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Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Avda. Complutense s/n 28040 Madrid, Spain.
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The accuracy of rate constants calculated using transition state theory depends crucially on the
correct identification of a recrossing–free dividing surface. We show here that it is possible to define
such optimal dividing surface in systems with non–Markovian friction. However, a more direct
approach to rate calculation is based on invariant manifolds and avoids the use of a dividing surface
altogether, Using that method we obtain an explicit expression for the rate of crossing an anharmonic
potential barrier. The excellent performance of our method is illustrated with an application to a
realistic model for LiNC
LiCN isomerization.
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a. Introduction Molecular dynamics is an excellent, although computationally very demanding, tool to accurately
predict rates for chemical reactions and other activated barrier crossing processes. Alternative, and simpler, approaches
can account for the reaction mechanism and rates, often relying on dimensional reduction. Transition State Theory
(TST) [1–3] is among the most popular, because it provides a very simple answer to the two most relevant issues
in rate theory: to predict whether a trajectory is reactive or not, and to provide a simple expression to accurately
compute the corresponding rates. For this reason, TST has been used in fields far from the original chemical reaction
dynamics where it was born, such as celestial mechanics [4], atomic ionization [5], surface science [6], or condensed
matter [7].

The fundamental problem that TST has faced since its inception is the correct identification of an optimal dividing
surface (DS) separating reactants from products that is crossed once and only once by all reactive trajectories.
Although this DS must obviously sit somewhere close to the top of the energetic barrier between reactants and
products, its exact geometry is critical, because trajectories recrossing it give rise to an overestimation of the true
rate constant. A popular alternative is the variational TST (VTST) that identifies the DS location by minimizing
the number of recrossings (see [8] for a review). Fortunately, it has been recently shown that using sophisticated
geometrical techniques [9–11] the problem can be solved exactly for gas phase reactions. For a reaction that is
driven by a noisy environment with ohmic friction it can be solved if the DS itself is made time dependent [12–18].
Anharmonicities of the energy barrier can be taken into account perturbatively [19–22].

In this Letter, we make TST exact also in the more realistic, and more complicated, case of non-Markovian friction.
Indeed, we show how to define a rigorously recrossing-free DS in phase space. This DS is time–dependent and moves
randomly, “jiggling” in the vicinity of the barrier. By allowing a time-dependent DS, we overcome the limits of fixed
configuration space surfaces, which often cannot be made recrossing-free, as Mullen et al. [23] have recently shown in
several examples.

Even though the time-dependent DS satisfies the no-recrossing requirement of traditional TST, a major advance
can still be achieved by shifting the focus away from the DS, which has to be arbitrarily selected by hand, and onto
invariant dynamical structures that the system presents to us. Specifically, we obtain a hypersurface in phase space
that unambiguously separates reactive from nonreactive trajectories. In this way, reactive trajectories can be identified
simply from their initial conditions, without any laborious numerical simulation. This separatrix, which will be shown
to be a stable manifold (SM), provides both a more solid foundation and a more convenient practical tool for rate
theory than the conventional DS. We compute the SM perturbativelly and thus obtain an analytical expression for
the transmission factor and the rate constants for the crossing of anharmonic potential barriers under non-Markovian
noise. We demonstrate the efficiency of our theory by recoverring the correct reaction rates for a realistic model of
the LiCN
LiNC isomerization in an argon bath.

Our current results shed new light on the surprising agreement between PGH theory [24] and our earlier results [25]
on the LiCN reaction at temperatures far above the activated regime for which PGH theory was initially developed.
These results led Pollak and Ankerhold [26] to revisit the assumptions of PGH theory. They found that the bath
temperature does not severely affect the energy loss terms and hence does not modify the form of the rates. In this
Letter we obtain reaction rates in agreement with numerical simulations from a different theoretical starting point,
and thus provide further confirmation that a rate description of the process is indeed appropriate. Likewise, our
results improve those reported by Pollak et al. [27, 28], where similar corrections to PGH were obtained by applying a
VTST to a Hamiltonian system whose dynamics mimics that of the popular generalized Langevin equation (GLE) [29],
providing at the same time a simpler and clearer picture of the reaction mechanism from a geometrical point of view
(cf. Fig. 1).

b. Method For the sake of a simple presentation we restrict ourselves to systems with one degree of freedom
(dof), although the generalization to higher dimensions is straightforward. It will be reported elsewhere [30].

The reduced dynamics of a 1-dof system coupled to an external heat bath with memory effects can be adequately
described by the GLE [29]

mẍ = −dU(x)

dx
−m

∫ t

−∞
γ(t− s) ẋ(s) ds+mRα(t), (1)

where m is the mass of the particle, x its position, U the potential of mean force, γ(t) the friction kernel, and Rα(t)
the fluctuating colored noise force per unit mass exerted by the heat bath. It is related to γ(t) by the fluctuation-
dissipation theorem, 〈Rα(0)Rα(t)〉α = kBT γ(t)/m, where 〈...〉α denotes the average over the different realizations α
of the noise.

If the friction kernel takes the exponential form

γ(t) =
γ0
τ

exp(−t/τ) (2)
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FIG. 1. Geometric objects in phase space for Eqns. (3) with an anharmonic barrier. The TS trajectory is indicated by a
yellow dot. Its stable manifold (SM, light blue surface and trajectories therein) and its unstable manifold (black curve) move
and get deformed randomly. The purple curve marks the intersection of the SM with the surface of initial conditions (plane
x = 0). It partitions the surface of initial conditions into reactive (green) and nonreactive (red) regions and defines the critical
velocity V ‡(ζ). Representative reactive (green) and nonreactive (red) trajectories intersect the surface of initial conditions as
indicated by black dots.

with a characteristic correlation time τ and a damping strengh γ0, the GLE (1) can be replaced by a system of
differential equations on a finite dimensional extended phase space [31–34]

ẋ = v, v̇ = ω2
bx+ f(x) + ζ, ζ̇ = −γ0

τ
v − 1

τ
ζ + ξα(t), (3)

where the mean force −dU(x)/dx = mω2
bx + mf(x) is split into a linear term and non-linear corrections f(x) =

−εc3x2− ε2c4x3− . . . . The perturbation parameter ε measures the anharmonicity of the barrier potential and will be

set equal to 1 at the end of the calculation. The auxiliary coordinate ζ is given by ζ = −
∫ t
−∞ γ(t− s) ẋ(s) ds, and ξα

is a white noise source satisfying the fluctuation–dissipation theorem 〈ξα(t) ξα(s)〉α = [2kBT γ0/(mτ
2)]δ(t− s).

If f(x) = 0, the equations of motion (3) are linear and can be solved by diagonalizing the coefficient matrix. We find
one positive eigenvalue λ0 and two eigenvalues λ1,2 that are negative or have negative real parts. The corresponding
diagonal coordinates are denoted by zi.

Equations (3) have a unique solution, called the TS trajectory [12, 13, 20–22] that remains “jiggling” in the vicinity
of the saddle point for all times. It depends on the realization α of the noise. We denote its diagonal coordinates

by z‡i (t) and its position by x‡(t). For the harmonic barrier, i.e. f(x) = 0, the coordinates z‡i (t) can be obtained
explicitly as an integral over the noise ξα [13, 21, 22]. The TS trajectory gives rise to a time-dependent DS x = x‡(t)
that is recrossing-free in the harmonic approximation [12, 13] as well as in anharmonic systems [16–18]. However,
we will not consider this DS any further and focus instead on the invariant structures that determine the reaction
dynamics.
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In relative coordinates ∆zi = zi − z‡i , Eq. (3) reads

∆żi = λi ∆zi +Ki f(x). (4)

Here Ki = −(λj + λk)/[(λi − λj)(λi − λk)], where i, j, k take the values 0, 1, 2 and must be different. In the harmonic
limit Eq. (4) has the simple solution ∆zi(t) = ∆zi(0) exp(λit). Thus, as λ0 > 0, ∆z0(t) is associated with an
exponentially growing unstable direction in phase space, whereas ∆z1(t) and ∆z2(t) are both associated with stable
directions. The plane ∆z0 = 0 forms the SM of the TS trajectory. Trajectories within it asymptotically approach the
TS trajectory as t→∞; they are trapped near the barrier top. Because the SM contains trajectories that are neither
reactive nor nonreactive, it separates reactive from nonreactive trajectories.

When anharmonic terms are present, the SM is deformed in a time-dependent manner, but it stills remains the
separatrix between reactive and nonreactive trajectories: All trajectories starting above the SM approximate the
unstable manifold for large positive values of ∆z0 and finish in the product well defined by x > 0, while trajectories
that lie below the SM will follow the negative part of the unstable manifold into the reactant well x < 0, as sketched
in Fig. 1.

c. Reaction rates The reaction rate can be computed by sampling trajectories from a Boltzmann ensemble at the
barrier top and calculating the reactive flux across the surface of initial conditions x = 0. Under the TST assumption
that this surface is recrossing free, i.e. a trajectory is reactive if it starts with an initial velocity v > 0, this procedure
yields a reaction rate kTST that overestimates the true rate kexact. The violation of the TST assumption can be
quantified by the transmission factor κ = kexact/kTST ≤ 1. The exact rate is obtained if the flux calculation includes
only trajectories that are actually reactive. These are the trajectories that lie above the SM, or, as Fig. 1 shows,
whose initial velocity is larger than a critical velocity V ‡(ζ) that depends on the realization of the noise and on
the initial value of the auxiliary coordinate ζ. This critical velocity encodes all the relevant information about the
reaction dynamics. Because it leads to an exact characterization of reactive trajectories, the critical velocity and the
SM that determines it are more fundamental to the theory than the DS that has customarily been used. We compute
the critical velocity by a perturbative expansion V ‡ = V ‡(0) + εV ‡(1) + ε2V ‡(2) + . . . . This computation follows the
method developed in Refs. 21 and 22 for the case of Markovian friction. Full details will be presented elsewhere [30].

Equipped with the critical velocity one can compute [15, 21, 22] the transmission factor κ =
〈
e−V

‡ 2/2kBT
〉
α,ζ

,

which is averaged both over the noise α and the initial value of ζ. Now, by expanding κ as κ = κ0 + εκ1 + ε2κ2 + . . .,
we finally obtain its lowest order

κ0 =
λ0
ωb
, κ1 = 0,

κ2 = −3κ0kBT

4mω4
b

(
f0,00,1,−1

f0,01,η−1,η

)2{2c23

[
f2,4110,329,−12 + 5f10,04,−17,4 + 2

(
f0,510,41,10 + f4,3115,197,−28 + f6,2115,22,8 + f8,155,−94,6

)]
9ω2

b f
0,0
0,1,η f

0,0
1,2(η−2),4ηf

0,0
4,2η−1,η

+ c4f
0,0
0,1,η

}
,

(5)

with η = λ0(1 + λ0τ)/(ω2
b τ), and fa,bc,d,e = κa0 η

b
(
c κ40 + d κ20 + e

)
.

The leading order κ0 recovers the well known Grote–Hynes theory (GHT) [35]. Because all odd order terms are zero,
the perturbation expansion proceeds in powers of kBT .

d. Model To illustrate the performance of our method we apply it to a simple, yet realistic, model for the
LiNC
LiCN isomerization. It has a number of properties that make it very attractive for dynamical studies. Most
importantly, the bending mode in this system is very floppy, so that chaos sets in at moderate values of the excitation
energy. This reaction has been extensively studied by some of us in the past and very recently in connection to THz
reactivity control [36]. Most relevant in the present context, it furnished the first observation [25, 37] of the turnover
predicted by Kramers in his 1940 seminal paper [24, 26, 38].

To describe the configuration of the LiCN molecule, we use the distance r between the C and N atoms, the distance
R of the Li atom from the center of mass of the CN fragment and the angle ϑ between the Li atom and the CN axis
(see Fig. 2). Because the CN triple bond is very rigid, the distance r will not deviate much from its equilibrium value
re = 2.186 a.u. A potential energy function describing the motion of the Li atom relative to a rigid CN was introduced
by Essers et al. [39]. An improved model can be obtained by combining this potential with a Morse potential for the
CN vibration [40]. The potential energy of the molecule with r = re is shown in the inset to Fig. 2. It has two wells
at ϑ = 0 and ϑ = π rad that correspond to the two linear isomers Li–CN and Li–NC.

Extensive molecular dynamics (MD) simulations of this molecule in a bath of 512 argon atoms were reported
in Refs [25, 37]. It was found there that the isomerization rates for the transitions from the Li–NC to Li–CN
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TABLE I. Parameters of the effective potential shown in Fig. 2 for the two well minima (isomers) and the saddle point.

Parameter Li–CN Saddle point Li–NC

ϑ (rad) 0 0.917 π

UMEP (10−2 a.u.) 1.04 1.58 0

ω (10−4 a.u.) 7.92 9.65 5.90

c3 (10−7 a.u.) – -8.0 –

c4 (10−7 a.u.) – 7.4 –

FIG. 2. Effective potential for the one-dimensional model of LiCN isomerization. It corresponds to the minimum energy path
connecting the two potential wells of the LiNC/LiCN molecular system. The configurations at the barrier top (crossed circle),
and of the two stable isomers associated with the well minima (open circles) are also shown. Inset: Contour plot of the 2-dof
potential. The minimum energy path is plotted superimposed in dashed red line.

configuration and back can be well described by a one-dimensional model in which the molecule is assumed to move
along the minimum energy path (MEP). The MEP and the corresponding potential energy profile are shown in Fig. 2.
This effective potential yields the parameters in Table I that will be used in perturbation theory.

In our study, the dynamics is modeled by the GLE (1), in which the angle ϑ plays the role of the position x and
the potential U is the MEP potential UMEP of Fig. 2. The mass m is replaced by the moment of inertia Iϑ that
describes the rotation of the Li atom relative to the CN fragment. Though the value of Iϑ varies along the MEP, in
the spirit of TST it is fixed to its value at the saddle point of the potential, Iϑ = 42 852 a.u. The friction kernel is
well approximated by the exponential form (2) with the decay time τ = 0.84γ0/ω

2
b [40].

e. Results In Fig. 3, our predictions from perturbation theory (PT) for both the (a) forward LiNC→LiCN, and
backward (b) LiCN→LiNC reactions as a function of the adimensional friction γ0/ωb are compared with the results
of all-atom MD simulations. Results are presented for temperatures T=2500K (blue), 3500K (green), and 5500K
(red). Perturbative results in orders 0 and 2 are indicated by dashed and full lines, respectively. Because our rate
theory, like GHT, is only valid in the spatial diffusion limit, where the friction has moderate to strong values, results
for γ0/ωb < 2 are not included in Fig. 3. From the comparison, the following comments can be made.

The rates always increase with temperature, as should be expected for an activated process. The rates of the
forward reaction are smaller than those of the backward reaction since the corresponding energy barrier is larger.
The perturbative correction is negative. Its magnitude increases with temperature, as expected from Eq. (5). For the
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FIG. 3. Reaction rates for the (a) forward and (b) backward LiNC
LiCN isomerization as a function of the bath friction.
Perturbation theory results of order zero (dashed) and order two (solid) are shown for temperatures T=2500K (blue), 3500K
(green), and 5500K (red). For comparison, results of all-atom MD simulations are shown by symbols with one-sigma error bars.

backward reaction, where the second-order correction is large, it provides a clear improvement of GHT for all values
of the parameters. For the forward reaction, the second-order correction is barely noticeable at low temperatures.
At the highest temperature T = 5500K, where the perturbative correction is significant, the MD results are closer to
GHT than to the PT results if damping is weak. For high damping, the second-order PT again provides a marked
improvement over GHT.

In all cases, there is excellent agreement between the MD and PT rates. In fact, the agreement is striking, considering
that the MD results were obtained from a simulation with an explicit argon bath that is much more complex than
the simple one-dimensional model that yields the PT results.

f. Concluding remarks In summary, it is possible in principle to define a time-dependent recrossing–free DS in
phase space for the dynamics of a particle in an anharmonic barrier that interacts with the environment via non–
Markovian friction, i. e. via colored noise force. However, we have demonstrated that it is advantageous to base a
rate calculation on invariant geometric structures, namely the SM of the TS trajectory, instead of a DS, as customary
in TST. The SM allows the unambiguous identification of reactive trajectories simply by inspection of their initial
conditions, without having to resort to any time–consuming numerical simulation. It provides a formally exact rate
formula that we have evaluated through perturbation theory. In this way we have obtained an explicit expression
for the transmission factor that corrects GHT by including anharmonic effects. It agrees well with the results of an
all-atom model of LiCN isomerization in an argon bath. Finally, the method outlined here can be straightforwardly
generalized to systems of higher dimensionality, as will be reported elsewhere [30].
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