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We consider thermal transport in low-dimensional disordered harmonic networks of coupled
masses. Utilizing known results regarding Anderson localization, we derive the actual dependence
of the thermal conductance G on the length L of the sample. This is required by nanotechnology
implementations because for such networks Fourier’s law G ∝ 1/Lα with α = 1 is violated. In par-
ticular we consider “glassy” disorder in the coupling constants, and find an anomaly which is related
by duality to the Lifshitz-tail regime in the standard Anderson model.
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I. INTRODUCTION

The theory of phononic heat conduction in disordered
low-dimensional networks is a central theme of research
in recent years [1–3]. The interest in this theme is not
only purely academic, but it is also motivated by the on-
going developments in nanotechnology. In spite of the re-
cent research efforts, the understanding of thermal trans-
port is still at its infancy. This becomes more obvious if
one compares with the achievements that have been ex-
perienced during the last fifty years in understanding and
managing electron transport. In this respect even the mi-
croscopic laws that govern heat conduction in low dimen-
sional systems have only recently start being scrutinized
via both theoretical, numerical and experimental studies
[1–8]. These studies unveil many surprising results, the
most dramatic of which is the violation of the naive ex-
pectation (Fourier’s law) which states that the thermal
conductance G is inverse proportional to the size L of the
system, namely, G ∝ 1/Lα with α = 1.

Currently it is well established that in low-dimensional
disordered systems, in the absence of non-linearity,
Fourier’s law is violated. The underlying physics is re-
lated to the theory of Anderson localization of the vi-
brational modes [2, 9–16]. On the basis of the prevailing
theory [2, 9] it has been claimed that for samples with
“optimal” contacts α = 1/2, while in general α might be
larger, say α = 3/2 for samples with “fixed boundary con-
ditions”. Recently the “optimal” value α = 1/2 has been
challenged by the numerical study of [17]. These authors
found a super-optimal value α ∼ 1/4 for moderate sys-
tem sizes L, while asymptotically, in the presence of a
pinning potential, G decays exponentially as exp(−γL).

It is obvious that if the final goal is to achieve the con-
trol of heat flow on the nanoscale, first we have to under-
stand the fundamental mechanisms of heat conduction,
and provide an adequate description of its scaling with
the system size for any L, including the experimentally
relevant cases of intermediate lengths.

II. SCOPE

Considering heat transport for low-dimensional disor-
dered networks of coupled harmonic masses, we utilize
known results from the field of mesoscopic electronic
physics, in order to derive the actual L dependence of
G for regular as well as for “glassy” type of disorder.
The information about the latter is encoded in the de-
pendence of the inverse localization length γ on the vi-
bration frequency ω. Our results explain the transition
from optimal to super-optimal scaling behavior and even-
tually to exponential dependence on L. We address the
implications of the percolation threshold, and the geo-
metrical bandwidth. Along the way we highlight a sur-
prising anomaly that is related by duality to the Lifshitz-
tail regime in the standard Anderson model, and test the
borders of the one-parameter scaling hypothesis.

The outline of this paper is as follows: Sections III-V
define the general model of interest, emphasizing that for
“glassy disorder” a resistor-network perspective is essen-
tial. Section VI clarifies that the analysis of heat conduc-
tion of quasi one dimensional networks effectively reduces
to the analysis of a single-channel problem. Section VII
explains how we use the transfer matrix method in the
numerical analysis: we highlight the procedure for the
determination of the optimal leads, and the significance
of the percolation parameter s in this context. Section
VIII use the Born approximation in order to provide an
explanation for the numerical findings of [17]. These re-
sults had been obtained for weak disorder.

Subsequently we focus on the single-channel model.
Our main interest is to explore the implications of
“glassy” disorder, and to highlight the resistor-network
aspect. In Sections IX and X we go beyond the born
approximation by establishing a duality between glassy
off-diagonal disorder and weak diagonal disorder. Con-
sequently we deduce that the Lifshitz-tail anomaly is re-
flected in the frequency dependence of the inverse local-
ization length. This prediction is verified numerically.

The remaining sections XI to XIII clarify how scaling-
theory of localization can be used in order to calculate the
heat conductance. Here no further surprises are found.
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In fact we verify numerically that a straightforward appli-
cation of the weak-disorder analytical approach is quite
satisfactory. In spite of the “glassy” disorder the devia-
tions from one-parameter scaling are not alarming.

III. THE MODEL

We consider a one-dimensional network of L harmonic
oscillators of equal masses. The system is described by
the Hamiltonian

H =
1

2
PTP +

1

2
QT

WQ (1)

where QT ≡ (q1, q2, · · · , qN ), and PT ≡ (p1, p2, · · · , pN )
are the displacement coordinates and the conjugate
momenta. The real symmetric matrix W is deter-
mined by the spring constants. Its off-diagonal ele-
mentsWnm=−wnm originate from the coupling potential
(1/2)

∑

m,nwnm(qn − qm)2, while its diagonal elements
contain an additional optional term that originate from a
pinning potential (1/2)

∑

n vnq
2
n that couples the masses

to the substrate. AccordinglyWnn = vn +
∑

m wnm. For
a chain with near-neighbor transitions we use the simpli-
fied notation wn+1,n ≡ wn.
In general the interest is in quasi one-dimensional net-

works, for which W is a banded matrix with 1+2b di-
agonals. For b=1 the near-neighbor hopping implies a
single-channel system. For b > 1 the dispersion relation
(see section VI below) has several branches, which is like
having a multi-channel system. The heat conduction of
such networks has been investigated numerically in [17],
with puzzling findings that have not been explained the-
oretically. We shall see that the essential physics can
be reduced to single channel (b=1) analysis. On top we
would like to consider not only weakly disordered net-
work, but also the implications of “glassy” disorder as
defined below.

IV. THE DISORDER

Both the wnm and the vn are assumed to be ran-
dom variables. The diagonal-disorder due to the pin-
ning potential is formally like that of the standard An-
derson model with some variance σ2

‖ ≡ Var(v). The off-

diagonal disorder of the couplings might be weak with
some variance σ2

⊥ = Var(w), but more generally it can
reflect the glassiness of the network. By “glassy disorder”
we mean that the coupling w has an exponential sensitiv-
ity to physical parameters. For random barrier statistics
w ∝ e−B, where B is uniformly distributed within [0, σ],
accordingly

P (w) ∝ 1

w

(

e−σ <
w

wc
< 1

)

(2)

For random distance statistics w ∝ e−R, where R is im-
plied by Poisson statistics. The probability distribution

in the latter case is

P (w) =
s

ws
c

ws−1 (w < wc) (3)

where s is the normalized density of the sites. Large s is
like regular weak disorder, while small s implies glassy
disorder that features log-wide distribution (couplings
distributed over several orders of magnitude). The case
s = 0 with an added lower cutoff formally corresponds to
“random barriers”.

V. RESISTOR-NETWORK PERSPECTIVE

It is useful to notice that the problem of phononic heat
conduction in the absence of a pinning potential is for-
mally equivalent to the analysis of a rate equation, where
the spring-constants are interpreted as the rates wnm for
transitions between sites n and m. Optionally it can be
regarded as a resistor-network problem where wnm rep-
resent connectors. We define w0 as the effective hopping
rate between sites. We later justify that it should be for-
mally identified with the conductivity of the correspond-
ing resistor-network.

The detailed numerical analysis in the subsequent sec-
tions concerns the b = 1 chain, for which the “serial ad-
dition” rule implies that w0 equals the harmonic average.
For the “random distance” disorder of Eq.(3) we get

w0 =

[〈

1

w

〉]−1

= (s>1)

[

s− 1

s

]

wc (4)

For s < 1 the network is no longer percolating, namely
w0 = 0. In the present context w0 determines the speed
of sound (see below).

For the later analysis we need also the second moment
of the couplings. For s > 2 one obtains

〈

(

1

w

)2
〉

s>2

=

[

s

s− 2

](

1

wc

)2

(5)

Hence the variance is [s/((s−1)2(s−2))]w−2
c . For s < 2

the second moment diverges. But for a particular real-
ization the sample-specific result is finite, and depends
on the effective lower cutoff δw of the distribution. The
number N ≡ wc/δw reflects the finite size of the sample,
and we get the sample-size dependent result

〈

(

1

w

)2
〉

s<2

=
s

2−s
[

N 2−s − 1
]

(

1

wc

)2

(6)

As we go from s > 2 to s < 2 the dependence of the vari-
ance on s has a crossover from power-law to exponential.
We shall see later that this crossover is reflected in the
localization-length of the eigenstates.
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FIG. 1. The participation number (PN) [a] of the eigenstates of a conservative banded matrix are plotted against their
eigenvalues λ. The 0 < |m− n| ≤ b elements of W are random numbers w ∈ [1 − ς, 1 + ς] (box distribution). The values of ς
are indicated in the legend (note that the numerics of [17] corresponds to ς=0.5). The number of bands is b=5, and the length
of the sample is N=1000 with periodic boundary conditions. The support of the clean-ring channels is indicted by the lower
horizontal lines. We observe the gradual blurring of the non-disordered band structure. All the eigenstates that have large PN
reside in the lower part of the spectrum and belong to a single channel.

VI. THE SPECTRUM

The eigenvalues λk are determined via diagonalization
WQ = λQ, from which one deduces the eigen-frequencies
via λk = ω2

k. In the absence of disorder the eigenmodes
are Bloch states with

λk = 2w0

b
∑

r=1

[1− cos(rk)] ≡ ω2
k (7)

where k is the associated wavenumber. For a single-
channel λ = 2w0(1− cos k) ≈ w0k

2, where the small-k
approximation holds close to the band floor. With disor-
dered couplings, but in the absence of a pinning potential
the lowest eigenvalue is still λ0 = 0, which corresponds to

the trivial extended state Q = (1, 1, ..., 1)
T
, that is inter-

preted as the ergodic state in the context of rate equa-
tions. All higher eigenstates are exponentially localized,
and are characterized by a spectral density ̺(ω).
In Fig.1 we provide a numerical example considering

a b = 5 quasi-one dimensional sample. The dispersion
relation Eq.(7) has 5 branches. The support of the 1st,
3rd and 5th ascending branches is indicated in the figure.
It is important to observe that at the bottom of the band a

single channel-approximation is most appropriate. Hence
within the framework of the Debye approximation the
dispersion at the bottom of the band is always

ω ≈ ck [Debye] (8)

For b=1 the speed of sound is c =
√
w0, while for b≫ 1

it is easily found that

c ≈ [(1/3)b3]1/2
√
w0 (9)

Either way the low-frequency spectral density is constant,
namely

ρ(ω) ≈ L

πc
(10)

The effect of weak disorder on this result is negligible.

VII. LOCALIZATION

The disorder significantly affects the eigenmodes:
rather than being extended as assumed by Debye, they
become exponentially localized. We use the standard
notation γ(ω) for the inverse localization length. Con-
sidering a single-channel (b=1) system it is defined via
the asymptotic dependence of the transmission g on the
length L of the sample. Namely,

γ(ω) = − lim
L→∞

1

2

〈ln(g)〉ω
L

(11)

where 〈· · · 〉 indicates an averaging over disorder realiza-
tions. The notion of transmission is physically appealing
here, because we can regard W as the Hamiltonian of an
electron in a tight binding model. The transmission can
be calculated from the transfer matrix T of the sample:

g =
4| sin(k)|2

|T21 − T12 + T22 exp(ik)− T11 exp(−ik)|2
(12)

where

T =

n=L
∏

n=1

(

λ−(vn+wn+wn+1)
wn+1

− wn

wn+1

1 0

)

(13)

Above it is assumed that the sample is attached to
two non-disordered leads. Optimal coupling requires the
hopping-rates there to be all equal to the “conductiv-
ity” w0, meaning same speed of sound. This observation
has been verified numerically, see Fig.2. We see that
it is the resistor-network harmonic-average and not the
algebraic-average that determines the optimal coupling.
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FIG. 2. The average transmision 〈g〉 as a function of the
hopping rate wlead within the leads. The calculation is done
for L = 50 disordered samples with conservative log-box dis-
order σ = 10 at k = 0.028π. The algebraic and the harmonic
mean values of the wn are indicated by vertical dotted and
dashed lines respectively.

In Fig.3 we display an example for the calculation of
γ versus s. Well-defined results are obtained for s > 2
where the second moment Eq.(5) is finite. In the next
section we shall derive a naive Born approximation for γ.
This is displayed in Fig.3 too as a dashed line. The esti-
mate is based on analytical ensemble-average of Var(1/w)
and therefore diverges as s = 2 is approached from above.
In the range 1 < s < 2 the second moment Eq.(6) is ill-
defined (sample-specific). Given an individual sample the
Born approximation can be used with sample-variance
(which is always finite) and provide a rough estimate.
The typical result in this range is expected to depend ex-
ponentially on s as implied by Eq.(6). This expected de-
pendence is indeed observed. For s < 1 the s dependence
of γ is completely ill-defined: the chain is non-percolating
in the L→ ∞ limit, and the contact optimization proce-
dures becomes meaningless.

VIII. BORN APPROXIMATION

In the absence of disorder W describes hopping with
some rate w0, and the eigenstates are free waves labeled
by k. With disorder the w0 of the unperturbed Hamilto-
nian is loosely defined as the average w. Later we shall
go beyond the Born approximation and will show that
it should be the harmonic average (as already defined
previously). The disorder couples states that have dif-
ferent k. For diagonal disorder (”pinning”) the couplings
are proportional to the variance of the diagonal elements,
namely |Wk,k′ |2 = (1/L)Var(v). For off-diagonal disorder
(random spring constants) the couplings are proportional
to the variance of the off-diagonal elements, and depends
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FIG. 3. The inverse localization length γ for power-law
disorder versus s. Solid line with diamonds is for the non-
optimized (wlead = wc) results. Thick solid line with squares
is for the optimized (wlead = w0) results in the range s > 1,
where w0 is finite. The tangent thin solid line has been fitted
in the range 1 < s < 2 where Eq.(6) is expected to hold. The
naive Born approximation Eq.(15) is illustrated by dashed line
in the range s > 2. The numerical results here and in the next
figures are based on the transfer matrix method (symbols),
with several hundreds of realizations up to L ∼ 104.

on b and on k too:

|Wk′,k|2 =
Var(w)

L

b
∑

r=1

[2 sin(rk′/2) 2 sin(rk/2)]
2

It follow that for small k we have |Wk,k′ |2 ∝ b5σ2
⊥k

4.

The Fermi-Golden-Rule (FGR) picture implies that

the scattering rate is τ−1 = 2π̺(ω)|Wk′,k|2. The Born
approximation for the mean free path is ℓ = [dλ/dk]τ ,
where the expression in the square brackets is the group
velocity in the electronic sense (λ is like energy). The De-
bye approximation implies dλ/dk ≈ 2[c2]k. The inverse
localization length is γ = (2ℓ)−1. From here (without
taking the small k approximation) it follows that

γ(ω) ≈ 1

8

[

9

b6

](

σ‖

w0

)2(
1

sin(k)

)2

(14)

+
1

8

[

9

5b

](

σ⊥
w0

)2(

2 tan

(

k

2

))2

(15)

where the prefactors in the square brackets assume b≫ 1,
and should be replaced by unity for b = 1. In the absence
of pinning the localization length diverges (γ ∝ k2) at
the band floor, as assumed by Debye. This behavior is
demonstrated in Fig.4 and Fig.5 for two types of glassy
disorder. The deviations from Eq.(15) will be explained
in the next paragraphs.
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FIG. 4. The inverse localization length γ versus k for logbox
distributed rates with σ = 5, 10, 15 from up to down. Pure off-
diagonal disorder is assumed. The numerical results based on
the transfer matrix method (circles) are compared with those
that are generated by the map Eq.(20) with the approxima-
tion Rn=1. The naive Born estimate Eq.(15) is illustrated
by dashed red line, while the blue dashed-dotted line is based
on the improved estimate with Eq.(23). Here we consider
logbox distribution for which both estimates coincide identi-
cally. The inverse localization length γ is over-estimated as
k becomes larger due to the Lifshitz tail anomaly. The solid
blue line is based on Eq.(24) with no fitting parameters.
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FIG. 5. The inverse localization length γ versus k for pow-
erlaw distributed rated with s = 4. The symbols and lines
are the same as in Fig.4. Note that the “dual Born” approxi-
mation cannot be resolved from its improved version Eq.(24).
Here we consider powerlaw distribution for which the duality
implies k dependence that does not coincide with that of the
naive Born approximation.

IX. BEYOND BORN

The Born approximation has assumed weak disorder.
Here we would like to consider the more general case of
glassy disorder. For this purpose we write the equation
Wψ = λψ for the eigenstates as a map of a single variable
rn = ψn/ψn−1, namely rn+1 = −Rn/rn −An, where
Rn = wn−1/wn, and An = (λ− vn − wn − wn−1)/wn.
In the case of diagonal disorder it takes the from

rn+1 = − 1

rn
− ǫ+ fn (16)

where fn = vn/w0 is the scaled disorder and

ǫ =
λ

w0
− 2 ≡ −2 cos(k) (17)

is the scaled energy measured from the center of the band.
Without the random term fn this map has a fixed-point
that is determined by the equation r2 + ǫr + 1 = 0, with
elliptic solution for ǫ ∈ [−2, 2]. The random term is re-
sponsible for having a non zero inverse localization length
γ = −〈ln(r)〉. The Born approximation Eq.(14) is writ-
ten as

γ ≈ 1

8

Var(f)

[1− (ǫ/2)2]
=

1

8

Var(f)

[sin(k)]2
(18)

This standard estimate does not hold close to the
band-edge ǫ0=−2. Closeness to the band-edge means
that |ǫ − ǫ0| becomes comparable with the kinetic en-
ergy γ2. Hence the so called Lifshitz tail region is
|ǫ− ǫ0| < ǫc with ǫc = [Var(f)]2/3. Optionally this en-
ergy scale can be deduced by dimensional analysis. In
the Lifshitz tail region the inverse localization length has
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finite value γ ∼ √
ǫc. An analytical expression can be de-

rived using white-noise approximation (see Appendix A
for details):

γ =

(

1

2
Var(f)

)
1
3

K
[

(

2Var(f)2
)− 1

3

k2
]

(19)

Outside of the Lifshitz tail region this expression reduces
back to Eq.(18). To be more precise, if we want to take
the exact dispersion into account an add-hock improve-
ment of Eq.(19) would be to to replace k2 by [sin(k)]2.
But our interest is in small k values, for which this im-
provement is not required in practice: this has been con-
firmed numerically (not displayed).

X. DUALITY

We now turn to consider the glassy disorder due to the
dispersion of the wn. Here we cannot trust the Born ap-
proximation because a small parameter is absent. How-
ever, without any approximation we can write the map
in the form

rn+1 = Rn

(

1− 1

rn

)

+ 1− λ

wn
(20)

For λ=0 the zero momentum state is a solution as ex-
pected, irrespective of the disorder: the randomness
in Rn is not effective in destroying the r = 1 fixed
point. Therefore, for small λ, we can set without
much error Rn = 1. The formal argument that jus-
tifies this approximation is based on the linearization
(rn+1 − 1) = Rn(rn − 1), and the observation that the
product R1R2R3... remains of order unity. In Fig.4 and
Fig.5 we verify numerically that setting Rn=1 does not
affect the determination of γ.
Having established that Eq.(20) with Rn = 1 in a valid

approximation, we realize that it reduces to Eq.(16), with
zero-average random term

fn = −λ
(

1

wn
− 1

w0

)

(21)

This random term corresponds to the diagonal-disorder
of the standard Anderson model. Consequently, the im-
plied definition of ǫ via Eq.(17) justifies the identification
of the harmonic average w0 as the effective coupling.
We observe that there is an emergent small parameter,

namely, the dispersion of f , which is proportional to λ
irrespective of the glassiness. Thus we have deduced a
duality between “strong” glassy off-diagonal disorder and
the “weak” diagonal disorder. In the context of the dual
problem we can use the Born approximation Eq.(18) with

Var(f) =

[

2 sin

(

k

2

)]2

w2
0 Var

(

1

w

)

(22)

leading to Eq.(15) but with two important modifications
with respect to FGR-based derivation: (i) we realize that

w0 should be the harmonic average, as conjectured in the
introduction; (ii) we realize that the dispersion for off-
diagonal disorder should be re-defined as follows:

σ2
⊥ := w4

0 Var

(

1

w

)

(23)

For log-box distribution the FGR definition σ2
⊥ = Var(w)

and the revised definition Eq.(23) provide exactly the
same result. But for power-law disorder the two pre-
scriptions differ enormously. This is demonstrate in Fig.4
and Fig.5, were we present our numerical results together
with the theoretical predictions.
Having adopted the revised definition Eq.(23), we still

see in Fig.4 and Fig.5 that the inverse localization length
γ is over-estimated as k becomes larger. We can trace the
origin of this discrepancy to the Lifshitz anomaly in the
Anderson model. The condition |ǫ− ǫ0| < ǫc translates
into λ > w−3

0 [Var(1/w)]−2. Thus the anomaly develops
not at the band floor but as we go up in ω, where the
inverse localization length becomes γ ∝ ω4/3 instead of
γ ∝ ω2. To verify that this is indeed the explanation for
the deviation we base our calculation on Eq.(19), namely

γ ≈
(

1

2

(

σ⊥
w0

)2

k4

)
1
3

K





(

2

(

σ⊥
w0

)4

k2

)− 1
3



 (24)

The anomaly appears whenever the argument of K(E) is
small, meaning large k rather than small k. The validity
of this formula is numerically established in Fig.4 and
Fig.5 with no fitting parameters. We note that a slightly
better version of Eq.(24) can be obtained by replacing
the ks by appropriate trigonometric functions as implied
by the remark after Eq.(19) and Eq.(22). But the numer-
ical accuracy is barely affected by such an improvement.

XI. THE AVERAGE TRANSMISSION

For the calculation of the heat transport we have to
know what is g(ω) ≡ 〈g〉ω. Given γ the common approx-
imation is 〈g〉 ≈ e−(1/2)γL. But in-fact this asymptotic
approximation can be trusted only for very long samples.
More generally, assuming weak disorder, the following re-
sult can be derived [19–21]:

〈g〉 =

∫ ∞

0

du
2πu tanh(πu)

cosh(πu)
e−[(

1
4
+u2)γL] (25)

The question arises whether this relation can be trusted
also in the case of a glassy disorder, where the one-
parameter scaling assumption cannot be justified. This
is tested in Fig.6. For weak disorder (large s) the ex-
pected relation between the first and second moments
of x = − ln(g) is confirmed, namely Var(x) = 2〈x〉. For
strong glassy disorder (small s) clear deviation from this
relation is observed.
Still we see in Fig.6 (lower panel) that the failure

of one-parameter scaling is not alarming for 〈g〉 =
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FIG. 6. Testing one parameter scaling for glassy disorder.
The variance of ln(g) (upper panel) and the log of the average
− ln〈g〉 (lower panel) are plotted against the scaling parame-
ter −〈ln(g)〉. The calculation is done for powerlaw distributed
rates with s = 15 (blue diamonds) and s = 1.2 (red squares).
The solid line is the standard one parameter scaling predic-
tion for weak disorder, and the dashed line is its asymptotic
approximation. One observes that an anomaly develops as
the disorder becomes glassy.

〈exp[−x]〉. The exact calculation of the integral is the
solid line, while the asymptotic result exp[−(1/2)〈x〉] is
indicated by dashed line. Note that the latter implies
〈g〉 = exp[(1/4)〈ln(g)〉]. We realize that the asymptotic
approximation might be poor, but the exact calculation
using Eq.(25) is quite satisfactory.

XII. HEAT CONDUCTANCE

Following [2, 9, 11] the expression for the rate of heat
flow from a lead that has temperature TH to a lead that
has temperature TC is

Q̇ =
TH−TC

2

∫ ∞

0

dω

π
T (ω) ≡ G (TH−TC) (26)
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FIG. 7. The heat conductance G as a function of L is cal-
culated using Eq.(28) with Eq.(25). For the black solid line
with symbols we use γ(k) that is based on the numerical re-
sults that have been obtained for a logbox disorder as in Fig.4
with σ = 1. For the blue solid line we use the Debye approx-
imation for the density of states, and extrapolate the initial
γ ∝ k2 dependence up to the cutoff k = π. On the lower panel
we plot

√
LG as a function of L1/4 in order to highlight the

α = 1/2 (dotted red) and the α = 1/4 (dashed red) asymp-
totic dependence for long and short samples respectively. The
black dotted line is G = 1.

Here T (ω) is a complicated expression that reflects the
transmission of the sample. If we were dealing with inco-
herent or non-linear transport [22], it would be possible
to justify the Ohmic expression T (ω) = ℓ/L, where ℓ is
the inelastic mean free path. But we are dealing with an
isolated harmonic chain, therefore T (ω) is determined by
the couplings of the eigenmodes to the heat reservoirs at
the left and right leads. In analogy to mesoscopics studies
[2, 9] one can argue that

T (ω) ≈ g(ω) T (0)(ω) (27)

where T (0)(ω) refers to a non-disordered sample, and
g(ω) is the disordered averaged transmission. For “fixed
boundary conditions” T (0)(ω) ∼ η20ω

2, where the damp-
ing rate η0 characterizes the contact point. In contrast,
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for “free boundary condition” one obtains T (0)(ω) ≈ 1,
which is the most optimal possibility. In the latter case

G =
c

2

∫ π

0

dk

π
g(ωk) (28)

The standard approach is to use two incompatible ap-
proximations: On the one hand one use the asymptotic
estimate g(ω) ∼ e−(1/2)γ(ω)L which holds for long sam-
ples for which γL ≫ 1. On the other hand one extends
the upper limit of the integration to infinity, arguing that
the major contribution to the integral comes from small
ω values. In the absence of pinning γ(ω) ∝ ω2, hence
by rescaling of the dummy integration variable it follows
that the result of the integral is precisely ∝ 1/

√
L. We

shall discuss in the next paragraph the limitations of this
prediction. Going on with the same logic we can ask
what happens in the presence of a weak pinning poten-
tial. Using a saddle-point estimate we get

G ∼ 1√
L

exp [−(1/2)γ0L] (29)

where γ0 is the minimal value of γ(ω). From Eq.(15)
with Eq.(14) we deduce γ0 ∝ b−η, with η = 7/2. This ex-
plains the leading exponential dependence on the length
that has been observed in [17]. However the above cal-
culation fails in explaining the sub-leading L dependence
that survives in the absence of pinning. Namely it has
been observed that instead of 1/Lα with α = 1/2 the
numerical results are characterized by the super-optimal
value α ≈ 1/4.

XIII. BEYOND THE ASYMPTOTIC ESTIMATE

We now focus on the L dependence that survives in
the absence of a pinning potential. As already note that
deviation from the 1/

√
L law is related to two incom-

patible approximations regarding the γ dependence of g
and the upper limit of of the integration in Eq.(28). We
can of course do better by using the analytical expres-
sion Eq.(25). For the density of states we can use ei-
ther numerical results or optionally we can use the Debye
approximation. The latter may affect the results quan-

titatively but not qualitatively. Within the framework
of the Debye approximation we assume idealized depen-
dence γ(ωk) ∝ σ2

⊥k
2 in accordance with Eq.(15), up to

the cutoff at k = π. The result of the calculation is pre-
sented in Fig.7. On the lower panel there we plot

√
LG as

a function of L1/4 in order to highlight the α = 1/2 and
the α = 1/4 asymptotic dependence for long and short
samples respectively. Note that in the latter case, as in
[17], a small offset has been included in the fitting pro-
cedure. We do not think that the α = 1/4 dependence
is “fundamental”. The important message here is that
a straightforward application of an analytical approach
can explain the failure of the 1/

√
L law. We also see that

the numerical prefactor of the 1/Lα dependence is sensi-
tive to the line-shape of the large k cutoff, hence it is not

the same for the numerical spectrum and for its Debye
approximation.

XIV. CONCLUSIONS

We have considered in this work the problem of heat
conduction of quasi one-dimensional (b ≫ 1) as well as
single channel harmonic chains; addressing the effects
of both glassy disorder (couplings) and pinning (diag-
onal disorder). We were able to provide a theory for the
asymptotic exponential length (L) and bandwidth (b) de-
pendence; as well as for the algebraic L dependence in
the absence of a pinning potential. A major observation
along the way was the duality between glassy disorder
and weak Anderson disorder. That helped us to figure
out what is the effective hopping w0, hence establish-
ing a relation to percolation theory. It also helped us
to go beyond the naive Born approximation that cannot
be justified for glassy disorder, and to identify a (dual)
Lifshitz anomaly in the ω dependence of the transmis-
sion. Finally, we have established that known results
from one-parameter scaling theory can be utilized in or-
der to derive the non-asymptotic L dependence of the
heat conductance.

Note added after acceptance.– It has been ob-
served in [25] that the one-dimensional localization prob-
lem with the distribution Eq.(3) describes in a univer-
sal way the phononic excitations of a one-dimensional
Bose-Einstein condensate in a random potential: the su-
perfluid regime is percolating (s>1), while the Mott-
insulator regime corresponds to the “s=0” random-
barrier distribution Eq.(2). The localization length in the
anomalous regime 1<s<2 had been worked out in [26],
leading to γ ∝ ωs, while γ ∝ ω2 applies if s>2.

Acknowledgements.– We thank Boris Shapiro (Tech-
nion) for helpful comments. This research has been sup-
ported by by the Israel Science Foundation (grant No.
29/11), and by the NSF Grant No. DMR-1306984.

Appendix A: Localization in white noise potential

There is an analytical expression for the counting func-
tion of the energy-levels for a particle in a white-noise
disordered potential. We cite Eq(1.62) of [23]:

N (E) =
1

π2

(

[Ai(−2E)]2 + [Bi(−2E)]2
)−1

(A1)

In this expression the levels are counted per unit length;
Ai and Bi are the Airy functions; and the energy E is ex-
pressed in scaled units. It reduces toN0(E) = (2E)1/2/π,
as expected, in the limit of zero disorder. Here we use
Eq.(A1) as an approximation that applies at the bottom



9

0 1 2 3 4
0

0.1

0.2

0.3

0.4

E

K
(E

)

FIG. 8. The function K(E) calculated numerically (sym-
bols). The solid and dashed lines are our approximation
Eq.(A6) and the asymptotic 1/(8E) respectively.

of the band, where the scaled energy is

E =

[

2
[Var(vn)]

2

w0

]−1/3

λ (A2)

The inverse localization length is related to to the
counting function by the Thouless relation, namely
Eq(19) of [24]. Note that the subsequent formulas there
are confused as far as units are concerned. In order to
remedy this confusion we define

K(E) =

∫ N (z)−N0(z)

E − z
dz (A3)

and write the Thouless relation as follows:

γ =

(

Var(vn)

2w2
0

)1/3

K
[

(

2
[Var(vn)]

2

w0

)−1/3

λ

]

(A4)

For large E one obtains K(E) ≈ 1/(8E) and the Born
approximation is recovered:

γ =
Var(vn)

8w0 λ
=

Var(vn)

8w2
0 k

2
(A5)

For practical purpose we find that an excellent approxi-
mation for any E > 0 is provided by

K(E) ≈
[

1− exp

(

− E

E0

)]

1

8E
(A6)

where E0 = 0.35. See Fig.8 for demonstration.
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