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Linear response theory (LRT), the backbone of non-equilibrium statistical physics, has recently
been extended to explain how and why non-ergodic renewal processes are insensitive to simple
perturbations, such as in habituation. It was established that a permanent correlation resulted
between an external stimulus and the response of a complex system generating non-ergodic renewal
processes, when the stimulus is a similar non-ergodic process. This is the principle of complexity
management (PCM), whose proof relies on ensemble distribution functions. Herein we extend the
proof to the non-ergodic case using time averages and a single time series, hence making it usable
in real life situations where ensemble averages cannot be performed because of the very nature of
the complex systems being studied.

I. INTRODUCTION

The mathematician Norbert Wiener, in the middle of
the last century [1], speculated that a system high in en-
ergy can be controlled by one that is low in energy. The
necessary force is produced by the low energy system
being high in information content, and the high energy
system being low in information content. Consequently,
there is an information gradient that produces the force
by which the low energy system controls the high energy
system, through a flow of information against the tradi-
tional energy gradient. Quantifying the transfer of in-
formation from a complex system high in information to
one low in information is the first articulation of a uni-
versal principle of network science and we refer to this
speculation as Wiener’s Rule (WR).

In a modern context WR can be understood as an
entropic force, used to explain such diverse phenomena
as the elasticity of freely-jointed polymer molecules [2],
oceanic forces [3] and the conscious states in the human
brain, through neuroimaging [4]. Over the past decade
the nascent field of network science has been applied to
determining the conditions under which the WR is fa-
cilitated or suppressed. After half a century WR has
been shown to be correct and has been superseded by
the more detailed Principle of Complexity Management
(PCM) [5, 6].

One result of the many analyses of information trans-
fer, that is being continually rediscovered, is that com-
plex networks in living systems exist at, or on the edge of,
phase transitions, which optimizes both intra- and inter-
network information transmission [7]. Moreover, the sta-
tistical distributions of a diverse collection of complex
systems are inverse power law, whether modeling the con-
nectivity of the internet or social groups, the frequency or
magnitude of earthquakes, the number of solar flares, the
time intervals in conversational turn taking, and many
other phenomena, see for example [8]. The power-law
index is the measure of complexity in each system.

Traditional methods of non-equilibrium statistical

physics have not been successful in addressing the ques-
tion of information transfer between complex networks.
For example, in studying the response of complex systems
to harmonic perturbations it was determined by many
authors [9–12], that linear response theory (LRT), a cor-
nerstone of physics, was “dead”. An assessment of this
premature death, made by Aquino et al. [5, 6], resulted
in a generalization of LRT (GLRT) that was successfully
applied to the question of information transfer between
complex dynamic networks. These latter authors focused
on the intimate connection between neural organization
and information theory, as well as the production of 1/f
noise. Their research supported the observation that 1/f
signals are encoded and transmitted by sensory neurons
with greater efficiency than are white noise signals [13].
Psychologists interpret the generation of 1/f noise as a
manifestation of cognition [14, 15], although no psycho-
logically well founded model for the origin of 1/f noise
yet exists [16]. However, experimental observation of
brain dynamics either monitoring EEG activity [17] or
through actigraphy [18] confirm that the awake condi-
tion of the brain is a source of 1/f noise [19].

Despite its successes, GLRT, like its predicesor LRT,
has a fundamental limitation that hinders its application
to many real world systems. In this article we review the
current results obtained using GLRT, and demonstrate
how to overcome its limitations by using theoretical argu-
ments and verify the theory using numerical simulations.

II. RENEWAL EVENTS

It is useful to introduce the notion of a renewal event,
which is an event associated with a reorganization of the
system under study. It is customary to call the time be-
tween two renewal events a laminar region; the lengths
of two consecutive laminar regions are independent. We
study complex systems that exhibit inverse power-law dy-
namical behavior. A good approximation for the waiting
time distribution (WTD) between two renewal events in
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these systems is :

ψ(t) =
(µ− 1)Tµ−1

(T + t)µ
, (1)

where T and µ are parameters characterizing the complex
system under study. Normalizability of ψ requires that
the power-law index µ, the index of complexity, must be
larger than one. When 2 < µ < 3 the second moment
is infinite, so these systems obey the generalized central
limit theorem (GCLT) [20] and are in the Lévy basin
of attraction. When 1 < µ < 2, the mean time also
becomes infinite; in this case the GCLT does not apply.
These systems are non-ergodic.

Equation (1) can be used to calculate the probability
of having a laminar region that is at least as long as t
(survival probability):

Ψ(t) = 1−
∫ t

0

ψ(t) dt =

(
T

T + t

)µ−1
. (2)

Another useful quantity that will play a key role in this
article is the rate R(t) at which new events are generated,
given that an event occured at t = 0. When 2 < µ < 3
we have [21]

R(t) ∼ 1

t

[
1 +

(
T

t

)µ−2
1

3− µ

]
, (3)

where t is the first moment. In this case the system is
Poissonian only in the infinite time limit. In the non-
ergodic regime (1 < µ < 2), where the first moment
diverges, Feller [22] demonstrated that the rate at which
new events are generated is:

R(t) ∝ 1

t2−µ
, 1 < µ < 2. (4)

The main implication of this result is that a non-ergodic
system is in a perennial non-equilibrium state, as the
rate at which events are generated keeps decreasing for-
ever (notice the difference with the usual Poissonian case,
where this rate is constant). A direct consequence of (4)
is that performing ensemble averages of statistical prop-
erties, related to renewal events for systems that have
an event at t = 0, is different from making time aver-
ages of the same properties on a single system that was
prepared at t = 0, since the latter averages change with
time. This change of statistical properties with time is a
consequence of the fact that they are linked to the rate
of event generation. In other words, by definition, these
latter systems are non-ergodic, as we anticipated while
discussing the properties of the moments of ψ.

In order to create a time series ξ(t) for a complex sys-
tem characterized by the above statistical properties, a
value 1 or -1 is associated with each laminar region. At
each renewal event a fair coin is tossed to decide wether
to switch from one value to the other. The time series
ξ(t) allows us to define the autocorrelation function

Φ(t, t′) ≡ 〈ξ(t)ξ(t′)〉 , (5)

that is needed when the LRT and GLRT are introduced.
As an aside, we notice that the power spectrum of ξ(t)

also depends on µ. In the Gauss basin of attraction [20],
µ > 3, the spectrum S(f) for f � 1 is very flat as µ→∞.
For 2 < µ(= 3− β) < 3, in the asymptotic region t� T ,
we have

S(f) ∝ 1

fβ
(6)

[20], which is 1/f noise with β < 1. When µ < 2, we
have [23]

S(f) ∝ 1

L2−µfβ
, (7)

where L is the length of the time series. We also notice
that, under the conditions t� T/(µ− 2) and µ > 2, we
have

S(f) ∝ 1

f2
, (8)

the same result as that obtained for flicker noise.

III. GENERALIZED LINEAR RESPONSE
THEORY: ENSEMBLE AVERAGE

Aquino et al. [5, 6] applied GLRT to the case of one
complex system perturbing another. In the following, the
former is denoted by P (perturbing system), while the
latter is denoted by S (responding system). Thus, the S-
system is characterized by the global variable ξS(t) and
is perturbed by the global variable ξP (t). Conventional
LRT [24] is given by:

〈ξS(t)〉 = ε

∫ t

0

χ(t, t′)ξP (t′) dt′, (9)

where the symbol 〈ξS(t)〉 denotes the Gibbs ensemble av-
erage over infinitely many realizations of the response of
ξS(t) to ξP (t). Without loss of generality, in the absence
of perturbation this average is assumed to vanish. ε� 1
is the stimulus strength. LRT predicts the response of S
on the basis of the unperturbed autocorrelation function
ΦS(t, t′) of ξS(t). In fact, the function χ(t, t′), called the
linear response function (LRF), is related to the deriva-
tive of the autocorrelation function, normalized so that
its quadratic mean value is one. In LRT the autocorrela-
tion function is assumed to depend only on the difference
between t′ and t (hence it is stationary, by definition),
consequently the derivative with respect to t or t′, can
be taken, differing only by a change of sign [24].

When the statistics are non-stationary ΦS(t, t′) doesn’t
depend only on the difference between t′ and t, so, deriv-
ing by t′ is in general different from deriving by t. If the
generalized (G)LRF χ(t, t′) is derived by differentiating
the non-stationary correlation function with respect to
t′ < t, then we have [5]

χ (t, t′) =
dΦS(t, t′)

dt′
= RS (t′) ΨS(t− t′), (10)
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where the subscript indicates that the rate of generation
of new events RS(t), the autocorrelation function ΦS(t)
and the survival probability ΨS(t), are those of the re-
sponding system. In Ref. [25] this choice was referred to
as phenomenological GLRT.

In Ref. [25] it is shown that deriving the GLRF χ(t, t′)
by differentiating the non-stationary correlation function
ΦS(t, t′) with respect to t corresponds to the case in
which the stimulus has the effect of weakly perturbing
the time of occurrence of an event of S. The choice

χ(t, t′) = −dΦS(t, t′)

dt
, (11)

was referred to by Allegrini et al as dynamical GLRT
and has proven to lead to a very accurate agreement with
their experiment on the perturbation of a liquid crystal
[26]. Although the adoption of the ensemble average done
in Refs. [5, 6] leads to correlation plottings between S
and P that are very similar in both the phenomenolog-
ical and dynamical cases, it is important to stress that
the non-ergodic complexity management of this article is
realized with the dynamical procedure.

The PCM is obtained by studying the cross correlation
between ξS and ξP , normalized to ε, as a function of µS
and µP , as t→∞:

Φ∞ = lim
t→∞

〈ξS(t)ξP (t)〉
ε

. (12)

Numerical investigations [5, 6] have indicated a number
of remarkable properties. For example, if the S-system
is ergodic and the P-system is non-ergodic, the cross-
correlation is maximum: this means that there is a flux of
information from the P-system to the S-system (Wiener’s
Rule). When the P-system is ergodic and the S-system
is non-ergodic, the asymptotic cross-correlation vanishes;
thus, there is no residual response of the S-system to the
P-stimulus. Note that this was the domain that earlier in-
vestigators prematurely interpreted as the death of LRT.
In the case in which both systems are ergodic, there is a
partial positive correlation between S and P that changes
with µS and µP ; as is the case when both systems are
non-ergodic.

The extraordinary results obtained using the asymp-
totic cross-correlation function have a fundamental lim-
itation: the predictions of this form of PCM rely on
ensemble averages. Thus, the predictions based on the
cross-correlation are not necessarily valid when we have
only a single non-ergodic time series for each system, that
is, when we cannot apply the equivalence between ensem-
ble averages and time averages. This is a common situa-
tion, since many interesting systems cannot be replicated.
Consider the response of a single molecule to its environ-
ment [27] or a single brain to a unique stimulus, in both,
the response time series is unique, that is, one of a kind.

IV. ESTABLISHING COMPLEXITY
MANAGEMENT WITH TIME RATHER THAN

ENSEMBLE AVERAGES

We begin to address the limitation of a single time
series by describing how the S-system is stimulated. Re-
calling Eq. (1), we note that there are two parameters
that can be perturbed: µ and T . Since µ quantifies the
complexity of the system, it is reasonable to expect that
it can be forced to change only in response to very strong
stimulation. A non-invasive perturbation, therefore, is
expected to only change T . This restriction is in keeping
with the dynamical approach to LRT [25] used in [26], to
design the GLRT [5, 6] that led to such remarkably good
agreement with experimental observation.

The P-system exerts its influence on the S-system as
follows: if S has an event at time t and if its next laminar
region is assigned a value with the same sign as ξP (t),
then S is perturbed so that its next laminar region tends
to be longer, by assigning to its parameter T in Eq. (1)
the value T+ = T (1 + ε). On the contrary, if the next
laminar region of S has a value with the opposite sign to
that of ξP (t), then the value T− = T (1− ε) is used, thus
tending to make the next laminar region shorter.

In order to assess the influence of P on S for a single
time series, using this perturbation procedure, it is nat-
ural to consider a time window of size TW and analyze
the time averaged cross-correlation function:

C (t0, TW ) ≡ 1

TW

∫ t0+TW

t0

ξS(t′)ξP (t′) dt′. (13)

By moving the starting point t0 of the window and
evaluating C, a density plot for the time averaged cross-
correlation can be created as a function of the power-law
indices. A measure of the influence of the P-system on
the S-system is the center of gravity (COG) of this den-
sity plot. In the domain 1 < µS , µP < 2, the COG of the
density plot is erratic; in sharp contrast with the smooth
behavior found in the calculations of the cross-correlation
function in this region obtained using ensemble distribu-
tion functions by Aquino et al. [5, 6]. This is clearly
shown in the left panel of Fig. (1), where C/ε is plotted
as a function of µS and µP . It is worth noting that differ-
ent realizations of the figure lead to different landscapes
in the non-ergodic quadrant. The reasons behind this
behavior will become clear shortly.

The main contribution of this article has two parts.
The first part is a new data processing prescription that
enables one to eliminate the erratic behavior observed in
the left panel of Fig. (1) and produce the smooth behav-
ior of the right panel. In the second part we provide a
theoretical justification for this prescription and calculate
the asymptotic cross-correlation function analytically.

The prescription is to locate the beginning t0 of the
window at which each C is evaluated on an event of either
the perturbing or the perturbed system.

We now present the theoretical foundations that led to
the data processing prescription given above. We start
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FIG. 1: (Color online) COG as a function of the inverse power-law indexes µS and µP . (a) The time sequence of
length L is divided into L/TW intervals of length TW . The cross-correlation function of Eq. (13) is evaluated for

each interval and the landscape is obtained plotting the mean of the resulting distribution of values. (b) The times
t0 of Eq. (13) are the times of event occurrence and the landscape is obtained by plotting the mean of the resulting

distribution of values. The analytical prediction of Eqs. (19) and (20) is shown by the two red (dark gray) lines.

by considering the following random quantity:

ξS =
1

t

∫ t

0

ξS(t′) dt′, (14)

based on different realizations of the unperturbed ξS that
was prepared so as to have an event at t0 = 0. Notice
that the beginning of the window is always located at
t = 0, in contrast to Eq.(13). In the case of µS < 2,
it was shown by performing ensemble averages [20] that
ξS is characterized by the Lamperti probability density
function [28]:

Π(ξS) =
2

π

(
1− ξS

2
)α−1

sinπα(
1− ξS

)2α
+
(
1 + ξS

)2α
+
(

1− ξS
2
)α

cosπα
,

(15)
where α is µS − 1, whose graph is depicted as the sym-
metric curve in Fig. (2). We notice that this distribution
is clearly non-ergodic as a single realization is most prob-
ably located around 1 or -1, while the ensemble average
is zero.

We now consider the time-averaged quantity

ξ ≡ 1

TW

∫ TW

0

ξS(t)ξP (t) dt, (16)

that is obtained from Eq. (13) with t0 = 0. We em-
ploy the same procedure followed in the calculation of ξS .
Bologna et al [29], as well as Akimoto [30], demonstrated
that the resulting distribution is a skewed Lamperti dis-

FIG. 2: (Color online) Unperturbed (blue, symmetric,
ε = 0) and perturbed (red, asymmetric, ε = 0.5)

Lamperti distributions with µ = 1.5

tribution given by:

Π(ξ) =
2

π

(
1− ξ2

)α−1
sinπα(

1− ξ
)2α

η +
(
1 + ξ

)2α 1
η +

(
1− ξ2

)α
cosπα

.

(17)

The parameter η is responsible for the asymmetry of
the curve in Fig. (2) and is related to the intensity of the
perturbation ε by

η ≡
[

1 + ε

1− ε

]µS−1

. (18)
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The COG of the density plot is given by

B (µP , µS) = ε
1− η
1 + η

(19)

These results are exact for t0 = 0, but, as we discussed, in
many real applications the distribution of C is necessarily
determined from a moving time window.

In order to understand how these results can be useful
in the latter case, we make some intuitive observations,
followed by additional theory. We already noted that,
when µ < 2, the mean length of the laminar regions of a
system diverges to infinity. This explains why we obtain
the erratic plot in the left panel of Fig. (1): for most
of the duration of the time series there are no events,
thus the cross-correlation is either 1 or -1. This fact can
be exploited to obtain the regular behavior of the right
panel of Fig. (1): when one system has an event, it is
most probably embedded in a long laminar region of the
other system. If the P-system has an event, then it is
most likely embedded in a long laminar region of the S-
system. In this case the resulting value of C follows the
statistics of the unperturbed Lamperti distribution given
by Eq. (15), as the S-system has no influence on the P-
system and the latter is non-ergodic. If the S-system
has an event, then it is most likely embedded in a long
laminar region of the P-system, which is equivalent to
saying that S is subject to constant stimulation. In this
case the computed value of C follows the statistics of the
perturbed Lamperti distribution given by Eq. (17).

The theory behind the above intuitive obesrvations fol-
lows. The probability WS of having an event in S at time
t is given by:

WS(t) =
RS(t)

RS(t) +RP (t)
, (20)

with R(t) given by Eq. (4) with the µ of the correspond-
ing system. The probability WP can be obtained from
(20) by exchanging the roles of S and P. When t → ∞,
if µS > µP , we have WS = 1 and WP = 0; if µS < µP
then WS = 0 and WP = 1. As a side note we observe
that this argument implies that the perturbed system
does not respond asymptotically to simple perturbations,
which corresponds to the phenomenon of habituation.

The red stripes superimposed on the numerical calcu-
lations in the right panel of Fig (1) are determined using
Eqs. (19) and (20) and show excellent agreement with
the numerical simulations. The above derivation is valid
also in the case in which one of the systems is ergodic
and the other is not ergodic: in the long time limit, only
the former has events. This fact and the considerations
above imply that, in complete agreement with the PCM,
the response of an ergodic system to a non-ergodic sys-
tem is maximal. On the other hand, the response of a
non-ergodic system to an ergodic system vanishes. In the
case in which both sytems are ergodic, the above theory
is not applicable, but, given the equivalence (by defini-
tion) of ensemble averages and time averages, in this case
we again recover the results of PCM, as expected.

V. PRACTICAL APPLICATIONS

Let us consider the diffusing variable x(t) defined by

v(t) = ẋ = ξS(t)ξP (t). (21)

Let us assume that the time series v(t) goes from t = 0
to L, with the symbol L denoting the length of time se-
ries. We are interested in the case where we have only
one realization of v(t). As a consequence to establish the
influence that ξP (t) exerts on ξS(t) the prescription of
Eq. (13) seems to be most natural procedure to adopt,
with t0 moving from 0 to L − TW . If L is sufficiently
large, the adoption of Eq. (13) corresponds to generating
a number L/Tw � 1 of Gibbs realizations, sufficient to
establish a statistically significant influence of the stim-
ulus ξP on the time series ξS(t).

As we said, in the case where both S and P are the
generators of non-ergodic fluctuations, the adoption of
the prescription Eq. (13) results in the erratic behavior
shown by the left panel of Fig. (1) for 1 < µS , µP < 2.
Our main result is that the beginning of the moving win-
dow, t0 must be chosen to coincide with the occurrence
of a renewal event of either S or P . At first sight this
choice is in apparent conflict with the fact that the time
average is done only on the renewal events, which are a
very small fraction of the total number of events. Naively,
one would expect this prescription to make the statistical
average less accurate. Instead the theoretical approach
developed herein demonstrates that this choice of initial
value leads to a smooth function of µS and µP , in very
good agreement with numerical simulation.

To describe the practical applications of the results of
this article, following [31], we establish a connection be-
tween two emerging theoretical perspectives that physi-
cists are adopting in their attempts to address funda-
mental biological issues beyond the limits of reduction-
ism. The former theoretical perspective is illustrated by
the debate regarding the effect of finite size on criticality
in natural swarms [32]. In fact, the recent experiment
of Ref. [32] is attracting [33] the attention of researchers
to the key role of criticality in biology, thereby leading
them to look, for instance, at the very interesting pro-
posals of [34, 35]. In the conclusion of their article [35],
the authors emphasize the phase-transition related prop-
erty of critical slowing down, namely the infinitely slow
regression to equilibrium of processes at criticality. They
point out, however, the existence of a possible conflict
with the resilience of complex biological systems that are
expected to promptly adapt themselves to the changes of
their environment. Flocks of birds [32] are an outstand-
ing example of biological resilience.

An interesting experiment concerning the cognition of
living beings is given by the work done at Duke Univer-
sity by the group of Nicoliles [36]. In this experiment,
information was transmitted from a rat A moving in a
box to a rat B moving in a different box through a cable
connecting the neural network of the brain of rat A to the
neural network of the brain of rat B. This experiment
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is the in vivo counterpart of an in vitro experiment done
in 1999 at the University of North Texas by the group
of Guenter Gross [37], interpreted by them as a form of
chaos synchronization. Thus, we see rapid progress from
the 1999 in vitro experiment [36] and culminating in the
2014 experiment [38], concerning the same kind of infor-
mation transfer from the brain of one human subject to
that of another.

This form of synchronization seems to be a natural
property of the dialogue between two individuals [39],
though the statistical roots of these synchronization pro-
cesses had remained unknown. The latter remarkable ex-
ample of biological complexity is illustrated in the recent
review paper [40], reflecting the growing interest regard-
ing anomalous diffusion in biological cells, a paradigm of
the special nature of biological processes.

It turns out that the connection between these two
forms of biological complexity requires a deeper under-
standing of the origin of ergodicity breakdown. We invite
the readers to focus their attention on the recent theo-
retical remarks in [41]. Critical slowing down is a prop-
erty of critical systems involving interactions among an
infinitely large number of units. The authors of [41] em-
phasized the importance of temporal complexity, which
must not be confused with critical slowing down, even if
in some processes of phase transitions the inverse power-
law index of temporal complexity is the same as that of
critical slowing down. At the onset of criticality, a com-
plex system makes a transition from a condition, where
the single units are essentially statistically independent
of one another, to an organized state of highly correlated
behavior. This condition, however, does not last forever
and, from time to time, a system, with a finite number
of interacting units, undergoes organizational collapses
[42]. We have interpreted these intermittent collapses as
free will states [43]. These free will states are renewal
events and consequently make the dynamics of criticality
non-ergodic; thereby establishing a connection, while re-
taining the distinction, between temporal complexity and
critical slowing down in complex biological networks.

It is important to stress that, as previously shown [41],
ergodicity breaking is confined to a time region t < Teq,

where Teq ∝
√
N , and N denotes the number of inter-

acting units. We believe this to be a general property of
criticality and that evaluating the transmission of infor-
mation from one complex system at criticality to another
complex system at criticality in the time scale t > Teq
[43–47] gives the misleading impression that the network
entrainment one finds may be a form of chaos synchro-
nization [37]. This is a consequence of the fact that
an evaluation of the correlation between the perturbed
complex network and its stimulus done in the time scale
t < Teq would generate the erratic behavior shown by the
left panel of Fig. (1) for 1 < µS , µP < 2, giving the false
impression of a lack of correlation.

This leads us to another practical application of the
present results: the dynamics of the brain. The widely
accepted belief that brain activity is not dominated by

a characteristic time scale has led the investigators in
this field of research to make experimental observations
that, in turn, have revealed the crucial role of renewal
events. According to analysis of the EEG of individuals
performing a task done by Buiatti et al [48], brain activ-
ity reveals the action of renewal events with the waiting
time distribution density of Eq. (1) with a power index
µ in the region 1 < µ < 3. More precisely moving from
one patient to another the index µ is found to fluctuate
from values µ < 2 to values µ > 2. As pointed out in
this article, the region µ < 2 is not ergodic. As a conse-
quence, there are aging effects that make the statistical
evaluation of the effects of perturbation very challenging.
The authors of [48] had to use the theoretical procedure
of [49] to evaluate the scaling of the time series generated
by a single EEG. The aging procedure of [49] is equivalent
to establishing the index µ from the observation of the
time series ξS(t) of Eq. (21) in the absence of a stimulus.
In other words, the theoretical approach of [49] is equiv-
alent to studying the scaling of the diffusing variable x(t)
generated by

ẋ(t) = ξS(t), (22)

namely from Eq. (21) when ξP (t) is time independent.
Buiatti et al [48] used this procedure to establish for

some subjects the power index µ < 2. It is really re-
markable that the research work done by the neurophys-
iologists of the University of Pisa [50] led to the same
conclusion, with the additional important remarks that
the anomalous scaling properties revealed by their exper-
imental observations are, in fact, a manifestation of tem-
poral complexity [51]. The discovery that, in the case of
the dynamics of the brain, the power-law index of ξS of
Eq. (21) may have the non-ergodic value µS < 2 raised
the challenging problem of assessing the cross correlation
between S and P . This problem, very difficult in the case
when both S and P are non-ergodic, is now satisfactorily
resolved, both theoretically and numerically, using the
methods developed herein.

In conclusion, the theoretical and numerical results of
this article afford a solid procedure to analyze the time se-
ries v(t) of Eq. (21) thereby opening the road to studying
the entrainment between a perturbed complex network
and a stimulus that can be derived from another net-
work with the same temporal complexity, without con-
fining the analysis to the long-time regime that may not
be available due to the finite size of the experimental
time series. On the other hand, the theoretical analysis,
which may be done in the large time limit with surro-
gate sequences, would prevent the investigators from re-
alizing that the important transfer of information is re-
alized in the short-time limit where both networks must
be thought of as non-stationary and non-ergodic complex
systems. The list of practical applications is not limited
to networks of neurophysiological interest. We believe
that the emergence of cognition occurs at criticality [52].
Criticality generates temporal complexity [41, 50, 51] and
consequently the analysis of the transfer of information



7

from a sociological (psychological) network to another
requires the adoption of the theoretical and numerical
prescriptions afforded by this article.

Acknowledgments

NP, DL and GP thank Welch for financial support
through Grant No. B-1577 and ARO for financial sup-

port through Grant W911NF-15-1-0245.

[1] N. Wiener, Time, communication and the nervous sys-
tem, Ann. New York Acad. Sci. 50, 197-20 (1948).

[2] R.M. Neumann, The entropy of a single Gaussian macro-
molecule in a noninteracting solvent J. Chem. Phys. 66,
870-870 (1977).

[3] G. Holloway, Entropic Forces in Geophysical Fluid Dy-
namics, Entropy 11, 360-383 (2009).

[4] R. L. Carhart-Harris, R. Leech, P.J. Hellyer, M. Shana-
han, A. Feilding, E. Tagliazucchi, D.R. Chialvo and D.
Nutt, The entropic brain: a theory of conscious states in-
formed by neuroimaging research with psychedelic drugs,
Front. Hum. Neurosci., 8, 20, 1-22 (2014).

[5] G. Aquino, M. Bologna, P. Grigolini and B.J. West, Be-
yond the Death of Linear Response: 1/f Optimal Infor-
mation Transport, Phys. Rev. Lett. 105, 040601, 1-4
(2010).

[6] G. Aquino, M. Bologna, B.J. West and P. Grigolini,
Transmission of information between complex systems:
1/ f resonance, Phys. Rev. E 83, 051130, 1-12 (2011).

[7] J. Beggs, D. Plenz, Neuronal avalanches in neocortical
circuits, J Neurosci 23, 11167-11177 (2003); O. Kinouchi,
M. Copelli, Optimal dynamical range of excitable net-
works at criticality . Nat. Phys 2, 348?351 (2006).

[8] B.J. West and P. Grigolini, Complex Webs, Anticipating
the Improbable, Cambridge University Press, Cambridge,
UK (2011).

[9] I. M. Sokolov, A. Blumen, J. Klafter, Linear response
in complex systems: CTRW and the fractional Fokker-
Planck equations, Physica A 302, 268-278 (2001); I.M.
Sokolov and J. Klafter, Field-Induced Dispersion in Sub-
diffusion, Phys. Rev. Lett. 97, 140602, 1-4 (2006); I.M.
Sokolov, Linear response to perturbation of nonexponen-
tial renewal process: A generalized master equation ap-
proach, Phys. Rev. E 73, 067102, 1-3 (2006).

[10] F. Barbi, M. Bologna, P. Grigolini, Linear Response to
Perturbation of Nonexponential Renewal Processes, Phys.
Rev. Lett. 95, 220601, 1-4 (2005).

[11] A. Weron, M. Magdziarz, K. Weron, Modeling of subd-
iffusion in space-time-dependent force fields beyond the
fractional Fokker-Planck equation, Phys. Rev. E 77,
036704, 1-6 (2008).

[12] M. Magdziarz, A. Weron, J. Klafter, Equivalence of
the Fractional Fokker-Planck and Subordinated Langevin
Equations: The Case of a Time-Dependent Force, Phys.
Rev. Lett. 101, 210601, 1-4 (2008).

[13] Y. Yu, R. Romero, T.-S. Lee, Preference of Sensory Neu-
ral Coding for 1/f Signals, Phys. Rev. Lett, 94, 108103,
1-4 (2005).

[14] D. L. Gilden, Cognitive Emissions of 1/f Noise, Psycho-
logical Review, 108, 33-56 (2001).

[15] G. C. Van Orden, J. G. Holden, M. T. Turvey, Human
Cognition and 1/f Scaling, Journal of Experimental Psy-
chology:General, 134,117-123 (2005).

[16] S. Farrell, E.-J. Wagenmakers, R. Ratcliff, 1/f noise
in human cognition: Is it ubiquitous, and what does it
mean?, Psychonomic Bulletin & Review, 13, 737-741
(2006).

[17] P. Allegrini, P. Paradisi, D. Menicucci, M. Laurino, A. Pi-
arulli,A. Gemignani, Self-organized dynamical complexity
in human wakefulness and sleep: Different critical brain-
activity feedback for conscious and unconscious states,
Phys. Rev. E, 92, 032808, 1-9 (2015).

[18] J. K. Ochab, J. Tyburczyk, E. Beldzik, D. R. Chialvo,
A. Domagalik, M. Fafrowicz, E. Gudowska-Nowak, T.
Marek, M. A. Nowak, H. Oginska, J. Szwed, Scale-
free fluctuations in behavioral performance: Delineating
changes in spontaneous behavior of humans with induced
sleep deficiency. PLoS One, 9, e107542, 1-12 (2014).

[19] P. Allegrini, D. Menicucci, R. Bedini, L. Fronzoni, A.
Gemignani, P. Grigolini, B. J. West, P. Paradisi, Sponta-
neous brain activity as a source of ideal 1/f noise, Phys.
Rev. E 80, 061914, 1-13 (2009).

[20] M. Annunziato, P. Grigolini, B. J. West, Canonical and
noncanonical equilibrium distribution, Phys. Rev. E, 64,
011107, 1-13 (2001).

[21] P. Allegrini, J. Bellazzini, G. Bramanti, M. Ignaccolo, P.
Grigolini, and J. Yang, Scaling breakdown: A signature
of aging, Phys. Rev. E, 66, 015101 (R), 1-4 (2015).

[22] W. Feller, An Introduction to Probability Theory and Its
Applications, John Wiley & Sons, New York (1971).

[23] M. Lukovic and P. Grigolini, Power spectra for both in-
terrupted and perennial aging processes, J. Chem. Phys.
129, 184102, 1-11 (2008).

[24] R. Kubo, M. Toda, and N. Hashitsume, Statisti-
cal Physics II: Nonequilibrium Statistical Mechanics,
Springer-Verlag, Berlin (1985).

[25] P. Allegrini, M. Bologna, P. Grigolini, B. J. West,
Fluctuation-Dissipation Theorem for Event-Dominated
Processes Phys. Rev. Lett. 99, 010603, 1-4 (2007).

[26] L. Silvestri, L. Fronzoni, P. Grigolini, P. Allegrini, Event-
Driven Power-Law Relaxation in Weak Turbulence Phys.
Rev. Lett. 102, 014502, 1-4 (2009).

[27] S. Burov, J.-H. Jeon, R. Metzler, E. Barkai, Single par-
ticle tracking in systems showing anomalous diffusion:
the role of weak ergodicity breaking, Phys. Chem. Chem.
Phys, 13, 1800-1812 (2011).

[28] J. Lamperti, An occupation time theorem for a class of
stochastic processes, Trans. Am. Math. Soc. 88, 380-387
(1958).

[29] M. Bologna,G. Ascolani, P. Grigolini, Density approach



8

to ballistic anomalous diffusion, J. Math. Phys. 51,
043303, 1-17 (2010).

[30] T. Akimoto, Distributional Response to Biases in Deter-
ministic Superdiffusion, Phys. Rev. Lett. 108, 164101,
1-5 (2012).

[31] P. Grigolini, Emergence of Biological Complexity: Criti-
cality, Renewal and Memory, Chaos, Solitons and Frac-
tals, 81, 575-588 (2015).

[32] A. Attanasi, A. Cavagna, L. Del Castello, I. Giardina, S.
Melillo, L. Parisi, O. Pohl, B. Rossaro, E. Shen, E. Sil-
vestri, M. Viale, Finite-Size Scaling as a Way to Probe
Near-Criticality in Natural Swarms, Phys. Rev. Lett.
113, 238102, 1-5 (2014).

[33] H. Chaté, M. A. Muñoz, Viewpoint: Insect Swarms Go
Critical, Physics 7, 120 (2014).

[34] J. Hidalgo, J. Grilli, S. Suweis, M. A. Muñoz, J. R.
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