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We present an analytical and numerical study of the parking lot model (PLM) of granular re-
laxation and make a connection to the aging dynamics of dense colloids. As we argue, the PLM
is a Kinetically Constrained Model which features astronomically large equilibration times and dis-
plays a characteristic aging behavior on all observable time scales. The density of parked cars dis-
plays quasi-equilibrium Gaussian fluctuations interspersed by increasingly rare intermittent events,
quakes, which can lead to an increase of the density to new record values.
Defining active clusters as the shortest domains of parked cars which must be re-arranged to

allow further insertions, we find that their typical length grows logarithmically with time for low
enough temperatures and show how the number of active clusters on average gradually decreases
as the system approaches equilibrium. We further characterize the aging process in terms of the
statistics of the record sized fluctuations in the interstitial free volume which lead to quakes and show
that quakes are uncorrelated and that they can be approximately described as a Poisson process in
logarithmic time.

I. INTRODUCTION

The Parking Lot Model (PLM) is an off-lattice model
where identical cars are placed on a one-dimensional
parking strip with no marked bays. Its origin can be
traced back to the one dimensional random packing prob-
lem first considered by Renyi [1] decades ago, where iden-
tical objects, i.e. ‘cars’, are inserted in random positions
until no interstitial space remains which is large enough
to accommodate yet another car. Its (more recent) phys-
ical applications allow both insertion and removal and
include molecule ad- and de-sorption within a crowded
surface area [2], and the compactification of granular ma-
terials [3]. Certain glassy features of the PLM dynamics
were discussed in Ref. [4] but, in spite of intense theoret-
ical focus on Kinetically Constrained Model (KCM) for
their connections to glassy dynamics [5], it has largely
gone unnoticed that the PLM qualifies as a KCM.

The asymptotic properties of the PLM average observ-
ables have been explored previously [6]. Here we investi-
gate in more detail its spatial and temporal complexity,
showing in particular that a key property of glassy dy-
namics, dynamical heterogeneity in time and space, is
present in this model and is related to record sized fluc-
tuations and their statistics, as also seen in other glassy
systems [14–18]. Furthermore, the ‘thermal’ model ver-
sion presently investigated furnishes a prime example of
decelerating aging dynamics controlled by kinematic con-
straints. Our analysis clarifies a key model assumption
made in a recent description of particle motion in dense
colloidal suspensions [7, 8]. Specifically, the PLM fea-
tures reversible fluctuations similar to in-cage rattlings
of dense colloids together with irreversible releases of free
volume. The latter are associated with escapes in a free-
energy landscape [9, 10] and are connected to a coop-
erative and increasingly rare restructuring of the spatial
domains present in the system.

The basic mechanism behind the model’s decelerating
dynamics is that the kinetic constraint provided by car
impenetrability becomes harder to overcome as the den-
sity increases. A minute and increasingly rare O(1/N)-
change to the car density lowers the free energy, but con-
comitantly raises the free energy barrier which must be
overcome to further increase the density. The non-trivial
spatial structure associated to increasing free-energy bar-
riers [11] is indeed responsible for the dynamical be-
haviour of the PLM: let an active cluster or active domain
be a group as small as possible of adjacent cars which
must be rearranged in order to create an interstitial space
sufficient to accommodate an additional car. As we shall
see, the size of active clusters grows logarithmically with
the system’s age, and the characteristic time for their
rearrangement by means of random moves grows expo-
nentially with their size, similarly to what is observed in
both recent experiments [12, 13] and in numerical model
simulations [7, 8] of aging in dense colloids.

The aging dynamics of the PLM is induced by record
fluctuations [14–18], in this case free-energy fluctuations
able to bring the system across a series of ever increas-
ing free energy barriers. Such fluctuations trigger non-
equilibrium quake, in our case the rearrangement of an
active cluster followed by the insertion of an extra car.
Specifically, PLM quakes are induced by the appearance
of an interstitial volume wide enough to accommodate
one additional car. These fluctuations are rare in dense
systems, occur at a decelerating rate on a linear time
scale but at a nearly constant rate when viewed on a
logarithmic time-scale. Correspondingly, the model’s dy-
namics transverses metastable states of growing dura-
tion, each characterized by reversible fluctuations around
a fixed average number of parked cars and each modified
by an irreversible quake.

The paper is organized as follows: In the next Section,
we introduce the PLM; in Sec. III, we analyze its hier-
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archical configuration space structure and, using heuris-
tic arguments, sketch the dynamical consequences this
structure generically brings; in Sec. IV we introduce a
rejection-less Monte Carlo algorithm able to relax the
system to equilibrium by transversing the required num-
ber of metastable states; in Sec. V we make connections
with the phenomenology of kinetically constraint mod-
els, draw some conclusions and offer an outlook on future
work. In the Appendix, we detail the algorithm used to
obtain our numerical results.

II. THE PARKING LOT MODEL

A brief description of the PLM is given here to fix the
notation. Our parking lot is a strip delimited by two rigid
walls to avoid center-of-mass drifts, has no marked bays,
and can at most accommodate L cars of unit width [1].
At a given time, N ≤ L cars are present, all parked per-
pendicularly to the strip’s longitudinal axis. A configura-
tion is equally well specified by a list of N + 1 interstitial
spaces Ii, which, for 0 < i < N , separate parked cars i
and i + 1, with I0 separating the left wall from the first
car and IN separating the last car from the right wall.
We gloss over the distinction between an interstitial space
and its size, or length.

An empty lot has a single interstitial space I0 = L,
and the first insertion generates two interstitial spaces
I0 = q(I0 − 1) and I1 = (1 − q)(I0 − 1), where q is a
random number drawn from the uniform distribution in
the unit interval. In general, a new insertion into an
existing interstitial Ii > 1 splits the latter into two parts.
First the indices of the interstitials from i+1 and onwards
are incremented by one, and then the ith and i + 1st

values are recalculated as Ii ← q(Ii − 1) and Ii+1 ←
(1−q) (Ii − 1). For a car removal, we set Ii ← Ii+Ii+1+1,
and decrement by one the indices of the interstitials from
the rightmost one and down to Ii+2.

Starting from an empty lot, random insertions suc-
ceed as long as interstitial spaces larger than unity exist.
When this no longer applies, a ‘random loosely packed’
configuration is reached which can only be changed by
two-car processes [4]: either a ‘bad parker’ is removed
leaving sufficient space for two ‘good parkers’, or the op-
posite process occurs. Such metastable situation is here
dubbed stage zero because it turns out to be the first in
a hierarchy of metastable states. The average parked car
density at stage zero was analytically shown by Renyi [1]
to approach, for L → ∞, ρ0 = 0.7475 . . . , a value also
close to numerical results obtained for a two dimensional
version of the same problem [19].

In the ‘thermal’ version of the model discussed later in
more detail the basic energy scale is defined by assigning
zero energy to parked car and unit energy to free cars.
Hence low temperatures correspond to values T � 1, and
the ‘greedy’ random packing algorithm just mentioned

corresponds to T = 0 dynamics, where only insertion at-
tempts are possible. In general, the temperature T can
be so low and the chemical potential so high that any
leaving car is immediately replaced by another, the latter
inserted in the same slot but with a slightly shifted po-
sition. A series of such removal/insertion processes thus
amounts to small positional changes of already parked
cars, which is similar to in-cage rattlings of a dense col-
loid [20].

In each panel of Fig. 1 the line represents the aver-
age over 20 independent simulations of the difference be-
tween the equilibrium car density and the density ob-
tained in simulations starting with an empty lot. Sim-
ulations were conducted using a ‘naive’ version of the
Waiting Time Method (WTM) [21], a rejection-less algo-
rithm which inserts and removes cars at times calculated
from the likelihood that these moves would succeed in a
standard Metropolis algorithm. See also Sec. VA where
a coarser and more efficient version of the WTM is de-
scribed. The left-hand panel shows that at temperature
T = 0.80 the system equilibrates very quickly. In the
right-hand panel, the temperature is T = 0.42, and the
asymptotic value reached by the ordinate is clearly dif-
ferent from zero, indicating the presence of the ‘zeroth
stage’ metastable state mentioned above. The horizontal
line segment has ordinate 1− ρ0, and marks the point at
which the T = 0 greedy dynamics on average grinds to a
halt. As expected, the thermal algorithm gets closer to
the equilibrium density than the quench does. Note the
difference in the time scales of the relaxation processes
occurring at T = 0.80 and T = 0.42.

III. HIERARCHICAL STRUCTURE AND
SPATIAL AND TEMPORAL HETEROGENEITY

In this section the hierarchical structure of PLM con-
figurations and its relation to spatial and temporal het-
erogeneity is discussed with no mention of a specific dy-
namical rule. We do assume, however, that the rule in
question is ‘blind’, in the sense that a large number of
failed random attempts are needed to successfully rear-
range d cars in a preassigned way. Our conclusions, which
are qualitative but general, are confirmed in the next sec-
tion, where a numerical approach is considered.

Defining I0max ≥ 1 as the largest interstitial in a sys-
tem which has not yet reached metastability, we iden-
tify a stage zero metastable state, M0(1), as the config-
uration reached when the condition I0max < 1 becomes
fulfilled for the first time. Such state corresponds to a
loosely packed configuration, where no additional cars
can be inserted without previous removals. Using k in-
dependent simulations, each starting from an empty lot,
M0(k), k = 1, 2, . . . kmax loosely packed configurations
with the same statistical properties can be generated,
which possibly contain slightly different numbers of cars.
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Figure 1: In each panel, the blue line shows an average over 20 independent simulations of the deviation of the car density from
its equilibrium value (〈n〉(T )−N)/L. All simulations start from an empty lot of length L = 1000. Three different trajectories
are shown as data points to illustrate the fluctuations around the average deviation. Left-hand panel: T = 0.80. The ordinate
converges rapidly to zero, signaling that equilibrium is reached. Right-hand panel: T = 0.42. The horizontal line segment with
ordinate 1 − ρ0 marks the value of the at which the T = 0 greedy dynamics grinds to a halt. We can see that our ‘naive’
thermal algorithm comes close to equilibrium, and then remains trapped in a long-lasting metastable state.

In the limit of large kmax and L, we finally obtain

ρ0 =

〈
M0(k)

L

〉
k

= 0.7475 . . . (1)

for the averaged car density in stage zero, consistent with
Renyi’s analytical result [1].

Even though no additional insertions into any configu-
ration M0(k) are possible, removing the lth car will pro-
duce enough space for the insertion of two cars wher-
ever the condition I1l

def
= I0l−1 + I0l > 1 is satisfied.

Starting now from a state M0(k) and repeating when-
ever possible and as long as possible the random removal
of one car followed by the insertion of two cars in the
empty slot thus generated, a stage-one metastable state
M1(k, 1) is eventually reached. In such state removing
one car never allows the insertion of two cars, because
I1max

def
= maxl{I1l } < 1. Repeating the above procedure

m times, with M0(k) as starting point, and stopping as
soon as the condition I1max < 1 is satisfied, generates a
series of stage one metastable states M1(k,m). Each of
these can only be modified by randomly searching for two
adjacent cars whose simultaneous removal makes room
for three cars. This step can be iterated until all possi-
bilities are exhausted. Proceeding along this line, we can
now define a hierarchy

Mr(k,m, n . . .) ⊂Mr−1(k,m, n, . . .) . . . ⊂M0(k), (2)

where in a configuration Mr(k,m, n . . .) the largest of
the sums of all possible sets of r + 1 adjacent intersti-
tial spaces obeys Irmax < 1. The symbol ⊂ used in, say,
M1(3, 0) ⊂ M0(0) indicates that state M1(3, 0) is gen-
erated dynamically starting from state M0(0), but does
not indicate a static set inclusion relationship. The car
density at level r is

ρr =

〈
Mr(k,m, n . . .)

L

〉
k,m,n,...

, (3)

where the average is taken over all the available indices.
The critical car densities separating each of the first five
levels of the hierarchy from its successor were obtained
numerically for L = 1000 and are given, with ±1σ error
bars, by: ρ0 = 0.7476±4·10−4; ρ1 = 0.8587±3·10−4; ρ2 =
0.8992±3·10−4; ρ3 = 0.9205±2·10−4; and ρ4 = 0.9343±2·
10−4. Renyi’s result corresponds to the first value listed.

To obtain a physical process with a proper timescale,
we follow Ben-Naim et al. [6] in assuming that cars move
independently, only constrained by the free volume of
interstitial spaces left to them by their neighbors. In-
dependent car motion translates in turn into interstitial
spaces Irl , 1 ≤ l ≤ N , with a marginal distribution that is
uniform but collectively constrained in their total length,∑N
l=1 I

r
l = L − N . In that case, one finds [4] that their
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effective distribution is asymptotically exponential,

Q(I) ∼ N

L−N e−
NI

L−N =
1

〈I〉e
− I
〈I〉 , L,N →∞. (4)

The result is not too surprising, representing merely
an exponential distribution with the mean interstitial
length, 〈I〉 = L−N

N , as its cut-off. Then, the probabil-
ity that an interstitial opens up to fit in the N + 1st car
of unit size, is given by

pN+1|N (dr) =

ˆ L−N

1

dI Q(I) ∼ e− N
L−N

def
= e−dr , (5)

where the relation 〈I〉 dr = 1 is used to define the typical
size dr of the domain in which r cars need to collectively
moved to provide an opening of unit size.

In a large system, at each level r of the hierarchy many
domains dr ∼ r may coexist. Those are the “soft spots”
where further insertions are most likely to occur, separat-
ing areas that are minutely more resistant to insertions
at this level. Dynamical activity will wander from one
domain to the next until all successful insertions at level
r have taken place. At this point, the domains charac-
teristic of the next level will start to play their role. The
spatially localized dynamical activity, which as we just
argued is typical of the PLM, is also the manifestation of
dynamic spatial heterogeneity [22].

Turning to temporal heterogeneity, or intermittency,
we note that pN+1(rd) defines the rate at which the rare
fluctuations occur which trigger a quake, i.e., the demise
of a domain of size dr and the corresponding insertion of
an extra car. Quakes occurring at level r determine the
time ∆tr it takes to go from the rth to the r + 1st level
of the hierarchy. This time grows as t ∼ τ edr , where τ is
a constant. Conversely, we can say that the size of such
domains grows logarithmically in time,

dr(t) ∼ ln
t

τ
. (6)

The logarithmic growth of the size of such active domains
is a key property of the cluster model discussed in Ref. [8]
and also represents a key prediction of the record dynam-
ics description of colloidal aging [7].

To further connect our record dynamics picture with
previous work [6] on the PLM, we also note that

dr =
1

〈I〉 =
N

L−N =
ρr

1− ρr
, (7)

where ρr = N/L is the car density when domains have
size dr. Then, for times t such that dr � 1 and T → 0
the density approaches ρ∞ = 1 as

ρr(t) =
dr

1 + dr
∼ ρ∞ −

1

ln t
τ

,

as expected for the PLM [6].

IV. THERMAL DYNAMICS

To check the dynamical behavior just described in
qualitative terms, we turn to the numerical analysis of
a ‘thermal’ version of the PLM, where parking a car
changes its energy from ε = 1 to ε = 0. Cars are in
contact with a thermal energy reservoir at temperature
T and, in the lack of interactions, the mean energy per
car and the mean number of parked cars are given by

〈ε(T )〉 =
exp(−1/T )

1 + exp(−1/T )
; 〈n(T )〉 =

L

1 + exp(−1/T )
(8)

in thermal equilibrium. In the above, both temperature
and energy are dimensionless and the Boltzmann con-
stant is set to one. The kinematic constraint forbidding
the spatial overlap of parked cars has no effect on ther-
mal equilibrium properties but has a strong effect on the
time scale needed to achieve thermalization.

To see how the effect comes about, we note that Eq. (8)
for 〈n(T )〉 = ρrL defines a series of characteristic tem-
peratures

Tr =
1

ln
(

ρr
1−ρr

) =
1

ln(dr)
, Tr < Tr−1 . . . < T0, (9)

each corresponding to the equilibrium density at the
‘edge’ between metastable states r and r+1. For T > Tr,
the equilibrium car density satisfies 〈n(T )〉/L < ρr,
and, consequently, a dynamical process starting from
an empty lot reaches equilibrium before reaching a
metastable state of stage r + 1 or higher. In particu-
lar, for T > T0 ≈ 0.921 the equilibrium car density is too
low for the kinematic constraint to play any role.

The equilibrium thermal density at T = 0.8 , 〈ρ〉 =
.777, is only slightly above the Renyi density and, as
shown in the left panel of Fig 1, the calculated discrep-
ancy 〈ρ〉 − N/L quickly equilibrates and vanishes. The
right panel shows corresponding data for T = 0.42, where
the equilibrium thermal density, 〈ρ〉 = .966 is way above
the Renyi density and where no equilibrium is reached
within the time scales considered.

In order to equilibrate starting from an empty lot, a
system quenched to a low temperature must surmount a
number of growing free energy barriers. This forms the
basis of the PLM aging dynamics since, as shown below,
the equilibration time teq,r can easily outlast the patience
of any observer. To estimate teq,r at temperature Tr, we
use Eqs. (6) and (9), finding, for an unspecified numerical
constant C,

teq,r = exp(C exp(1/Tr)), (10)

a quantity which becomes astronomically large when
ρr → 1 and Tr → 0.

To explore the thermal aging dynamics of the PLM,
the Metropolis algorithm is woefully inadequate, since it
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Figure 2: Upper panel: The blue line depicts the average
of 210 independent trajectories, each consisting of the differ-
ence between the equilibrium average of the car density at
T = 0.35, and the time dependent car density when starting
from an empty parking lot of length L = 1000. The ordinate
goes through a fast initial decrease, followed by a consider-
ably slower relaxation toward zero. To convey an idea of the
size of the fluctuations, 40 trajectories are depicted as dots.
Negative data values are present in the late stages of the re-
laxations and are omitted. Lower panel: the dots show the
number of active domains present is the system versus the
logarithm of time for 210 independent simulations. The green
circles depict averages over the data points..

would spend most computer resources to generate and
reject configurations. We use instead an adaptation of
the Waiting Time Method (WTM) [21], a rejection-less
algorithm whose application to the PLM is sketched in
the Appendix. The key points are: i) the algorithm gen-
erates for each system state a list of possible moves, each
associated with a time at which the move would happen
in a sequence of random attempts. The move with the

shortest waiting time is carried out. ii) The algorithm
use the temperature value needed to equilibrate the sys-
tem at that temperature, see e.g. the upper panel of
Fig. 2.

At the zero’th stage, car insertions do not require prior
removals, and the algorithm inserts and removes single
cars with the frequencies required to approach equilib-
rium. At low temperatures equilibrium densities are
high, and the equilibration process will reach a stage
where at least r contiguous cars need to be rearranged to
increase the density. Such minimal cluster of cars corre-
spond to the active domains dr defined in Sec. III. When
r > 0, removing a single car is in most cases followed
by a re-insertion in the same slot at a slightly different
position. As argued, this amounts to quasi-equilibrium
fluctuations within the metastable state. These fluctua-
tions are bypassed in our numerical algorithm using two
steps: first, the time needed to remove r contiguous car
using blind attempts is drawn from an exponential dis-
tribution whose average is proportional to the Arrhenius
time exp(r/T ). An active domain is randomly chosen
among those available, and its cars are all removed. This
creates a void and pushes the system back into its zero’
th dynamical stage. In the second step, zero’ th stage
dynamics is utilized, until stage r′ with 1 ≤ r′ ≤ r + 1
is reached. If r′ = r + 1 an extra car has been inserted
the event is registered as a quake, while if r′ < r the
system simply enters a lower active stage. In both cases,
the steps just described are repeated ad libitum. Note
that, once the system is near thermal equilibrium, the
insertion of additional cars through the zero’th stage dy-
namical step becomes unlikely and the dynamics enters
a fluctuation regime where active clusters of size near
the equilibrium cluster size are continuously removed and
recreated.

The data shown in the upper panel of Fig. 2 are based
on the differences between the equilibrium car density
〈n(T )〉/L = 0.9656 at T = 0.35 and the calculated car
density N/L at the same temperature for 210 indepen-
dent simulations, all starting with an empty lot. The
continuous blue line shows the average value of the dif-
ferences, and the dots show appr. 40 of our data sets to
give an idea of the fluctuations while keeping the figure
uncluttered. The negative fluctuations present in the fi-
nal stages of the relaxation are omitted in order to be
able to use a vertical logarithmic scale. The initial phase
of the relaxation ends when the density reaches the Renyi
value ρ0 = 0.7475 . . ., i.e., the value which delimits the
lower boundary of the first metastable state. What then
follows is, on average, a slow decay of the ordinate to-
ward its equilibrium value, i.e., zero. The equilibration
process can also be followed by monitoring the number
of active domains. In the lower panel of the same figure,
the number of active domains present at a given time is
extracted from the same set of simulations and plotted as
dots versus the logarithm of time. The circles represent



6

the average number of domains at a given time.
Figure 3 illustrates how record dynamics predictions

fit the low T dynamics of the PLM, based on estimates
obtained from our 210 independent runs. Let tk de-
note the time at which the k’th quake occurs, and de-
fine the ‘logarithmic waiting times’ as the differences
δk = log tk − log tk−1. In a Poisson process with average
µq ∝ ln t, the logarithmic waiting times are independent
and exponentially distributed stochastic variables. The
insert in the left panel of the figure shows that different
δk have correlation Cδ(k) = δk0, indicating the required
statistical independence. The main figure shows that the
PDF of the log-waiting times has an exponential trend
with a superimposed structure not imputable to statis-
tical fluctuations. The average number of quakes (not
shown) grows logarithmically in time with a small super-
imposed oscillation. In summary, the quake process is
structurally somewhat richer than a log-Poisson process,
but the latter provides a reasonable simplified statistical
description of the salient events of the dynamics.

The length of the active domains marks the dynam-
ical stage reached by the system and is plotted in the
right panel of the figure vs. the logarithm of time. Ac-
tive domains of many different sizes replace each other
in rapid succession and their seeming co-existence at the
same time is only due to insufficient graphical resolution.
Longer and longer active domains are seen to develop as
the system ages and the first time they appear is marked
by the circle at the leftmost edge of every plateau. The
same circle also marks an increase in the level of metasta-
bility or dynamical stage of the system. The red dotted
line is a fit of the position of such events vs. the loga-
rithm of time. The clear logarithmic trend is in excellent
agreement with Eq. (6).

V. CONCLUSIONS AND OUTLOOK

Kinetically constrained models have simple equilib-
rium statistical mechanical and thermodynamical prop-
erty. However, an equilibrium or steady-state state can
be hard to reach since many dynamical paths in their con-
figuration spaces are blocked by kinematic constraints.
The PLM is a bona fide kinetically constrained model, a
fact not prominently featured in its origin and history.
The constraint, no overlaps allowed in the parking lot,
becomes increasingly hard to overcome as the density of
parked cars increases. This leads to a rich aging dy-
namics, which coexists with a completely trivial thermo-
dynamics. The PLM’s equilibration time grows super-
exponentially as a function of the inverse temperature,
a non-Arrhenius relaxation behavior which matches the
cooperative nature of the moves required to relax the sys-
tem. Equilibration is only achievable using a rejection-
less algorithm which can access to the required time
scales by coarse-graining away all quasi-equilibrium fluc-

tuations. What remains is a series of heterogeneous and
intermittent non-equilibrium events, connected to the re-
arrangements of active domains of contiguous cars needed
to insert of an additional car. These events require climb-
ing free energy barriers of growing height and can be ap-
proximately described as a Poisson process with average
proportional to ln t, a property which, as discussed in
Ref. [23] is tantamount to pure aging behavior.

Let us connect our present findings to dense colloidal
suspensions as described in Refs. [7, 8], where key exper-
imental properties are reproduced by a ‘cluster model’
based on the idea that colloidal particles belong to clus-
ters whose collapse controls all irreversible movements in
the systems. To describe an aging colloid, the probabil-
ity density P (h) that a cluster of size h collapse must
decrease very quickly, e.g. exponentially, with h. The
origin of the clusters and of the form of P (h) is however
left unexplained in Refs. [7, 8]. Irreversible particle mo-
tion was analyzed experimentally by Yunker et al. [12]
who defined irreversible events as those which disrupt at
least three nearest neighbour relationships. These au-
thors find that, as the system ages, irreversible changes
require the correlated motion of increasingly large clus-
ters. The similarity with the active domains of the PLM
is clear, since in order to introduce an extra car we need
the cooperative motion of an increasingly large domain.
The probability that a PLM domain be re-arranged hence
decreases exponentially with its size, a property which is
shared by the cluster model and which was already used
by Adam and Gibbs [24] to describe the approach to the
glass transition. Identifying a PLM domain with a cluster
of correlated particles in a colloid points to a statistical
mechanism shaping the form of P (h). Stability increases
with cluster size as irreversible events are connected to a
correspondingly decreasing free volume or, equivalently,
to a local increase in density. The repulsive short range
interactions between colloidal particles prevent such irre-
versible events from happening unless a spontaneous col-
lective fluctuation of h particles provides the free space
needed. Such fluctuation becomes exponentially unlikely.

Our analysis indicates that the typical length scale of
the domains which have to be rearranged in order to
approach equilibrium grows logarithmically with time.
Once equilibrium is reached, the typical size of domains
will be larger the longer the equilibration process. Hence
the average domain size will rapidly increase with de-
creasing temperature. The intimate relation between the
two properties is clear in the context of the PLM, but
could possibly be more generally valid when approaching
the glass transition. The issue can be investigated exper-
imentally by studying the persistency of neighborhood
relations in particle clusters and its resolution would shed
light on the nature of the glass transition.

Finally, it seems reasonable to speculate that a simi-
lar analysis would apply to other familiar models of slow
relaxation and jamming, such as the East model [25] or
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Figure 3: Left: The main figure shows the PDF of the differences δk = log tk − log tk−1, where tk marks the occurrence of the
k’th quake. The data are extracted from 1024 independent trajectories run at T = 0.35, all starting from an empty parking
lot of length L = 1000. The insert shows that the correlation function of the series δ1, δ2 . . . is a Kroneker delta indicating
that successive quakes are independent events. Right: The length of the active domains present in the systems defines the
dynamical stage of the system and is plotted vs. the logarithm of time using blue points. In any small time interval, domains
of different sizes are generated in rapid succession, giving the false impression that domains of different length can coexist. The
circles mark the shortest time at which an active domain of a certain length first appears, and the red line is linear fit of the
data vs. the logarithm of time.

the Backgammon model [11]. In the East model, an en-
tire domain of unfrustrated spins has to collectively ac-
tivate to dislodge and move a single frustrated spin on
its boundary, merely to be able to expand by a minute
increment. Similarly, in the Backgammon model, N un-
coupled particles are spread over n domains, where the
energy of the system is proportional to n. Particles hop
randomly between domains until, by some chance fluctu-
ation of size ∼ N/n, a domain empties out and becomes
inaccessible, leaving n − 1 domains, each of minutely
larger occupation on average. Thus, these models share
the same phenomenology of clusters of variables requir-
ing ever new records in the size of collective activations
that are exponentially unlikely in their size to progress
towards a marginally improved state.
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Appendix:

A. The Waiting Time Method

The gist of the WTM is to determine the possible
moves in a given situation, draw for each of these a wait-

ing time from an exponential distribution with a suitable
average, and carry out the move with the shortest wait-
ing time. The WTM satisfies detailed balance and even-
tually generates the Boltzmann equilibrium distribution
but, at low temperatures, does so much faster than the
Metropolis algorithm. The algorithm is particularly sim-
ple to apply to the PLM, whose degrees of freedom have
no mutual interactions.

Our version of the algorithm generates a stochastic se-
ries t0 < t1 < t2 < . . . recording the times at which
the system configuration undergoes a change. Depend-
ing on the severity of the constraints, the algorithm goes
through several incarnations, or ‘stages’. At stage zero,
interstitials are available which can accommodate a car,
while in the k’th stage, k = 1, 2, . . . L− 2, a domain con-
sisting of k contiguous cars must be rearranged, in order
to create the space for an additional car. To reach ther-
mal equilibrium for T > T0, only the zeroth stage of the
algorithm is needed while for temperatures in the range
Tk−1 > T > Tk, k > 1, k stages are required.

Initially, t0 = 0, the lot is empty, and the zeroth
stage of the algorithm is applied: Each car is assigned
a waiting time τ freei , i = 0, 1 . . . (L − 1), drawn from
the exponential distribution with unit average. The car
with the lowest waiting time, say τ free0 , is selected for
a change of status to ‘parked’, the global time is up-
dated to t1 = t0 + τ free0 and the waiting times of the
cars which remain parked are synchronized to t1, i.e.,
τ freei ← (τ freei − τ free0 ), i = 1, 2 . . . (L− 1). To complete
the first update, the newly parked car is assigned a wait-
ing time τparked0 , drawn from the exponential distribution
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with average e1/T .
Subsequent updates follow the same pattern as above:

time tn is obtained from tn−1 by adding the shortest
available waiting time; all other waiting times are syn-
chronized to tn, and a new waiting time for the last car
moved is drawn from an exponential distribution whose
average is either 1 or e1/T . The first choice applies if the
last move was a car removal, and the second if it was a
car placement.

As mentioned, for T1 < T < T0, the dynamics thermal-
izes in a metastable state of type M0, where insertions
are by definition impossible without previous removals.

With the previous scheme, a car removal would with
high probability be followed by a re-insertion in the same
slot, since this is the only possible sequence unless the
sum of the two interstitials adjacent to the car removed
is larger than one. Removal/re-insertion sequences con-
stitute the bulk of the pseudo-equilibrium fluctuations in
the metastable state but do not change the number N of
parked cars, and do not further the equilibration process.
Rather than waiting for a car removal which allows the
placement of two cars to happen by chance, stage one
makes the move and draws the waiting time associated
to it from an exponential distribution, whose average is
calculated as follows: Let n0 denote the number of pairs
of adjacent interstitials with total length larger than one
(note that n0 > 0 in a metastable state of type M0) and
define the above average as

µ0(n0) =
N

n0
e1/T . (11)

The first term on the right hand side of the equation is
the average number of random removals needed to se-
lect a car surrounded by one out of n0 interstitial pairs.
The second is the Arrhenius factor associated with its
removal. Once the move is carried out and the global
time is updated, the algorithm returns to the stage zero
update, which continues until a new metastable state of
type M0 is identified.

Stage k dynamics entails reshuffling a domain of k ad-
jacent cars. This is done by first removing the respective
cars, and by then returning to stage zero to fill up the
opening thus created. The waiting time for removing k
adjacent cars is drawn from an exponential distribution,
whose average is taken to be

µ0(nk) =
1

nk

(
N

k

)
ek/T , (12)

where nk is the number of domains of length rk present
in the system. The initial factor accounts for the number
of choices for the placement of the domain, the binomial
coefficient is the average number of attempts needed to
place k cars out of N in contiguous positions, and the
exponential is the Arrhenius factor corresponding to the
removal of a group of k cars. As was the case for k = 1,

the algorithm returns to stage zero to fill in the empty
space left by the removal. We note that removing k cars
does not guarantee, for k > 1, that k cars can be success-
fully re-inserted in the vacant space.
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