
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Dynamics of a population of oscillatory and excitable
elements

Kevin P. O'Keeffe and Steven H. Strogatz
Phys. Rev. E 93, 062203 — Published  7 June 2016

DOI: 10.1103/PhysRevE.93.062203

http://dx.doi.org/10.1103/PhysRevE.93.062203


Dynamics of a population of oscillatory and excitable elements

Kevin P. O’Keeffe and Steven H. Strogatz
Center for Applied Mathematics, Cornell University, Ithaca, NY 14853, USA

We analyze a variant of a model proposed by Kuramoto, Shinomoto, and Sakaguchi for a large
population of coupled oscillatory and excitable elements. Using the Ott-Antonsen ansatz, we reduce
the behavior of the population to a two-dimensional dynamical system with three parameters. We
present the stability diagram and calculate several of its bifurcation curves analytically, for both
excitatory and inhibitory coupling. Our main result is that when the coupling function is broad,
the system can display bistability between steady states of constant high and low activity, whereas
when the coupling function is narrow and inhibitory, one of the states in the bistable regime can
show persistent pulsations in activity.

PACS numbers: 05.45.Xt, 05.70.Ln

I. INTRODUCTION

In 2008, Ott and Antonsen [1] discovered a remark-
able ansatz that reduces the infinite-dimensional dynam-
ics of the Kuramoto model of coupled oscillators [2] to a
flow on a phase plane. Their ansatz has since been used
to shed light on diverse physical and biological systems
[3], ranging from pedestrian-induced oscillations of wob-
bly footbridges [4] to arrays of Josephson junctions [5]
and periodically forced circadian rhythms [6].

More recently, several authors have shown how to
use the Ott-Antonsen ansatz to derive exact firing rate
equations for a large population of spiking neurons [7–
10]. The approach relies on approximating the neurons
as oscillatory or excitable elements described by a sin-
gle phase variable. An early forerunner of this idea was
proposed by Kuramoto, Shinomoto, and Sakaguchi [11].
In 1987, they considered a radically simplified model in
which each neuron was modeled as “the simplest possible
excitable system” [11], coupled by delta function pulses.
Their governing equation is

φ̇i = ωi − b sinφi +
K

N

N∑
j=1

δ(φj + π/2) (1)

for i = 1, . . . , N . The natural frequencies ωi are assumed
to be uniformly distributed on the interval 0 < ωi < b
so that the individual elements are excitable rather than
spontaneously oscillatory, K > 0 is the coupling strength,
and φ = −π/2 is the phase at which the model neu-
ron fires. By using a self-consistency argument to find
the stationary states in the limit N → ∞, Kuramoto,
Shinomoto, and Sakaguchi [11] showed the system could
be bistable: either all the neurons could be off (not fir-
ing) or most could be on (firing repetitively), depending
on the initial conditions. Their self-consistency analysis
also predicted the collective firing rate. However, given
the tools available at the time, they could not analyze
the model’s dynamics, stability, or bifurcations.

We were curious to revisit this problem, armed with
the Ott-Antonsen ansatz. Rather than aim for biological
realism, we study a model close in structure to Eq. (1).

Our motivation is theoretical, namely, to explore the
model as a dynamical system.

II. THE MODEL

The model we study is

θ̇i = ωi + b cos θi +
K

N

N∑
j=1

P (θj) (2)

for i = 1, . . . , N , where N � 1. Here θi and ωi are the
phase and natural frequency of oscillator i and K is the
coupling strength. (Note that for convenience we have
defined the phase θi = φi + π/2 relative to the notation
in Eq. (1), so that the firing phase now corresponds to
θ = 0, and −b sinφi transforms into b cos θi.) Following
Ott and Antonsen [1], we assume the ωi are drawn from
a Lorentzian distribution with center frequency µ and
width γ, given by the density

g(ω) =
γ

π

1

(ω − µ)2 + γ2
. (3)

Although this assumption differs from the uniform distri-
bution assumed by Kuramoto, Shinomoto, and Sakaguchi
[11], it has the advantage of greater analytical tractabil-
ity.

The term b cos θ introduces nonlinearities into each
oscillator’s intrinsic cycle. It slows the oscillators down
on (π/2, 3π/2), and speeds them up on (−π/2, π/2). This
behavior is shown schematically in Fig. 1.

This effect leads to a a splitting of the popula-
tion into two types of oscillators: excitable and self-
oscillatory. Such systems have been previously consid-
ered by Daido, Pazo, Montbrio and others [12–14]. The
excitable oscillators are those with |ωi| < b. In the ab-
sence of coupling (K = 0), each oscillator has a stable
equilibrium state on its circle, corresponding to the rest-
ing state of a neuron, as well as an unstable state, corre-
sponding to the firing threshold. An excitable oscillator
perturbed past its firing threshold will go on a long excur-
sion around its state circle, akin to a neuron being excited
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FIG. 1: Schematic of each oscillator’s behavior on the unit
circle. Oscillators move slowly on the circle’s left hand side
and rapidly on its right hand side. Oscillators also fire a pulse
whenever they pass through θ = 0.

to fire an action potential before returning to rest. The
self-oscillatory elements are those with |ωi| > b; when
K = 0 they oscillate spontaneously, emitting pulses peri-
odically as they pass through θ = 0 on the circle.

The coupling in Eq. (2) is mediated through an influ-
ence function P (θj), assumed to be a unimodal, symmet-
ric, nonincreasing function centered at θ = 0. We analyze
two extreme cases: a broad function P (θ) = 1+cos θ, and
a narrow function P (θ) = δ(θ). Intuitively, P (θ) repre-
sents how one oscillator’s activity affects all the others.
When P (θ) = 1 + cos θ, an oscillator’s influence waxes
and wanes gradually over its cycle, achieving a maximum
at θ = 0. But when P (θ) = δ(θ), the influence is sud-
den; it occurs precisely when an oscillator crosses θ = 0,
at which time it fires a sharp pulse. Depending on the
sign of K, this pulse can be either excitatory (K > 0) or
inhibitory (K < 0).

When the system is uncoupled (K = 0), its long-
term behavior is clear: the excitable elements remain at
their stable rest states while the self-oscillators fire pe-
riodically but ineffectually. When K 6= 0, however, the
excitable elements feel the pulses of the self-oscillators,
and the collective dynamics are no longer as clear. Will
the excitable oscillators remain stuck at rest, or start
firing periodically themselves? Or perhaps more compli-
cated behavior will arise. Our goal is to answer these
questions.

III. RESULTS

A. Numerical results

Numerical integration of Eq. (2) indicates that the
system displays three kinds of long-term behavior, de-
pending on the choice of parameters. We characterize
these states by their macroscopic activity, which follow-
ing Ref. [11] we define as

σ(t) =
1

N

N∑
j=1

P (θj(t)). (4)

The activity is simply the average of the instantaneous
pulse strength, and can be thought of as a current which
drives the oscillators. The three states may be character-
ized as low activity [Fig. 2(a)], high activity [Fig. 2(b)],
and oscillatory activity [Fig. 2(c)].

FIG. 2: Activity time series in the three forms of long-term
behavior for Eq. (2). (a) Low activity: (K, γ, µ) = (3, 0.05, 0)
with P (θ) = 1 + cos θ. (b) High activity: (K, γ, µ) =
(7.5, 0.05, 0) with P (θ) = 1 + cos θ. (c) Oscillatory activity:
(K, γ, µ) = (−4.15, 0.01, 0) with P (θ) = δ(θ). (d) Enlarged
portion of panel (c). All simulations were made with N = 104

oscillators using a fourth-order Runge-Kutta method with a
timestep of 0.001. Where necessary, the δ-function was repre-

sented by a Poisson kernel: δ(θ) ≈ (1 − r2)
[
2π(1 − 2r cos θ +

r2)
]−1

with r = 0.99.

It is instructive to consider the corresponding be-
havior in state space. Figure 3(a) shows a snapshot of
the phases of the oscillators in the low activity state.
The oscillators in the middle of the frequency distribu-
tion are stationary and never fire. Those in the tails,
however, execute full cycles, which is why their phases
appear scattered. This periodic behavior is also evident
in Figure 3(b), which plots the average frequency of os-

cillators 〈θ̇〉 in the low activity state versus their natural
frequency ω. Note the oscillators in the middle of the
distribution form a plateau at 〈θ̇〉 = 0, meaning that
they are not firing, while the oscillators in the tails have
〈θ̇〉 6= 0. This low activity state is achieved for both the
broad influence function P (θ) = 1+cos θ and the narrow
pulse P (θ) = δ(θ).

For the high activity state, Figs. 3(b) and 3(c) show
that most oscillators are running around the circle, firing
repetitively, leading to a nonzero average frequency for
them. This high activity state is also achieved for both
the broad and narrow influence functions.

In the oscillatory activity state, the oscillators per-
form complicated movements, leading to roughly peri-
odic fluctuations in σ(t). In particular, there is a slow-
fast structure. The oscillators first go through a low
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activity phase as they slowly move through the states
π/2 < θ < 3π/2 on the left hand side of the state circle,
creating a peaked density there. They then quickly pass
through 3π/2 < θ < 5π/2 (the right hand side of the unit
circle), creating an episode of high activity. Figure 3(d)
shows the density ρ(θ) of oscillators during these episodes
of low and high activity. This oscillatory activity state is
achieved only for P (θ) = δ(θ).

FIG. 3: Snapshots of phase space distributions and aver-
age frequencies for three states. (a), (b): Low activity: the
phases of the oscillators in the middle of the distribution are
at rest, while those in the tails rotate periodically around the
unit circle. Parameter values: (K, γ, µ) = (3.5, 0.05, 0) with
P (θ) = 1 + cos θ. (b), (c): High activity: All oscillators ro-
tate periodically around the unit circle, forming a scattered
phase distribution. Parameter values: (K, γ, µ) = (7.5, 0.2, 0)
with P (θ) = 1 + cos θ. (d) Oscillatory activity: The os-
cillators alternate between episodes of high and low activ-
ity. In the low activity episode, the oscillators pile up and
form a peaked distribution on π/2 < θ < 3π/2. Then they
quickly pass through 3π/2 < θ < 5π/2 creating an episode of
high activity. Parameter values: (K, γ, µ) = (−4.15, 0.01, 0)
with P (θ) = δ(θ). All data were obtained by integrat-
ing Eq. (2) for N = 1000 oscillators using a fourth-order
Runge-Kutta method with a timestep of 0.01. Where nec-
essary, the δ-function was represented by a Poisson kernel:

δ(θ) ≈ (1 − r2)
[
2π(1 − 2r cos θ+ r2)

]−1

with r = 0.99. In (a)

and (c) oscillators are indexed by their natural frequency.

B. Reduction to low-dimensional system

We turn now to the analysis. In the N → ∞ limit,
the system (2) can be analysed with the Ott-Antonsen
ansatz. Since applying this ansatz has become standard,
we give an abridged derivation here, and direct the reader
to [1] for a fuller account.

In the infinite-N limit, we describe our system by a
density ρ(θ, ω, t), where ρ(θ, ω, t)g(ω)dωdθ gives the frac-
tion of oscillators with natural frequency between ω and
ω+ dω that have phases between θ and θ+ dθ at time t.

The Ott-Antonsen ansatz is then

ρ(θ, ω, t) =
1

2π

[
1 +

∞∑
n=1

ᾱ(ω, t)neinθ + c.c.

]
(5)

where the overbar notation and c.c. both denote complex
conjugation. The main result of Ott-Antonsen theory is
that densities of the above form constitute an invariant
manifold that determines the system’s long-term dynam-
ics. We therefore restrict our attention to this special
manifold, where, as we will show, the system is easily
analyzed.

The density (5) obeys the continuity equation

∂ρ

∂t
+

∂

∂θ
(vρ) = 0 (6)

where the velocity v = ω + b cos θ + Kσ is given by the
right hand side of (2), and is interpreted in the Eulerian
sense. Substituting the Ott-Antonsen ansatz (5) into the
continuity equation (6) yields the following ordinary dif-
ferential equation (ODE) for α(ω, t):

α̇ = iωα+ iαKσ(α) +
1

2
ib(α2 + 1). (7)

This is an infinite-dimensional set of ODEs, one for each
natural frequency ω.

The macroscopic behavior of the system, however,
has much lower dimensional dynamics. This macroscopic
behavior can be described using the complex Kuramoto
order parameter

Z = 〈eiθ〉 =

∫
eiθρ(θ, ω, t)g(ω)dωdθ. (8)

Inserting the Ott-Antonsen ansatz (5) into this inte-
gral, and doing the integration over θ, leads to Z =∫
α(ω, t)g(ω)dω. This integral can in turn be calculated

by extending ω into the complex plane, and computing a
contour integral over an infinitely large semicircle in the
upper half plane. By assuming that α has the required
analytic properties, and by noting that the Lorentzian
distribution (3) has a simple pole at ω = µ+ iγ, we can
use the residue theorem to compute the integral for Z.
This leads to

Z = α(ω = µ+ iγ, t). (9)

Hence the order parameter is simply α evaluated at the
complex frequency ω = µ + iγ. This remarkable fact,
in concert with (7), lets us analyze the behavior of Z.
Setting Z = reiφ, evaluating (7) at ω = µ + iγ, and
collecting real and imaginary parts, yields the following
ODEs for r and φ:

ṙ = −γr +
b

2
(1− r2) sinφ

φ̇ = µ+Kσ(r, φ) +
b

2
(r + r−1) cosφ. (10)
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Note that the equations (10) hold for a general influence
function P (θ), whose presence is implicit in the activ-
ity σ(r, φ). We next analyze these ODEs for specific in-
stances of P (θ).

C. Broad Pulse

Consider the case P (θ) = 1 + cos θ. The activity is

given by σ = N−1
∑
j(1+cos θj) = 1+Re

(
N−1

∑
j e
iθj
)

.

Remembering Z = 〈eiθ〉, we get σ = 1+Re(Z), or

σbroad = 1 + r cosφ. (11)

We next nondimensionalize the system. By rescaling
time, we set b = 1 without loss of generality (so that
the remaining parameters K,µ, γ are measured in units
of b). Then, substituting (11) into (10) results in the
following set of ODEs for r and φ:

ṙ = −γr +
1

2
(1− r2) sinφ

φ̇ = µ+K(1 + r cosφ) +
1

2
(r + r−1) cosφ. (12)

The system (12) has three parameters: the coupling
strength K, the center frequency µ of the Lorentzian dis-
tribution, and its width γ.

We first set µ = 0 to make the analysis as simple as
possible. We found saddle-node curves by solving for the
fixed points of (12) and det(J) = 0 simultaneously using
Mathematica. While the resulting expressions are ana-
lytic, they are rather cumbersome, so we omit showing
them. These saddle-node curves are shown in Fig. 4, and
join at a cusp at (K, γ) ≈ (2.27, 0.22). They thus define a
parameter region in which both the high and low activity
states are locally stable.

This region of bistability is the counterpart of
that anticipated by Kuramoto, Shinomoto, and Sak-
aguchi [11]. In their model (1), they were able to cal-
culate the self-consistent levels of steady-state activity,
but now, with the benefit of the Ott-Antonsen approach,
we can prove the stability of those states and derive the
boundaries of the bistable region exactly.

1. Stability diagram for µ > 0

The Ott-Antonsen approach also lets us explore phe-
nomena in parameter regions beyond the scope of the
methods used in Ref. [11]. We first increase µ from 0.
As shown in Fig. 5, the bistable region shrinks until it
disappears at (K, γ, µc) = (0, 0, 1) , a result we obtained
numerically. In the original units, µc = b, indicating
that bistability disappears when µ = 〈ωi〉 ≥ b, or in
other words, when the average oscillator is of the spon-
taneously firing variety.

If we increase µ past µc = 1, we get a rich sequence
of bifurcations, but now for K < 0, corresponding to

FIG. 4: (Color online) Stability diagram for system (12) when
µ = 0. The abbreviation SN stands for saddle-node bifurca-
tion.

FIG. 5: (Color online) Illustration of the shrinking of the
bistable region defined by the saddle-node (SN) curves as µ is
increased from 0. The region fully disappears at (K, γ, µ) =
(0, 0, 1).

FIG. 6: (Color online) Stability diagram for system (12) when
µ = 3. The abbreviations SN, Homo, and TB stand for
saddle-node, homoclinic, and Takens-Bogdanov bifurcations,
respectively. The Hopf curve is subcritical.

inhibitory coupling. As shown in Fig. 6, another pair
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FIG. 7: (Color online) Stability diagram for system (12) when
µ = 4. The abbreviations SN, Homo, and TB stand for
saddle-node, homoclinic, and Takens-Bogdanov bifurcations,
respectively. The Hopf curves are subcritical.

of saddle-node bifurcation curves meet in a cusp catas-
trophe. There is also a curve of subcritical Hopf bifur-
cations, which meet the saddle-node curves at a Takens-
Bogdanov point. These features were all obtained analyt-
ically, but the resulting expressions are too complicated
to be presented here, except for the Hopf curve, which is
given by

γ =
(K + 2)

√
(4K + 5)K2 + 4(K + 1)µ2 + 8(K + 1)Kµ

2K
√
−K − 1

.

(13)

The presence of a Takens-Bogdanov bifurcation implies
the existence of a curve of homoclinic bifurcations, which
we computed numerically.

Recall that when 0 ≤ µ < 1 (Figs. 4 and 5), the
saddle-node curves define a region of bistability between
the high and low activity states. The same bistabil-
ity holds when µ > 1. However, the Hopf and homo-
clinic bifurcation curves complicate the picture by cre-
ating smaller subregions of bistability, as shown in Fig.
6. As we increase µ further, another Takens-Bogdanov
point appears, along with its required homoclinic and
Hopf bifurcation curves. This scenario is shown in Fig.
7. The medley of bifurcation curves define six distinct
regions in the (K, γ) plane. In Fig. 8 we show the phase
portraits in each of these regions. Also shown are the
time series for the activity σ(t) as per (11). In every
case, the system is either monostable or bistable.

2. Stability diagram for µ < 0

Will the system bifurcate in such complicated ways
for µ < 0? For −1 ≤ µ ≤ 0, the picture is the same as
in Fig. 4. Just as increasing µ made the bistable region
smaller, decreasing µ makes it bigger. But in contrast

FIG. 8: (Color online) Left: Activity time series for regions
A through F depicted in Fig. 7. Right: Schematic phase por-
traits for each of these regions. Red, solid points denote stable
fixed points. Green and black open points denote saddle and
unstable fixed points. Unstable limit cycles are dashed and
plotted blue.

to µ > 0, there are no Hopf curves, and no Takens-
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Bogdanov points associated with them. However for
µ < −1, a second bistable region is born (Fig. 9).

FIG. 9: (Color online) Stability diagram for system (12) when
µ = −15. The abbreviation SN stands for saddle-node. As
can be seen, there are two regions of bistability.

3. Summary

Let us distill the results so far. A three-parameter
bifurcation study of the system (12) yields stability dia-
grams in the (K, γ) plane for different values of µ. Al-
though there are four dynamically distinct slices of the
(K, γ) plane, as shown in Figs. 4, 6, 7, and 9, they all
tell the same story: with the broad coupling used in (12),
the system (2) always reaches a steady state of constant
activity σ. For some parameter values, the system is
bistable, with high and low activity states coexisting.
Figure 10 summarizes how the steady-state level of activ-
ity σ depends on the coupling K for the four dynamically
distinct slices of (K, γ) space.

D. Narrow Pulse

How generic is the behavior of the broad pulse
system (12)? To answer this question, we investigate
a different choice of the influence function P (θ). We
change the broad pulse to an infinitesimally narrow pulse,
P (θ) = δ(θ), so that oscillators fire precisely when they
are at θ = 0. With this choice of influence function, our
model (2) is very similar to that studied by Kuramoto,
Shinomoto, and Sakaguchi [11]. The differences are that
they restricted attention to excitatory coupling K > 0
and assumed a uniform distribution of frequencies on the
interval 0 ≤ ω ≤ b. Using a self-consistency analysis,
they established the existence of states with high and low
activity, and identified parameters at which those states
are bistable. Now, with the benefit of Ott-Antonsen the-
ory, the rest of the bifurcation diagram can be filled in.
This leads to the discovery of a nonstationary state, in
which the activity σ(t) oscillates persistently.

FIG. 10: (Color online) Activity σ(K) for various (γ, µ).
Panel (a) is for (γ, µ) = (0.05, 0) and corresponds to Fig 4.
Panel (b) is for (γ, µ) = (0.2, 3) and corresponds to Fig 6.
Panel (c) is for (γ, µ) = (0.1, 4) and corresponds to Fig 7.
Panel (d) is for (γ, µ) = (0.15,−15) and corresponds to Fig 9.

To begin the analysis, recall that the activity is given
by σ(t) = N−1

∑
j P (θj(t)). In the infinite-N limit, this

becomes σ(t) =
∫
δ(θ)g(ω)ρ(θ, ω, t)dωdθ. The integral

over θ is trivial, while that over ω can be computed by
the residue theorem, giving σ(t) = ρ(θ = 0, ω = µ+iγ, t).
Thus the activity is simply the time-dependent density
of oscillators at θ = 0.

An expression for σ(t) = ρ(0, µ + iγ, t) can be
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obtained as follows. When we introduced the Ott-
Antonsen ansatz (5) for ρ, we expressed it as a
Fourier series. Summing this series gives ρ(θ, ω, t) =
(2π)−1

[
(1− |α|2)/(1 + 2r cos(arg(α)− θ)) + |α|2)

]
. Set-

ting θ = 0, ω = µ + iγ, and remembering Z = reiφ =
α(ω + iγ) yields

σnarrow =
1

2π

1− r2

1− 2r cosφ+ r2
. (14)

Plugging this into (10) and setting yields a two-
dimensional dynamical system:

ṙ = −γr +
1

2
(1− r2) sinφ

φ̇ = µ+
K

2π

1− r2

1− 2r cosφ+ r2
+

1

2
(r + r−1) cosφ. (15)

Note we have set b = 1 by rescaling time. From here,
we perform the same analysis as for the broad pulse sys-
tem. The bifurcation diagram for µ = 0 is shown in
Fig. 11. It has the same features as those found in the
broad pulse system (see Figs. 4 and 6), but with one
important exception: the curve of Hopf bifurcations is
now supercritical, giving rise to a stable limit cycle. Fig-
ure 12 zooms in on the relevant part of Fig. 11 to show
the homoclinic and Hopf curves more clearly. Note the
qualitatively new kind of bistable region in which a sta-
ble limit cycle coexists with a stable spiral fixed point.
Figure 13 shows the behavior of σ(t) in this region. The
oscillatory activity state shown earlier in Fig. 2(c) cor-
responds to this limit cycle, but the simulation results
of Fig. 2(c) do not display perfect periodicity because of
finite-N effects.

FIG. 11: Stability diagram for system (15) when µ = 0. The
abbreviations SN and TB stand for saddle node and Takens-
Bogdanov bifurcations, respectively. The Hopf curve is su-
percritical.

For nonzero µ we get the same behavior as for the
broad pulse system: for increasing µ, the bistability re-
gion again shrinks and finally disappears, similar to the
scenario in Fig. 5. The creation of a series of Hopf curves
and the resulting Takens-Bogdanov points also occurs,
similar to Figs. 6 and 7. However, in this case, the Hopf

FIG. 12: Enlarged portion of Figure 11 showing the super-
critical Hopf and homoclinic bifurcation curves.

FIG. 13: Time series of activity defined by (14), showing the
coexistence of a stable limit cycle and a stationary state for
(K, γ, µ) = (−4.15, 0.01, 0).

curves are supercritical. Lastly, for µ < 0, two bistable
regions occur in the K > 0 plane, as in Fig. 9.

IV. DISCUSSION

Building on the work of Kuramoto, Shinomoto, and
Sakaguchi [11], we have studied a mean-field model of in-
finitely many excitable and self-oscillatory elements cou-
pled by a pulsatile influence function. The Ott-Antonsen
ansatz [1] allowed us to to reduce the system’s macro-
scopic dynamics to two ordinary differential equations in
three parameters (K, γ, µ). We characterized the behav-
ior of the system by drawing stability diagrams in the
(K, γ) plane, for differing values of µ.

For the broad influence function P (θ) = 1 + cos θ,
we found four qualitatively distinct stability diagrams.
At all parameter values, the activity σ(t) was ultimately
stationary, although regions of bistability were identi-
fied.

For the narrow influence function P (θ) = δ(θ), the
bifurcation diagrams were similar to those for the broad



8

pulse function, with one salient difference: the curve of
Hopf bifurcations occurring for K < 0 was now supercrit-
ical, giving rise to a stable limit cycle and the possibility
of persistent oscillatory activity.

This qualitative difference between the broad and
narrow pulse regimes begs the question: what is the crit-
ical width of P (θ) that separates these two extremes?
Future work could answer this question by studying a
family of influence functions: Pn(θ) = an(1 + cos θ)n,
where an is a normalization constant, as in Refs. [7, 8].
These functions get narrower as n gets bigger, and rep-
resent our broad and narrow pulses as limits when n = 1
and n→∞ respectively.

Another interesting parameter to vary is the location
of the maximum of the pulse function P (θ). We assumed
P (θ) reaches its maximum at θ = 0, the same phase
where the excitability term b cos θ is maximal. Could re-
moving this coincidence lead to new behavior? Other
idealizations in the model could also be relaxed. For ex-
ample, one could introduce delay, mixed positive and neg-
ative coupling, nontrivial connectivity, and so on.

As we mentioned in the introduction, Kuramoto,
Shinomoto, and Sakaguchi [11] proposed the present
model to explore “the simplest possible excitable sys-
tem.” But does this simple system mimic more realistic
models? We conclude by briefly comparing Eq. (2) to the
widely studied theta-neuron model [7–10]. A detailed bi-
furcation study of this model was carried out by Luke,
Baretto and So in [9]. Using the Ott-Antonsen ansatz
(5), they also reduced the behavior of their system to a
two-dimensional dynamical system in three parameters,
(K,∆, η0). Here, K is the coupling, and η0 and ∆ are
the center and width of a Lorentzian distribution of a
variable ηi. This variable measures the “excitability” of

an oscillator: if ηi > 0, then oscillator i is self-oscillatory,
while if ηi < 0, it is excitable. Hence in their model,
the oscillatory/excitability property of an oscillator is di-
rectly expressed through ηi, whereas in our model, this
distinction is achieved through the magnitude of ωi rela-
tive to b.

In spite of these minor differences, the behavior of
their model was largely similar to ours. Luke, Baretto
and So [9] found three macroscopic states, which they
called the partial synchronous rest state (PRS), the par-
tially synchronous spiking state (PSS), and collective pe-
riodic wave state (CPW). These are analogous to our (i)
low activity, (ii) high activity, and (iii) oscillatory activity
states. Interestingly, they found the oscillatory activity
state for all choices of influence function they considered,
P (θ) = an(1 + cos θ)n for various n, whereas we only
found it for the narrow function P (θ) = δ(θ). Our bifur-
cation diagram for the narrow influence function, Fig. 4,
is also qualitatively similar to theirs; see Fig. 8(a) and
Fig. 10 in [9]. However our results for the broad influ-
ence function do not match theirs exactly. For instance,
in our Fig. 6 the Hopf curves are subcritical, whereas
they are supercritical in [9]: they have stable limit cycles
while we do not. Furthermore, the complicated bifurca-
tion structure induced by two Takens-Bogdanov points
in Fig. 7 is not present for the theta neurons.
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