 − 2q2 + q3)M−1 ≥ (1 − 3q2 + 2q3)M−1 ≥ 0

for all q ∈ [0, 1]. So, noting that 3q − 4 < 0, we have from
(D1),

gM(q) ≤
(

3
2

(3q − 4) + 3(1 − q)
)

(1 − 3q2 + 2q3)M−1

+(1 − q2)M−1 − 1

= −3
(
1 −

q
2

)
(1 − 3q2 + 2q3)M−1

+(1 − q2)M−1 − 1 (D2)
≤ 0.

The last inequality follows by observing that the first term in
the right hand side of (D2) is always negative and (1−q2)M−1−

1 ≤ 0 for all q ∈ [0, 1]. Hence, the proof that fM(q) = 0 has a
unique root in (0, 1) is complete.

Appendix E: Uniqueness of the root of gM(q) = 0 in (0, 1]

It is simple to see why gM(q) has a unique root in (0, 1]. We
start by taking the derivative of gM(q) with respect to q,

g′M(q) = −2qM(1 − q2)M−1 +
M
C

(1 − q)M−1

=
M
C

(1 − q)M−1
(
1 − 2qC(1 + q)M

)
.

Let us define hM(q) = 1 − 2qC(1 + q)M , so that

g′M(q) =
M
C

(1 − q)M−1hM(q). (E1)

We have

h′M(q) = −2C(1 + q)M − 2qCM(1 + q)M−1

= −2C(1 + q)M−1(1 + qM).

Since h′M(q) < 0 for all q ∈ [0, 1], the mapping q → hM(q) is
strictly decreasing in [0, 1]. From hM(0) = 1 and hM(1) = 1 −
C2M+1 < 0 (since C > 1) there exists q0 such that hM(q) > 0
for q ∈ [0, q0), hM(q0) = 0 and h′M(q) < 0 for q ∈ (q0, 1].
Hence, from (E1), we conclude that gM(q) is increasing in
[0, q0) and decreasing in (q0, 1]. Since gM(0) = 0 and gM(1) =

1/C − 1 < 0, which shows that gM(q) has a unique zero in
(0, 1].

Appendix F: Uniqueness of the root of fSB(q) = 0 in (0, 1)

In this Appendix, we will prove that fSB(q) has a unique
root in (0, 1) for any given pc, qc and M. When M = 1, fSB(q)
has a unique zero in (0, 1) at q = B − A = qc. Assume from
now on that M ≥ 2. The equation fSB(q) = 0 is equivalent to

φ(q) :=
1 − (1 − q)M + A

B
=

(1 − (1 − q)M)2

1 − (1 − q2)M := ψ(q). (F1)

Since φ′(q) = M(1 − q)M−1/B > 0 for q ∈ (0, 1) (as B > 0) we
conclude that the mapping q → φ(q) is strictly increasing in
(0, 1).

Let us now show that the mapping q → ψ(q) is strictly
decreasing (0, 1). We find

ψ′(q) = 2M(1 − (1 − q)M)(1 − q)M−1 ×[
1 − (1 − q2)M − q(1 + q)M−1(1 − (1 − q)M)

]
(1 − (1 − q2)M)2

=
2M(1 − (1 − q)M)(1 − q)M−1

(1 − (1 − q2)M)2)
νM(q) (F2)

with νM(q) := 1 − q(1 + q)M−1 − (1 − q)(1 − q2)M−1. We
have ν2(q) = −q3. Assume that νM(q) < 0 for q ∈ (0, 1) for
M = 2, . . . ,N and let us show that νN+1(q) < 0 for q ∈ (0, 1).

We have

νN+1(q) = νN(q) − q2(1 + q)N−1(1 − (1 − q)N).
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Since q2(1+q)N−1(1− (1−q)N) > 0 for q ∈ (0, 1) we conclude
from the induction hypothesis that νN+1(q) < 0 for q ∈ (0, 1).
This proves that ψ′(q) < 0 for q ∈ (0, 1), which in turn shows
that ψ(q) is strictly decreasing in (0, 1).

Because a strictly increasing function and a strictly decreas-
ing function can intersect at most once, we have proved that
(F1) has at most one solution in (0, 1). It has exactly one
solution since φ(0) = A/B ≤ 0 (as A ≤ 0 and B > 0),
φ(1) = (1 + A)/B = 1/pc > 1, ψ(0) = M and ψ(1) = 1, which
shows that φ(x) and ψ(x) intersect exactly once in (0, 1). This
completes the proof.

Appendix G: Adaptation of the Newman-Ziff algorithm for
multilayer percolation

In order to run multilayer simulations on lattices and ran-
dom graphs, we used an adaptation of the Newman-Ziff tech-
nique [17]—an efficient algorithm to simulate site and/or bond
percolation systems whose runtime is essentially linear (in the
number of nodes or sites). This algorithm has been exten-
sively used for numerical analyses of percolating systems, and
extended to analyzing random graphs [22], continuum per-
colation on an Eulidean space [36], and inter-connected net-
works [37]. We adapted the Newman-Ziff algorithm (see Ap-
pendix G for details) to simulate multilayer percolation for
several 2D regular lattices—the square, triangular, kagome,
and the family of fully-triangulated lattices [28]. Let us first
review the basic algorithm.

1. The Newman-Ziff algorithm

The underlying idea is based on a union-find algo-
rithm [38]. One chooses a random order in which sites (or
bonds) are occupied sequentially, and the algorithm keeps
track of all the connected components at each step using
a union-find data structure. Each cluster is represented
by one root member, and every member i is linked to a
unique parent p(i) in the same cluster as i, except the roots
who are their own parents. There are two main functions:
findroot(i) and merge(i,j). findroot(i) follows the
links (viz., p(p(i)) . . .) from i to the root of its cluster, r(i).
Every time a new member i is added to the percolating sys-
tem, the algorithm iterates through all nearest neighbors of
the new member, and for each neighbor j that is occupied,
it calls the merge(i,j) routine, which uses findroot(i)
and findroot(j) to find r(i) and r( j) and declares the one
whose cluster is larger to be the parent of the other (viz.,
p(r(i)) = r( j) if i’s cluster is smaller than j’s), unless of
course r(i) = r( j) in which case they are already in the same
cluster. The runtime of findroot(i) is proportional to the
length of the path from i to r(i), which an inductive argument
shows can never exceed log2 N, where N is the system size.
Newman-Ziff used a trick called path compression to make
these paths—averaged over the execution of the algorithm—
even smaller. When findroot(i) traces its way to r(i), not-

ing that r(i) is the root for each object j along the path from i
to r(i), it assigns p( j) = r(i) for all those objects, linking each
one directly to the root of the cluster. So next time we call
findroot, it would work in a single step. With this modi-
fication to findroot(), the amortized cost of the findroot
and merge operations (cost per operation, averaged over many
operations), is essentially O(N). To be precise, the amortized
cost per step is proportional to the inverse of the Ackermann
function α(N), which grows incredibly slowly with N [38].

2. Simulation of layered percolation

The first step in setting up the simulation for layered per-
colation is to create the nearest-neighbor matrix A, where
A(i, k) = j means node j is the k-th neighbor of node i,
1 ≤ k ≤ d(i), where d(i) is the degree of node i. As an illus-
tration of the construction of the nearest-neighbor matrix, we
show in Fig. 10 how we numbered the nodes for the kagome
lattice, and assigned values to A(i, k) for 0 ≤ i ≤ N − 1,
0 ≤ k ≤ 3, for a kagome lattice with N nodes each of degree,
d = 4.

Algorithm 1 summarizes the remainder of the algorithm
MultiLayerNewmanZiff(A,N,M), that takes as inputs, the
nearest-neighbor matrix A, the number of nodes N and the
number of layers M, and produces estimates of the multilayer
thresholds, qc(m), m = 1, . . . ,M. The algorithm, as written
below, accurately estimates the sizes of the largest cluster,
ClusterSize(m, i) for an m-layer merged lattice as a function
of the single-layer site-occupation probability, q ≡ i/N. For
lattices, the maximum cluster sizes ClusterSize(m, i) have a
sharp discontinuity at q = qc(m) (i.e., i = ic ≡ Nqc(m)) for
an infinite size lattice (see Fig. 7(a) for instance), for N large
enough. Therefore, the i value where the discrete slope of the
maximum cluster size (ClusterSize(m, i) − ClusterSize(m, i −
1)) is maximum gives a pretty good estimate of ic(m) (hence,
that of qc(m)), which suffices for the purposes of this paper.
A more accurate way to estimate the threshold qc(m) involves
estimating the wrapping probabilities, which are probabilities
that a cluster wraps around the lattice boundary conditions,
either vertically, or horizontally, or both.
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Algorithm 1 MultiLayerNewmanZiff(A,N,M)
Require: The nearest-neighbor matrix A of a graph G, and the total

number of layers, M.
1: for m = 0 to M − 1 do
2: Initialize: cluster size dummy variable, C(m) = 0;
3: Generate a random permutation, πm() of [1, . . . , n];
4: for i = 0 to N − 1 do
5: ptr(m, i)=EMPTY;
6: end for
7: end for
8: for i = 0 to N − 1 do
9: for m = 0 to M − 1 do

10: occupied(m′, πm′ (i)) = 0;
11: for m′ = 0 to m do
12: s1 = πm′ (i);
13: occupied(m′, s − 1) = 1;
14: if ptr(m, s1) , EMPTY then
15: r1 = FindRoot(s1,m);
16: if −ptr(m, r1) > big(m) then
17: big(m)= −ptr(m, r1);
18: end if
19: else
20: ptr(m, s1) = −1;
21: r1 = s1;
22: end if
23: for j = 0 to d − 1 do
24: s2 = A(s1, j);
25: if occupied(m′, s2) = 1 then
26: r2 = FindRoot(s2,m);
27: if r2 , r1 then
28: if ptr(m, r1) > ptr(m, r2) then
29: Increment ptr(m, r2) by ptr(m, r1);
30: ptr(m, r1) = r2;
31: r1 = r2;
32: else
33: Increment ptr(m, r1) by ptr(m, r2);
34: ptr(m, r2) = r1;
35: end if
36: if −ptr(m, r1) > C(m) then
37: C(m) = −ptr(m, r1);
38: end if
39: end if
40: end if
41: end for
42: end for
43: ClusterSize(m, i) = C(m)/N;
44: end for
45: end for
46: for m = 0 to M − 1 do
47: slopemax = 0;
48: for i = 1 to N − 1 do
49: slope = ClusterSize(m, i)-ClusterSize(m, i − 1);
50: if slope > slopemax then
51: slopemax = slope;
52: qc(m) = i/N;
53: end if
54: end for
55: end for
56: return multilayer percolation thresholds, qc(m), 0 ≤ m ≤ M − 1.
57: function FindRoot(i,m)
58: if ptr(m, i) < 0 then
59: return i;
60: end if
61: return ptr(m, i) = FindRoot(ptr(m, i),m);
62: end function


