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We explore numerically the high-dimensional spatiotemporal chaos of Rayleigh-Bénard convection
using covariant Lyapunov vectors. We integrate the three-dimensional and time-dependent Boussi-
nesq equations for a convection layer in a shallow square box geometry with an aspect-ratio of 16
for very long times and for a range of Rayleigh numbers. We simultaneously integrate many copies
of the tangent space equations in order to compute the covariant Lyapunov vectors. The dynamics
explored has fractal dimensions of 20 . Dλ . 50 and we compute on the order of 150 covariant
Lyapunov vectors. We use the covariant Lyapunov vectors to quantify the degree of hyperbolicity of
the dynamics, the degree of Oseledets splitting, and to explore the temporal and spatial dynamics
of the Lyapunov vectors. Our results indicate that the chaotic dynamics of Rayleigh-Bénard con-
vection is non-hyperbolic for all of the Rayleigh numbers we have explored. Our results yield that
the entire spectrum of covariant Lyapunov vectors that we have computed are tangled as indicated
by near tangencies with neighboring vectors. A closer look at the spatiotemporal features of the
Lyapunov vectors suggests contributions from structures at two different length scales with differing
amounts of localization.

PACS numbers: 05.45.Jn,47.54.-r, 47.20.Bp, 05.45.Pq

I. INTRODUCTION

The complex dynamics of large spatially-extended sys-
tems that are driven far-from-equilibrium are central to
many important challenges currently facing science and
technology [1]. For example, the dynamics of the atmo-
sphere and oceans [2], fluid turbulence [3], the spread
of epidemics and disease [4], and the patterns that re-
sult from nonlinear interactions between chemicals in
many industrial processes [5]. Many of the challenges are
rooted in the fact that the dynamics of these systems are
high dimensional. This makes many powerful approaches
based upon the geometry of the attractor unwieldy and
difficult, if not impossible, to implement.
Significant progress has been made using Lyapunov ex-

ponents and Lyapunov vectors [6, 7]. The spectrum of
Lyapunov exponents quantify the exponential expansion
or contraction of small perturbations to the nonlinear
evolution of the dynamics. Given the spectrum of Lya-
punov exponents it is possible to compute the fractal
dimension of the dynamics using the formula of Kaplan
and Yorke [8]. The fractal dimension can provide in-
sight into the number of chaotic degrees of freedom ac-
tive in a system on average [9]. A significant advantage
of this approach is that the computation of the dimen-
sion does not rely upon the geometry of the attractor and
can readily scale to high dimensional systems (c.f. [10]).
An important advance was the emergence of algorithms
to compute the Lyapunov spectrum that used frequent
Gram-Schmidt reorthonormalizations [11–13].
This approach has been applied to a range of impor-

tant spatially-extended systems including coupled-map
lattices [14], the Lorenz-96 model [15], the Kuramoto-
Sivashinsky equation [16], and Rayleigh-Bénard convec-
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tion [10, 17–20]. Spatially extended fluid systems with
fractal dimensions as large as 50 have been explored [10].
This approach has shed new physical insights on the ex-
tensivity of chaos in large dissipative systems [14–16] by
quantifying the variation of the fractal dimension with
changes in the size of the system. In addition, the lead-
ing order Lyapunov vector has been used to highlight
regions in the patterns where the growth of disorder is
largest [10, 17]. However, a significant disadvantage of
this approach is that the directions of all of the Lya-
punov vectors, except for the leading order vector, are
lost due to the frequent reorthonormalizations.

It is well known that there exists a set of vectors intrin-
sic to the dynamics which satisfy the so-called Oseledets
splitting [7, 21] (often spelled Oseledec in the literature).
These intrinsic vectors are often referred to as the char-
acteristic or covariant Lyapunov vectors. Until recently
the covariant Lyapunov vectors remained mostly a for-
mal idea since there was not a computationally acces-
sible approach for their calculation. Ginelli et al. [22],
Wolfe et al. [23], and Pazó et al. [24] presented algo-
rithms to calculate the covariant Lyapunov vectors that
are computationally accessible. The covariant Lyapunov
vectors have since been used to provide new physical in-
sights into the dynamics of coupled-map lattices [22, 24–
27], the Lorenz-96 model [24], the Kuramoto-Sivashinsky
equation [27, 28], Kolmogorov flow [29], and the complex
Ginzburg-Landau equation [27, 28].

Knowledge of the covariant Lyapunov vectors allows
one to probe fundamental features of the dynamics that
until now have been inaccessible. The Lyapunov vectors
with positive Lyapunov exponents correspond to the un-
stable manifold. Similarly, the Lyapunov vectors with
negative Lyapunov exponents correspond to the stable
manifold. The minimum angle between the stable and
unstable manifolds can be used to quantify the degree of
hyperbolicity of the dynamics. A dynamical system is
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hyperbolic if the stable and unstable manifolds intersect
with non-zero angles (cf. [22, 30]).

Many important mathematical ideas used in the study
of dissipative dynamical systems, such as the shadowing
theorem [31], rest upon the assumption of hyperbolicity.
Although it is expected that most realistic systems are
not hyperbolic this has never been quantified.

It has recently been shown that the tangent space of
several dissipative dynamical systems can be split into
two different modes called physical modes and spurious
or isolated modes [28] whose categorization depend cru-
cially upon knowledge of the angles between the covariant
Lyapunov vectors. The physical modes are composed of
covariant Lyapunov vectors that contain frequent tan-
gencies. The spurious modes are composed of covariant
Lyapunov vectors that do not contain any tangencies.
The spurious modes are hyperbolic with respect to the
physical modes and with respect to the other isolated
modes. The tangencies of the physical modes allow them
to interact with one another and it has been suggested
that these modes contain the fundamental features re-
quired to describe the dynamics [27]. The hyperbolicity
of the spurious modes, on the other hand, makes them
non-interacting with the other modes and they are found
to be rapidly decaying.

As elucidated in Ref. [27], two nondegenerate covari-
ant Lyapunov vectors can never become exactly tangent
with one another. However, the angle between them can
become arbitrarily small to yield a finite probability at
zero or π in their angle distribution. In our discussion,
we use the term tangency to describe this situation.

Furthermore, it has been conjectured that the number
of physical modes is representative of the dimension of
the inertial manifold [28]. The inertial manifold has re-
mained, until recently, a formal mathematical idea that
has been difficult to quantify in practice (c.f. [32]). The
inertial manifold is a smooth object in phase space upon
which the dynamics approach after a short initial tran-
sient. The dynamics then eventually evolve onto a global
attractor that is embedded within the inertial manifold.
An estimate of the global attractor dimension is given by
the fractal dimension [9]. Results for several nonlinear
dissipative systems have found the inertial manifold di-
mension to be only several times larger than the fractal
dimension [27, 28].

Knowledge of the dimension of the dynamics is of prac-
tical interest. The dimension is an estimate for the num-
ber of active degrees of freedom on average [9]. For ex-
ample, the dimension of the inertial manifold is an es-
timate for the minimum number of degrees of freedom
required for a faithful numerical simulation of the dy-
namics [27]. In addition, it provides some guidance to-
ward the number of ordinary differential equations that
would be required to reproduce the dynamics. It should
be emphasized that the identification of the underlying
modes remains a difficult and open challenge. However,
the variation of the fractal dimension with system size in
the regime of extensive chaos has been used to yield a

chaotic length scale [10, 14, 15, 33].
It has been suggested that the Lyapunov vectors asso-

ciated with the large positive Lyapunov exponents may
not be as significant in the long-time dynamics as the
Lyapunov vectors associated with the Lyapunov expo-
nents near zero (c.f. [34]). The dynamics of the vectors
associated with the large exponents represent fast dy-
namics where the dynamics of the vectors associated with
Lyapunov exponents near zero represent much longer-
lived dynamics. These slower dynamics have often been
referred to as the hydrodynamic modes. The spatial fea-
tures of the hydrodynamic modes are inaccessible to the
Gram-Schmidt Lyapunov vectors yet are potentially ac-
cessible to the covariant Lyapunov vector approach.
In this paper, we use the covariant Lyapunov vectors

to explore the chaotic dynamics of Rayleigh-Bénard con-
vection. We highlight that this is the first investigation
using covariant Lyapunov vectors of a high-dimensional
chaotic system that is experimentally accessible in the
laboratory.
The remainder of the paper is organized as follows.

In §II we describe Rayleigh-Bénard convection and our
numerical approach for computing the spectrum of co-
variant Lyapunov vectors for the Boussinesq equations.
In §III we discuss the results of our numerical exploration
with the following emphasis. In §III A we use the spec-
trum of Lyapunov exponents and the fractal dimension to
quantify the complexity and high-dimensional nature of
the dynamics. In §III B we use the angles between pairs
of covariant Lyapunov vectors to explore the degree of hy-
perbolicity of the dynamics and to quantify the tangled
nature of the Lyapunov vectors. In §III C we quantify
the degree of Oseledets splitting and discuss its relation
to our previous findings. In §III D we explore the spa-
tiotemporal dynamics of the spectrum of covariant Lya-
punov vectors and focus upon the dominant length scales
present and their degree of spatial localization. Lastly,
in §IV we present our conclusions.

II. APPROACH

Rayleigh-Bénard convection is the fluid convection
that results when a shallow layer of fluid is heated uni-
formly from below in a gravitational field. The dynamics
are governed by the Boussinesq equations

σ−1

(

∂u

∂t
+ u•∇u

)

= −∇p+∇2u+RT ẑ (1)

∂T

∂t
+ u•∇T = ∇2T (2)

∇•u = 0 (3)

which represent the conservation of momentum, energy,
and mass, respectively. In our notation, u(x, y, z, t) is
the fluid velocity vector, p(x, y, z, t) is the pressure, and
T (x, y, z, t) is the temperature where (x, y, z) are Carte-
sian coordinates with an origin located on the lower
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boundary with ẑ a unit vector opposing gravity. These
equations have been nondimensionalized using the ver-
tical diffusion time of heat as the time scale, the layer
depth as the length scale, and the constant temperature
difference between the hot lower surface and the cool up-
per surface as the temperature scale. The Rayleigh num-
ber R represents the ratio of buoyancy to viscous forces.
The Prandtl number σ is the ratio of the momentum and
thermal diffusivities. The aspect ratio Γ is a measure of
the spatial extent of the domain. For a domain with a
square planform, as we will use here, the aspect ratio Γ
is the ratio of the side length of the square planform to
the depth of the fluid layer.
We use the no-slip boundary condition u = 0 for the

fluid motion at all material surfaces which includes the
top surface, bottom surface, and the sidewalls. The lower
surface is hot and is held at T (z = 0) = 1 and the upper
surface is cold and is held at a temperature T (z = 1) = 0.
The lateral sidewalls of the domain are assumed to be
perfectly insulating which can be represented as ∇·T n̂ =
0 where n̂ is an outward pointing unit normal.
We compute the covariant Lyapunov vectors using the

approach given by Ginelli et al. [22]. In essence, one first
computes the Gram-Schmidt vectors using a forward-
time evolution of the tangent-space dynamics using the
methods described in Refs. [10, 11, 17]. These Gram-
Schmidt vectors are then used to compute the tangent-
space dynamics backwards in time under the conditions
that these vectors are confined to a suitable subspace. In
the long-time limit the backward time evolution of these
confined vectors converge to the covariant Lyapunov vec-
tors.
In the following we provide only the essential details

of how we implement this approach for the Boussinesq
equations, for more details of the general approach we
refer the reader to Ref. [22]. The tangent-space equations
are given by a linearization of the dynamics about the
Boussinesq equations. We will represent this as

σ−1
(

∂tδu
(k) + u · ∇δu(k) + δu(k) · ∇u

)

= −∇δp(k) +

∇2δu(k) + RδT (k)ẑ, (4)

∂tδT
(k) + u · ∇δT (k) + δu(k) · ∇T = ∇2δT (k), (5)

∇ · δu(k) = 0 (6)

where δu(k)(x, y, z, t), δp(k)(x, y, z, t), δT (k)(x, y, z, t) are
the perturbation quantities for the velocity, pressure, and
temperature, respectively. The boundary conditions for
the perturbation fluid velocity is δu(k) = 0 on all ma-
terial boundaries. The boundary condition for the per-
turbation temperature is δT (k) = 0 on the bottom and
top surfaces and ∇ · δT (k)n̂ = 0 on the four lateral side-
walls of the domain. In our notation, the superscript (k)
represents the kth copy of the linearized equations where
k ∈ [1, Nλ] with Nλ the total number of tangent-space
equations. One needs to evolve an additional copy of the
tangent-space equations for each Lyapunov vector and
Lyapunov exponent that is desired and therefore Nλ is

also the total number of Lyapunov exponents and vectors
that can be calculated (in our calculations we have used
Nλ = 141 unless stated otherwise).
Equations (1)-(3) can be written more succinctly as

d

dt
H(t) = F(H) (7)

where H(t) = [u, T ] and F(H) are (N × 4) dimensional
arrays where N is the total number of spatial points used
to represent the fluid. In our numerical simulations we
use N = 128 × 128 × 8. Similarly, the tangent-space
equations can be represented as

d

dt
δH(k)(t) = J [H(t)] δH(k)(t) (8)

where δH(k)(t) =
[

δu(k)(t), δT (k)(t)
]

. We point out that
the pressure does not appear in H(t) or δH(t) since the
pressure is satisfied implicitly by the conservation of mass
and does not appear explicitly as a dynamical variable.
The pressure p(t) can be computed from H(t) and the
perturbation pressure δp(t) can be computed from δH(t).
The Jacobian J of the dynamics is given by

J[H(t)] =
dF

dH
(9)

and is evaluated at time t.
Equation (7) and Nλ copies of Eq. (8) are simultane-

ously integrated forward in time. The perturbation vari-
ables can be arranged into a matrix Gn whose columns
are the perturbation vectors for each copy of the tangent
space equations. The matrix Gn is (4N × Nλ) dimen-
sional and the subscript n indicates that this is the nth

matrix computed at some discrete time tn. The kth per-
turbation vector at this time is the column vector given

by g
(k)
n = [δu

(k)
n δv

(k)
n δw

(k)
n δT

(k)
n ]′ with 4N elements

where the prime indicates a transpose. The matrix con-
taining these vectors as columns is then

Gn =
(

g(1)
n | . . . |g(Nλ)

n

)

. (10)

The vectors g
(k)
n are then periodically orthogonalized us-

ing a Gram-Schmidt procedure after a time tN . The
Gram-Schmidt procedure is equivalent to a QR decom-
position of the matrix Gn where Qn contains the or-
thonormalized vectors and the diagonal elements of the
upper triangular matrix Rn contain their magnitudes.
The magnitudes of the orthogonalized vectors can be
used to determine the instantaneous Lyapunov exponent
from

λ̃k =
1

tN
ln

||g
(k)
n (tN )||

||g
(k)
n (0)||

. (11)

The orthonormalized perturbation vectors are then
evolved forward in time another tN and the process is
repeated to compute another set of instantaneous Lya-
punov exponents and Gram-Schmidt orthonormalized
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vectors. The average of the instantaneous Lyapunov ex-
ponents over many reorthonormalizations gives the spec-
trum of Lyapunov exponents λk

λk =
1

N0

N0
∑

i=1

λ̃k (12)

where N0 is the number of reorthonormalizations per-
formed. The Lyapunov exponents can then be used to
compute the fractal dimension Dλ using the Kaplan-
Yorke formula [8].

In order to compute the kth covariant Lyapunov vec-

tor v
(k)
n at time tn where k ∈ [1, Nλ], we first inte-

grate forward in time the tangent space dynamics to time
tm where tm is sufficiently larger than tn. During this
forward-time integration we periodically compute and

store the set of Gram-Schmidt vectors {g
(k)
n } using the

QR decomposition approach described above. At time

tm we choose an arbitrary vector u
(j)
m that is confined to

the subspace spanned by the first j Gram-Schmidt vec-

tors {g
(l)
m } where l ∈ [1, j] and evolve its tangent space

dynamics backwards in time by inverting the upper tri-

angular matrix Rm. The vector u
(j)
m will converge with

the backward most expanding direction to yield the co-

variant Lyapunov vector v
(j)
n . One can then do this for

all j where j ∈ [1, Nλ] to yield the entire spectrum of

Lyapunov vectors v
(k)
n . The vector v

(k)
n is independent

of tm as long as tm is sufficiently larger than tn. The

vector v
(k)
n is covariant with the dynamics in the sense

that its magnitude will expand exponentially with an ex-
ponent of λk in the forward time direction and contract
exponentially with an exponent of −λk in the backward
time direction. Therefore, in order to calculate Nλ co-
variant Lyapunov vectors at time tn we need to integrate

Nλ vectors u
(k)
n backwards in time to yield the v

(k)
n .

Our general approach for integrating Eqs. (1)-(3) is
based upon the finite-difference algorithm developed by
Chiam et al. [35] to explore convection problems [36].
In our calculations we simultaneously integrate Eqs. (1)-
(3) with Nλ copies of Eqs. (4)-(6). In order to facilitate
the simultaneous computation of many Lyapunov vec-
tors the algorithm has been parallelized such that each
computation of the linearized equations is done on a sep-
arate processor. The coupling between the numerical so-
lution of the nonlinear fluid equations and the Nλ tan-
gent space equations is one-way toward the tangent space
equations. However, there are periodic global commu-
nication requirements whenever a rorthogonalization is
required.

In our numerical simulations we use an aspect ratio
of Γ = 16 and a uniform numerical spatial grid size of
∆x = ∆y = ∆z = 1/8 in all directions. The Prandtl
number is σ = 1 and we have explored the range of
Rayleigh numbers given by 4000 ≤ R ≤ 9000 which all
yield chaotic flow fields. In all cases, we have used a
uniform numerical time step of ∆t = 0.001.

Our numerical procedure is the following. We first run
a long-time numerical simulation of Eqs. (1)-(3) so ini-
tial transients can decay to allow the chaotic dynamics to
approach the attractor in phase space. It has been sug-
gested in the literature that this time scale should be on
the order of the time for heat to diffuse horizontally from
the center of the domain to a sidewall [37]. This is also
in qualitative agreement with previous calculations of the
fractal dimension for chaotic Rayleigh-Bénard convection
in large domains [10, 17, 20].
In our nondimensional units the horizontal diffusion

time is given by τH = Γ2/4. In light of this, we first
evolve the flow field forward in time for a time of 16τH
prior to computing the Lyapunov vectors. At this time
we compute the Nλ Gram-Schmidt orthogonal Lyapunov
vectors forward in time for a duration of 4τH . We com-
pute a set of orthogonal Lyapunov vectors every 10 time
steps. We then integrate the tangent space equations
backwards in time for approximately 20 time units using
the algorithm of Ginelli et al. [22] to compute the con-
vergedNλ covariant Lyapunov vectors. We then continue
to numerically integrate the Nλ covariant Lyapunov vec-
tors backward in time for approximately 150 time units
in order to generate the Lyapunov vector data used in
our analysis.
We have run numerous numerical tests, including spa-

tial and temporal convergence tests, to ensure the accu-
racy and repeatability of the results presented. We have
also found that the statistics of our results are indepen-
dent of the random initial conditions used.

III. RESULTS AND DISCUSSION

Typical chaotic flow field patterns are shown in Fig. 1
for the cases of R = {4000, 5000, 7000, 9000}. The color
contours are of the temperature field at the horizontal
mid-plane (z = 1/2) where red (light) is hot rising fluid
and blue (dark) is cool falling fluid. The patterns are
composed of convection rolls and different defect struc-
tures that interact rapidly in time with characteristic
time scales less than one time unit. Although the pat-
terns contain spiral and target structures the dynamics
are dominated by rapid roll pinch-off events that occur
frequently throughout the domain. The bottom right
corner of the pattern for R = 4000 illustrates a wall fo-
cus which is a typical feature of convection patterns in
domains with rectangular or square cross-sections.
If the domain were larger (Γ & 40) the dynamics would

be that of spiral defect chaos (c.f. [35]). For the domain
we explore here, there are complex interactions between
the bulk dynamics, which occurs several roll depths away
and greater from the sidewalls, with dynamics that are
strongly influenced by the sidewalls. In our description,
the width of a single convection roll is approximately
unity.
It would be interesting to explore the dynamics of a

larger domain, however, it is currently beyond the reach
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of our computational resources. We point out that for the
aspect ratio chosen of Γ = 16 the dynamics are expected
to be in the regime that is extensively chaotic [20]. As
the Rayleigh number is increased in our simulations the
time scale of the dynamics decreases, the number and
frequency of local defects increases, and the spatial scale
of the defect structures becomes finer.

FIG. 1. (color online) Typical flow field patterns of chaotic
Rayleigh-Bénard convection from numerical simulation. Con-
tours of the temperature field at the horizontal midplane
(z =1/2) are shown where red (light) is hot rising fluid and
blue (dark) is cold falling fluid. (a) R=4000, (b) R=5000,
(c) R = 7000, and (d) R = 9000. The remaining simulation
parameters are σ=1 and Γ=16.

A. Lyapunov Exponents and the Fractal Dimension

The spectrum of the Lyapunov exponents λk given by
Eq. (12) is shown in Fig. 2 for 4000 ≤ R ≤ 9000. The
leading order Lyapunov exponent λ1 > 0 for all cases
explored, indicating that the dynamics are chaotic as
expected. The Lyapunov spectra appear to belong to
two different groups. For the smaller Rayleigh num-
bers, 4000 ≤ R ≤ 6000, the Lyapunov spectra contain
two linear regimes separated by an elbow region with a
larger negative slope. In order to resolve the elbow re-
gion for R = 4000 we needed to use Nλ = 237 which
is shown in Fig. 2(b). For the larger Rayleigh numbers
7000 ≤ R ≤ 9000 the spectra do not include the elbow
region and they all decrease uniformly with a linear de-
pendence for increasing k. The size of the symbols used

in the plot represents the size of the error in these cal-
culations as determined by the standard deviation of the
fluctuations in time of the exponent about its long-time
mean value.
The variation of the fractal dimension Dλ with the

Rayleigh number R is shown in Fig. 3(b). As expected,
the magnitude of the fractal dimension increases with in-
creasing Rayleigh number [10]. For these results the frac-
tal dimension increases linearly with the Rayleigh num-
ber as indicated by the solid line which is a curve-fit
through the data using Dλ = 0.005R − 1.2. This is in
contrast to theDλ ∝ R4 dependence found in Ref. [10] for
similarly sized domains but with a cylindrical planform.
This suggests the importance of the lateral boundaries
upon the dynamics for these intermediate aspect-ratio
systems with cylindrical and square planforms. We also
point out that these curve-fits are over a very limited
range of the Rayleigh number which may also limit their
range of validity.
The fractal dimension can be used as an estimate of

the dimension required, or the active number of degrees
of freedom on average, to describe the attractor of the
dynamics in phase space [6, 9]. For example, this indi-
cates that the strange attractor describing the chaotic
convection for R = 9000 has on the order of 50 active
degrees of freedom, on average.

B. The Angles between Covariant Lyapunov

Vectors

The results presented in Figs. 2-3 depend only upon
the values of the Lyapunov exponents λk which can be
computed using the orthogonal Gram-Schmidt Lyapunov

vectors g
(k)
n . A significant advantage of the covariant

Lyapunov vectors is that one can quantify the angles φi,j

between the vectors v
(i)
n and v

(j)
n in the tangent space.

In Fig. 4 we show the angle between several pairs of
covariant Lyapunov vectors for R = 5000. The angle is
a function of time and therefore we plot the probabil-
ity density function. When computing the probability
density function we have used 104 samples where each
sample is acquired every 0.01 time units for a total dura-
tion of 100. We consider positive angles to be equivalent
to negative angles and we therefore represent angle mea-
surements only over the range θ ∈ [0, π] where we have
used a total of 60 bins.
Figure 4(a) shows the probability density function of

the angle between neighboring pairs of vectors. The pair
(2, 3) is for rapidly growing vectors and the remaining
pairs are for rapidly contracting vectors. The results
indicate that there is significant probability across the
entire range of angle. Our results do not show a signifi-
cant difference in the angle between rapidly growing and
contracting vectors. For example, the pairs (2, 3) and
(127, 128) yield a similar distribution that suggests that
these pairs are quite tangled as illustrated by the signif-
icant probability for angles near zero. This is the first
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FIG. 2. The spectrum of Lyapunov exponents λk where k =
1, . . . , Nλ. In all cases λ1 > 0 indicating chaotic dynamics. (a)
Results for R = {5000, 6000, 7000, 8000, 9000} where Nλ =
141. (b) Results for R = 4000 where Nλ = 237. The standard
deviation of the fluctuations of the Lyapunov exponents about
its long-time mean value is represented by the size of the data
symbols.

indication we will show that suggests the covariant Lya-
punov vectors of Rayleigh-Bénard convection can not be
decomposed cleanly into a region of physical modes that
is followed by hyperbolically isolated or spurious modes
which has been observed in a number of simpler model
systems (c.f. [27, 28]). We emphasize, however, that our
numerical results indicate the tangled nature of the spec-
trum of covariant Lyapunov vectors only over the range
that we have computed. It remains possible that spurious

R

D
λ

3000 4000 5000 6000 7000 8000 9000 10000

20

30

40

50

FIG. 3. The variation of the fractal dimension Dλ with
Rayleigh number R. The solid line is a linear curve fit through
the data given by Dλ = 0.005R − 1.2. The error bars repre-
sent the standard deviation of the fluctuations in the fractal
dimension about its long-time mean value.

modes exist beyond the range of our current calculations.
The pairs shown in Fig. 4(a) are meant to convey a rep-
resentative sample of the variety of distributions found
over the entire range of vectors.

On the other hand, vector pairs with a larger separa-
tion in their index do yield a consistent distribution for
the probability distribution function of the angle between
them. Figure 4(b) shows the angle distribution for vec-
tors pairs with (j, j+10). Results are shown only for the
two pairs (2, 12) and (100, 110) however similar results
are found for all such pairs.

A clearer picture is obtained if we take the average of
the probability density function P (φj,j+i) for all of the
possible vectors pairs (j, j+ i) for the chosen value of the
pair separation i where j = 1, . . .Nλ. This is shown in
Fig. 5(a) for R = 5000 and in panel (b) for R = 9000 for
the vector pair separations given by i = 1, 2, 5, 10. In our
notation, the angle brackets 〈·〉 indicate that the average
is taken over all of the possible pairs for that choice of
the pair separation i.

For neighboring pairs of vectors (i = 1) there is a signif-
icant probability density across the entire range of angle
including a finite value at φj,j+1 = {0, π}. This indicates
these vector pairs contain moments in time when the vec-
tors are nearly tangent with one another. As shown in
Fig. 5 these near tangencies are not limited to some par-
ticular range of the Lyapunov vectors but occur for vector
pairs over the entire spectrum. As a result, these find-
ings suggest that adjacent pairs of covariant Lyapunov
vectors contain frequent near tangencies on average. In
other words, these Lyapunov vector pairs are quite tan-
gled, on average, over the entire spectrum that we have
simulated.

For vector pairs with a separation of i = 2 the distri-
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FIG. 4. (color online) (a) The variation of the probability den-
sity function of the angle between pairs of covariant Lyapunov
vectors. The specific pairs (j1, j2) shown are (2, 3), (83, 84),
(100, 101), and (127, 128). (b) The variation for pairs with a
separation of 10. Results are shown for (2, 12), and (100, 110).
These results are for R = 5000 where we have used 60 bins
over the range φ ∈ [0, π].

bution is not flat but contains a maximum near φj,j+1 ≈
π/2 and decreases to zero at φj,j+1 = {0, π}. This trend
continues for all pairs with a larger separation as indi-
cated by the results for i = 5 and i = 10. The dashed
line is a Gaussian curve fit to the results for the vector
pairs given by i = 10. The results for R = 5000 and
R = 9000 exhibit the same trends, and in fact, this is the
case for all of the Rayleigh numbers we explored here. As
the index of vector separation increases i > 10 the Gaus-
sian peak continues to become sharper. The results for
i > 1 indicate that as the index of separation increases
the vector pairs become orthogonal to one another on
average.

In Fig. 6 we show the time average of the angle be-

φj,j+i [rad]

〈 P
(φ

j,j
+

i) 
〉

0 0.5 1 1.5 2 2.5 3
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2.5
(j,j+10)

(j,j+1)

(a)

φj,j+i [rad]

〈 P
(φ
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i) 
〉
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2.5
(j,j+10)

(j,j+1)

(b)

FIG. 5. (color online) The variation of the average probability
density function between pairs (j, j+i) of covariant Lyapunov
vectors. The average is taken over all possible pairs. Results
are shown for (j, j+1) (red), (j, j+2) (blue), (j, j+5) (green),
and (j, j + 10) (cyan). As the distance between the pairs
increases the results approach a Gaussian which is shown as
the dashed line. (a) R = 5000. (b) R = 9000.

tween arbitrary pairs of Lyapunov vectors
〈

φ̄j1,j2

〉

for
R = 5000, 6000, and 7000 where {j1, j2} = 1, . . . , Nλ.
In order to clearly distinguish between vector pairs that
are nearly tangent φj1,j2 ≈ {0, π} from vector pairs that
are nearly orthogonal φj1,j2 ≈ π/2 we use the angle
φ̄j1,j2 ∈ [0, π/2] where φ̄j1,j2 = 0 represents either tan-
gency (parallel or antiparallel vectors) and φ̄j1,j2 = π/2
represents an orthogonal vector pair. Color indicates the
magnitude of the angle φ̄j1,j2 where blue (dark) is a small
value indicating tangency and red (light) is a large value
indicating orthogonality. The dark blue diagonal line
from the bottom left corner to the upper right corner
indicates that the vector pair composed of two copies of
itself (j1 = j2) has an angle between them of exactly zero
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as expected. This figure is symmetric about its diagonal
since φ̄j1,j2 = φ̄j2,j1 by construction.
These results show that vectors with a small separa-

tion in their index are more likely to have a smaller angle
between them on average. Figure 6(a) shows the results
for R = 5000 where it is clear that the angle between
vector pairs near the diagonal have a smaller angle of
separation on average over the entire range of j1 and j2.
For values of the index where j1 & 112 and j2 . j1 an
interesting feature is present where the average angle be-
comes nearly π/2 which is shown by the dark red regions
near the right edge of Fig 6(a). By symmetry, the same
feature can be seen for j2 & 112 and j1 . j2 near the top
edge of Fig 6(a).
Figure 6(b) shows this same type of feature for j1 &

74 when R = 7000. This is also present at R = 4000
(not shown) for j1 & 132. However, for R = 6000 this
feature is not present as shown in Fig. 6(c). In fact, the
feature is absent for all R ≥ 7000 that we have explored.
These results suggest that the dynamics are undergoing
a transition at R ≈ 7000.
Our results suggest that neighboring pairs of covariant

Lyapunov vectors have frequent near tangencies over the
entire range of vectors that we have computed. This can
also be seen in Fig. 7 where we plot the probability P ∗

of an adjacent vector pair (j, j +1) having an angle that
is within 0.17 radians (10 degrees) of a tangency at ei-
ther φj,j+1 = {0, π}. Representative results are shown
for R = 5000 as circles (red) and for R = 9000 as squares
(blue). The probability of near tangencies occurring is
present over the entire range of the vector index j. Sim-
ilar results are found for all of the Rayleigh numbers we
have explored. This further supports the idea that the
covariant Lyapunov vectors are tangled through frequent
near tangencies with neighboring vectors.
It is insightful to use the covariant Lyapunov vectors

v
(k)
n to quantify the expanding and contracting subspaces

in the tangent space. The expanding Lyapunov vectors,

v
(k)
n where λk > 0, form a basis that spans the local un-

stable manifold Eu
n . Similarly, the contracting Lyapunov

vectors v
(k)
n where λk < 0, form a basis that spans the lo-

cal stable manifold Es
n. The angle between the unstable

and stable manifold is very important to many theoreti-
cal descriptions of the dynamics. We are interested in the
minimum angle, or principal angle θ, between these two
linear subspaces which is computed using linear combi-
nations of the corresponding vectors [30, 38]. Dynamical
systems where the principal angle is never zero are re-
ferred to as hyperbolic.
In Fig. 8 we show the probability density function of

the principal angle P (θ) over the range of θ ∈ [0, π/4]
where we have used 40 bins. One of the Lyapunov ex-
ponents must be exactly zero for autonomous dynamical
systems such as the Boussinesq equations (cf. [39]). As
a result, we do not include the covariant Lyapunov vec-
tor associated with this zero Lyapunov exponent in our
computations of the principal angle [30].
For all of our results shown in Fig. 8, there is signifi-

FIG. 6. (color online) The time average of the magnitude of
the angle

〈

φ̄j1,j2

〉

between arbitrary pairs of covariant Lya-

punov vectors v
(j1)
n and v

(j2)
n . Color indicates angle measured

in radians where φ̄j1,j2 ∈ {0, π/2} with red (light) represent-
ing large angles and blue (dark) representing small angles.
(a) R = 5000, (b) R = 6000, (c) R = 7000.

cant probability density at small angles θ . 0.2. As the
Rayleigh number is increased the general trend is that the
probability distribution moves toward even smaller an-
gles. In order to visualize this trend, Fig. 8(b) shows the
same results over the smaller range of angles θ ∈ [0, 0.1].
Our results show that for all of the Rayleigh numbers ex-
plored here the dynamics are non-hyperbolic as indicated
by the finite probability of the principal angle at θ = 0.
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FIG. 7. (color online) The probability P ∗ of near tangencies
for pairs of covariant Lyapunov vectors. At each point j the
value of P ∗ is the probability of the magnitude of the angle
between the pair (j, j + 1) to be φ(j,j+1) . 10 degrees. R =
5000 (red, circles), R = 9000 (blue, squares).

Furthermore, the probability at zero angle increases with
increasing values of the Rayleigh number indicating that
the dynamics become more non-hyperbolic as the system
is driven further from equilibrium. This is in contrast to
hyperbolic dynamics which would yield an angle distri-
bution that is bounded away from zero or π indicating
the absence of any near tangencies [27].

C. The Domination of Oseledets Splitting

The domination of Oseledets splitting (DOS) can be
used to further quantify the Lyapunov vectors. We can
use this idea with statistics of the instantaneous Lya-
punov exponents λ̃j , where we compute a time average
of the instantaneous Lyapunov exponent over a time in-
terval of τ , to provide some additional insights. We will
denote this finite-time Lyapunov exponent as λ̃τ

j . We
point out that the instantaneous Lyapunov exponents
used here represent the expansion and contraction rates
of the covariant Lyapunov vectors and are not based upon
the dynamics of the Gram-Schmidt orthogonalized Lya-
punov vectors.

The Oseledets splitting is dominating if λ̃τ
j1

> λ̃τ
j2

for
all t such that τ > τ0 where j2 > j1 and τ0 is a value that
must be determined by trial and error. When the Os-
eldec splitting is dominating it has been shown that this
indicates the absence of any tangencies between the vec-
tors [40, 41]. Following the conventions used in Ref. [27]

θ [rad]
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FIG. 8. (a) The variation of the probability density function
of the principal angle P (θ) where the principal angle θ is
the smallest angle between the stable and unstable subspaces.
These results are computed using 40 bins for θ ∈ [0, π/4]. (b)
A close-up of the results for small θ. As the Rayleigh number
is increased there is an increase in the probability at small
angles.

we define

∆λτ
j1,j2

(t) = λ̃τ
j1
(t)− λ̃τ

j2
(t) (13)

and then compute the amount of violation of the Os-
eledets splitting as

ντj1,j2 =
〈

1−H[∆λτ
j1,j2

(t)]
〉

(14)

where H is the step function and the angle brackets in-
dicate a time average. Therefore ντj1,j2 ∈ [0, 1] where
ντj1,j2 = 0 is the limit of no violation for all time and
ντj1,j2 = 1 is the limit of violation occurring for all time.
Figure 9 shows the degree of violation of Oseledets

splitting for arbitrary pairs of covariant Lyapunov vec-
tors where (a) is for R = 5000 and (b) is for R = 9000.
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Rather than plotting the violation ντj1,j2 it is more conve-
nient to plot its logarithm ln(ντj1,j2). Red (light) regions
indicate vector pairs that exhibit a significant amount
of violation and blue (dark) regions indicate vector pairs
with very little violation.
Figure 9 indicates the presence of significant violations

for vector pairs whose index of separation i is not very
large. For example, in Fig. 9(a) nearly all of the violation
is contained within a band of i . 5 where j2 = j1 +
i. In other words, i represents the required increase in
the vector index away from the diagonal that one must
consider in order to yield small values of the violation.
There is a finite band of violation for all vector pairs

about the diagonal. This illustrates the lack of any hy-
perbolically isolated modes which would appear as red
(light) pixels along the diagonal with blue (dark) pixels
immediately adjacent. This is another indication that the
dynamics of Rayleigh-Bénard convection are composed
many tangled modes with frequent near tangencies.
A similar trend emerges for R = 9000, shown in

Fig. 9(b). Overall, the amount of violation has increased
when compared with the results for R = 5000. In ad-
dition, the amount of violation increases as j1 increases.
The band of the violation about the diagonal increases
as one goes from the bottom left to the upper right of
Fig. 9(b). For example, significant violations exist for
i ≈ 5 for j1 ≈ 10 and j2 = j1 + i where i increases to
i ≈ 12 for j1 ≈ 120.

D. The Spatiotemporal Features of the Covariant

Lyapunov Vectors

The covariant Lyapunov vectors can also be used to
yield information regarding the locations in space that
are significantly adding to the overal disorder of the flow
field. In all previous results to date on Rayleigh-Bénard
convection this has only been possible for the leading
order Lyapunov vector [10, 17–20].
In Fig. 10 we show the spatial variation of three dif-

ferent covariant Lyapunov vectors at the same instant of
time for R = 5000 (top row) and for R = 9000 (bot-
tom row). In all cases, we are plotting the value of the
perturbation temperature δT (j)(x, y, z = 1/2) as a rep-
resentation of the jth Lyapunov vector at the horizontal
midplane where red (light) contours indicate large posi-
tive values and blue (dark) contours indicate large nega-
tive values. The black solid lines indicate the pattern of
convection rolls.
The three Lyapunov vectors shown in Fig. 10(a)-(c)

have been chosen as representative examples to illustrate
the spatial variation of the vectors. Figure 10(a) shows
results for j = 1 and represents the case of rapidly ex-
panding vectors (λ1 > 0). Figure 10(b) is for j = 12 and
represents the case where the vectors are not undergoing
significant expansion of contraction (λ12 ≈ 0). In fact,
λ12 is the Lyapunov exponent whose value is closest to
zero, on average, within the precision of our calculations

FIG. 9. (color online) The degree of violation of Oseledets
splitting between arbitrary pairs (j1, j2) of covariant Lya-
punov vectors plotted on a logarithmic scale. Color contours
represent the magnitude of ln(ντ

j1,j2
) where red (light) indi-

cates pairs with a large degree of violation and blue (dark) in-
dicates pairs with a small a degree of violation. (a) R = 5000,
(b) R = 9000.

for these parameters. Lastly, Fig. 10(c) is for j = 120
and illustrates our results for rapidly contracting vectors
(λ120 ≪ 0).

Figure 10(a) illustrates that the leading order Lya-
punov vector has large values in regions where roll pinch-
off events occur. At the instant of time shown in
Fig. 10(a) there are two localized regions where the mag-
nitude of the Lyapunov vector is large. Near the center of
the domain the Lyapunov vector is large near the region
where a roll pinch-off is about to occur. Near the bottom
of the domain there is another region of large Lyapunov
vector where a roll pinch-off event just occurred a short
time earlier. Similar images are found for all of the Lya-
punov vectors with positive Lyapunov exponents.

For the Lyapunov vector shown in Fig. 10(b) where
λ12 ≈ 0 there remains a large magnitude near the
roll pinch-off event in the central region of the domain.
However, there is also an additional feature of interest
that is now apparent, namely, a weak structure with a
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checkerboard-type pattern. For rapidly contracting Lya-
punov vectors, as shown in panel (c) for j = 120, the
magnitude of the vector near the roll pinch-offs is dimin-
ished with an increase in the magnitude of the spatially
distributed checkerboard pattern.
Figure 10(d)-(f) illustrates the spatial variation of the

Lyapunov vectors for R = 9000 where j = 1 (d), j = 21
(e), and j = 120 (f). These values of the index j were
chosen to represent the same cases just discussed for pan-
els (a)-(c). For R = 9000, λ21 is the Lyapunov exponent
whose magnitude is closest to zero, on average, within
the precision of our calculations. The general features of
the Lyapunov vectors shown in (d)-(f) are quite similar to
what is found in (a)-(c). In particular, the Lyapunov vec-
tors that correspond to λj & 0 show large values that are
quite localized around defect structures that transitions
to a more spatially distributed pattern for Lyapunov vec-
tors where λj ≪ 0.
Overall, these trends in the spatial dynamics of the

Lyapunov vector suggest the presence of two spatial fea-
tures of interest. For vectors with positive Lyapunov ex-
ponents the magnitude of the vector is large near the
rapid creation and annihilation of defects that often in-
volve roll pinch-off events. For Lyapunov vectors with
exponents near zero there is an emergence of a weak
spatially distributed checkerboard pattern which coex-
ists with the localized large magnitudes near the defect
events. As the Lyapunov exponents become more nega-
tive the relative importance of the checkerboard pattern
begins to dominate the spatial variation of the Lyapunov
vectors.

FIG. 10. (color online) The spatial variation of the jth co-
variant Lyapunov vector. The top row is for R = 5000 at
time t = 1168 where (a) j = 1, (b) j = 12, (c) j = 120. The
bottom row is for R = 9000 at t = 1823 where (d) j = 1,
(e) j = 21, (f) j = 120. Color contours indicate the value

of the perturbation temperature field δT (j) at the horizontal
mid-plane (z=1/2) where red (light) is a large positive value
and blue (dark) is a large negative value. The black solid lines
indicate the location of the convection rolls for reference.

In order to explore this further we plot the spatial
power spectrum of the Lyapunov vectors in Fig. 11 for
(a) R = 5000 and for (b) R = 9000. Figure 11 shows the
time average of the azimuthally averaged power spectral
density of the covariant Lyapunov vectors where j is the
index of the vector, and q is the wavenumber of the spa-
tial power spectrum. Color contours indicate the mag-
nitude of the power spectra with (red) light representing
large values and blue (dark) representing small values.

FIG. 11. (color online) Spatial power spectrum of the covari-
ant Lyapunov vectors, q is the wavenumber, j is the index of
the covariant Lyapunov vector, and color represents the mag-
nitude of the power spectrum where red (light) is a large value
and blue (dark) is a small value. (a) R = 5000, (b) R = 9000.

In Fig. 11(a) there is significant power localized around
a wavenumber of approximately 2 for small j where
j . 20. The time averaged value of the wavenumber
of the flow field (see Fig. 1(b) for a typical flow field im-
age) found using the structure factor [1] for this value of
the Rayleigh number is also approximately 2. This indi-
cates that the spatial length scale of the Lyapunov vector
is roughly the same as that of the flow field wavelength.
This feature can also be seen in Fig. 10(a) where the
region of large values of the Lyapunov vector are approx-
imately the same size as a convection roll wavelength. In
addition to localized regions of large magnitude of the
Lyapunov vector near defect structures there is also a
contribution from stripe features in the Lyapunov vector
that are aligned with the convection rolls.
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For increasing values of j in Fig. 11(a) the power re-
mains localized around a wavenumber of q ≈ 2 with the
wavenumber slightly decreasing with increasing values of
j. For j ≈ 80 there is a bifurcation to two separate
branches in the spatial power spectrum indicating the
presence of two length scales. An inspection of the spa-
tial variation of the Lyapunov vector for j ≈ 80 indicates
the presence of both the localized features near the defect
structures as well as a spatially distributed checkerboard
pattern.
As the index j is increased beyond j > 80 in Fig. 11(a)

the branch in the spatial power spectrum at higher val-
ues of the wavenumber diminishes significantly while the
branch at lower wavenumber persists. Figure 10(c) shows
the spatial variation of the Lyapunov vector for j = 120
which is dominated by the spatially distributed checker-
board type pattern. This suggests that the two branches
in the spatial power spectrum may represent the checker-
board pattern and the localized features near defects
found in the spatial variation of the Lyapunov vectors
shown in Fig. 10. For large values of the index j & 115
in Fig. 11(a) one is left with most all of the power in the
checkerboard pattern.
Similar trends are found in Fig. 11(b) for the spatial

power spectrum at R = 9000. The spatial power spec-
trum shown in Fig. 11(b) corresponds to the covariant
Lyapunov vector dynamics illustrated in Fig. 10(d)-(f).
In this case, for small values of the index j . 10 the
power is largest near a wavenumber of q ≈ 1.5. Again,

this wavenumber is similar to the wavenumber of the
flow field pattern found using the time averaged struc-
ture factor (see Fig. 1(d) for a flow field image). As the
index j increases, the region of large power in the spatial
power spectrum moves to slightly smaller values of the
wavenumber q. For j & 90 there is a weak signature of a
bifurcation in the spatial power spectrum toward a spec-
trum containing two maxima. Overall, the bifurcation is
much less pronounced when compared with the features
of 11(a) for R = 5000.

IV. CONCLUSION

We have shown that it is now possible to compute the
covariant Lyapunov vectors for large spatially-extended
systems that are experimentally accessible. We have used
the covariant Lyapunov vectors to generate new physi-
cal insights into the spatiotemporal chaos of Rayleigh-
Bénard convection. Specifically, we have shown that
the chaotic dynamics of convection are non-hyperbolic,
quantified the tangled nature of the spectrum of Lya-
punov vectors, explored the spatiotemporal dynamics of
the spectrum of Lyapunov vectors, and found a signa-
ture for the presence of two different length scales with
different degrees of localization in the Lyapunov vectors.
Overall, these results help to build our physical under-
standing of the complex dynamics of large systems that
are driven far-from-equilibrium.
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López. Spatiotemporal structure of lyapunov vectors in
chaotic coupled-map lattices. Phys. Rev. E, 76:025202,
2007.

[26] H. Yang and G. Radons. Comparison between covari-
ant and orthogonal Lyapunov vectors. Phys. Rev. E,
82:046204, 2010.

[27] K. A. Takeuchi, H. Yang, F. Ginelli, G. Radons, and
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[30] F. Ginelli, H. Chatè, R. Livi, and A. Politi. Covariant
Lyapunov vectors. J. Phys. A: Math Theor., 46:1 – 25,
2013.

[31] E. Ott. Chaos in dynamical systems. Cambridge Univer-
sity Press, 1993.

[32] J. C. Robinson. Finite-dimensional behavior in dissipa-
tive partial differential equations. Chaos, 5(1):330–345,
1995.

[33] M. P. Fishman and D. A. Egolf. Revealing the building
blocks of spatiotemporal chaos: Deviations from exten-
sivity. Phys. Rev. Lett., 96:054103, 2006.

[34] H. Yang and G. Radons. Lyapunov modes in extended
system. Phil. Trans. R. Soc. A, 367:3197 – 3212, 2009.

[35] K-H. Chiam, M. Lai, and H. S Greenside. Efficient algo-
rithm on a nonstaggered mesh for simulating Rayleigh-
Bénard convection in a box. Phys. Rev. E, 68:026705,
2003.

[36] A. Karimi and M. R. Paul. Length scale of a chaotic
element in Rayleigh-Bénard convection. Phys. Rev. E,
86:066212, 2012.

[37] M. C. Cross and A. C. Newell. Convection patterns in
large aspect ratio systems. Physica D, 10:299–328, 1984.

[38] P. V. Kuptsov and S. P. Kuznetsov. Violation of hy-
perbolicity in a diffusive medium with local hyperbolic
attractor. Phys. Rev. E, 80:016205, 2009.

[39] L. Sirovich and A. E. Deane. A computational study of
Rayleigh-Bénard convection. Part 2. Dimension consid-
erations. J. Fluid Mech., 222:251–265, 1991.

[40] C. Pugh, M. Shub, and A. Starkov. Stable ergodicity.
Bull. Am. Math. Soc., 41(1):1–41, 2003.

[41] J. Bochi and M. Viani. The Lyapunov exponents of
generic volume-preserving and symplectic maps. Ann.

Math., 161:1423–1485, 2005.


