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Abstract: Ratchets rectify the motion of randomly moving particles, which are driven by 

isotropic sources of energy like thermal and chemical energy, without applying a net, time-

averaged force between source and drain. This paper describes the behavior of a damped 

electron, modeled by a quantum Lindblad master equation, within a flashing ratchet (a one-

dimensional potential that oscillates between a flat surface and a periodic asymmetric surface).  

By examining the complete space of all biharmonic potential shapes and a large range of 

oscillation frequencies, two modes of ratchet operation, differentiated by their oscillation 

frequencies (relative to the rate of electron relaxation), are identified. Slow-oscillating, strong 

friction ratchets operate by a classical, overdamped mechanism. In fast-oscillating, weak friction 

ratchets, current is primarily produced when the frequency of the oscillating potential is resonant 

with the beating of the electron wavefunction in the potential well. The shape of the ratchet 

potential determines the direction of the current (and, in some cases, straightforwardly accounts 

for current reversals), but the maximum achievable current at any shape is controlled by the 

degree of friction applied to the electron. 
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INTRODUCTION 

A ratchet is a non-equilibrium scheme that rectifies the motion of randomly moving particles 

without a net applied force in the direction of transport, by breaking symmetries of the particle 

motion in space and time. Ratcheting is the operative mechanism of biological enzymes, pumps, 

and motors [1,2], and has been experimentally realized in particle separators and sorters [3-8]. In 

particular, a “flashing” ratchet works by switching, continuously or instantaneously, between two 

states of the potential surface on which the particle travels (Figure 1a): (i) a surface with 

periodic features that are asymmetric in the direction of transport, and (ii) a surface that allows 

random, isotropic diffusion of a particle (i.e., a flat potential). The random motion of the particle, 

due to its coupling to the environment, is rectified by the local, time-dependent forces from the 

oscillating potential. An exciting possible application of such a mechanism is the enhancement of 

directional transport in nanostructured organic and inorganic materials by ratcheting the charge 

carriers [9,10]. In photovoltaic, sensing, logic, and low power devices based on these materials, 

electron motion is randomized by strong electron-phonon coupling and an abundance of 

scattering mechanisms, which lead to fast dissipation of electronic energy into the vibrational 

bath. A method to induce transport of highly damped charge carriers toward the current-

collecting electrodes by rectifying their random thermal motion is therefore a promising avenue 

for improving the performance of these devices. A flashing electron ratchet (as we model here) 

[11-13] – as opposed to a tilting ratchet, where the asymmetric potential is rocked by an 

oscillating force – is particularly suited to improving the yield of charge collection in 

photovoltaic and sensing devices, because it introduces the oscillating potential through a gate 

electrode, rather than requiring the application of an alternating source-drain bias [14] or 

scattering features [15-18] that could interfere with the collection of current. 

In this work, we study the mechanisms by which a simple model of a flashing ratchet, in 

which a damped electron travels along one dimension within an oscillating biharmonic potential, 

achieves directional current without applied bias. The local spatial symmetry is broken by the 

asymmetric features of the periodic potential, and the temporal symmetry is broken through 

coupling the electron to the environment via a Lindblad master equation, a purely quantum 

mechanical propagator. Although a very short electronic dephasing lifetime (1-100 fs over 

distances of 1 – 10 nm) ensures that coherence does not play a role in electron transport in this 

system, the use of a quantum propagator properly describes the electron’s behavior at nanometer 
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length scales by allowing for tunneling during certain portions of the potential’s oscillation 

period.  In a flashing ratchet potential, there is no net bias. Significant tunneling therefore leads 

to the formation of a delocalized state where the electron no longer feels the local asymmetry of 

the potential. Tunneling therefore decreases the ratchet current from that achieved by a purely 

classical system. In contrast, a tilting ratchet preserves the asymmetry of the potential because 

the applied bias changes the potential depending on the direction of the tilt [14,19]. We explore 

the parameter space of all possible biharmonic shapes, by far the most common set of 

asymmetric potentials used in the literature [5,20,21], and a large range of oscillation frequencies 

for the potential, and study the influence of these parameters on the net directional current 

achieved by the ratcheting mechanism. This work represents the first systematic study of the 

effect of potential shape on the current produced in a flashing electron ratchet with a quantum 

mechanical propagator. 

Our most important finding is that there exist two distinct modes of ratcheting, characterized 

by the ratio of the potential oscillation timescale to the electron relaxation timescale (i.e., the 

degree of friction applied to the electron). “Fast” electron ratchets, where the potential oscillation 

and relaxation timescales are similar, exploit resonances between the oscillation of the potential 

and the damped beating of the electron wavefunction inside a potential well to maximize 

directional current. “Slow” electron ratchets operate like classical, overdamped ratchets (see 

Figure 1a). The shape of the ratchet potential determines, at least in the case of slow ratchets, the 

direction of the current, and accounts for often mysterious “current reversals” that can manifest 

upon variations of any ratchet parameter [20]. The maximum magnitude of the current 

achievable by the ratchet for any biharmonic shape is controlled by the degree of friction applied 

to the electron; fast ratchets achieve a globally higher maximum current than slow ratchets. 

The current in flashing ratchets is sensitive to the variation of any parameter, including 

friction, driving amplitude, frequency, and temperature [20,22]. Recent computing advances 

have enabled studies that show that the ratchet current is a deeply complex function of large, 

combined parameter spaces [23-27], but physical intuition on many characteristics of flashing 

ratchets, including current reversals and resonances, remains sparse. Here, we identify two 

parameters, the shape of the potential and the amount of friction on the electron (defined as the 

ratio of the potential oscillation timescale to the electron relaxation timescale), that, when 

explored simultaneously over a large parameter space, reveal two modes of ratchet operation that 
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produce current by two different mechanisms. Prior work that explored the effect of shape on the 

behavior of the ratchet current focused on variations to a single potential [28-34]; however, while 

the current from a ratchet of a single shape does show resonances at certain oscillation 

frequencies [20], examining the frequency dependence of a single shape does not make apparent 

the transition from under-damped to over-damped ratcheting mechanisms. Identifying this 

transition, which is only possible when considering the complete space of biharmonic shapes and 

a large range of friction values, is critical in uncovering physically intuitive behaviors, and 

relating these behaviors to structural features of this complex system. 

Description of the Model. The Lindblad Master Equation. We consider the dynamics of a 

single (non-interacting) damped electron moving in a one-dimensional potential that is periodic 

in space and time. Our electron is not a wavepacket moving within a lattice; it is an electron with 

a periodic wavefunction within a periodic potential. The damping is induced by Ohmic coupling 

of the electron to a large number of harmonic oscillators at some temperature, 𝑇, such that the 

bath always remains in thermal equilibrium (Born-Markov approximation). By eliminating the 

bath degrees of freedom, implicit effects of the bath are left on the electron, namely decoherence 

and dissipation [35-38]. The Lindblad master equation (LME) that we choose is given in eq 1 (in 

atomic units). In eq 1, 𝜌  

 𝜕𝜌
𝜕𝑡 = −𝑖 𝐻!,𝜌 − 𝑖𝛾! 𝑥, 𝑝,𝜌 − 2𝑚!𝛾!𝑘!𝑇 𝑥, 𝑥,𝜌 −

𝛾!
8𝑚!𝑘!𝑇

𝑝, 𝑝,𝜌  (1) 

is the density matrix in the Schrodinger picture, 𝐻! is the system Hamiltonian, 𝛾! is the system-

bath coupling, 𝑚! is the effective mass of the electron, 𝑘! is Boltzmann’s constant, and {𝑝,𝜌} is 

an anti-commutator. The first term on the RHS is the non-dissipative Liouville von-Neumann 

term. The second and third terms, respectively, describe momentum damping (dissipation) and 

localization (decoherence). The fourth term guarantees positivity of the density matrix at all 

times; without this term, eq 1 is the Caldeira-Leggett master equation. This particular form of the 

LME yields translationally-invariant relaxation and allows us to control the relaxation with just 

two parameters, 𝛾! and 𝑇. 

For the specific form of the LME in eq 1, the coupling strength 𝛾! to the bath causes an 

exponential decay of the momentum 𝑝 (and thus energy) in time [38]: 𝑝 ! ∝ 𝑝 !𝑒!!!!!. We 

choose 𝛾! to yield a momentum half-life 𝜏!"#$% =
!" !
!!!

= 50 𝑓𝑠. We will see later that it is the 
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ratio of 𝜏!"#$% to the oscillation period, rather than the absolute value of 𝜏!"#$%, that influences 

the ratchet current. 

The decay of spatial coherence is governed by the third term on the RHS of eq 1, which 

suppresses the off-diagonal elements of the density matrix [38]: 

𝜌 𝑥, 𝑥!, 𝑡 = 𝜌 𝑥, 𝑥!, 0 𝑒!!!!!!!!! !!!!
!
!, where 𝑥 and 𝑥′ are two different positions within the 

1D ratchet potential. Since the master equation we use is derived for a non-periodic potential, the 

rate of this decoherence process grows, without bound, with increasing separation between two 

positions. Within the periodic ratchet potential, however, 𝜓 𝑥 + 𝐿 = 𝜓(𝑥), so the maximum 

distance between 𝑥′  and 𝑥  is 𝐿/2 . We therefore modify the distance matrix (𝑥 − 𝑥!)  by 

subtracting 𝐿  from any (𝑥 − 𝑥!) > 𝐿/2  and adding 𝐿  to any (𝑥 − 𝑥!) < −𝐿/2 . With this 

modification, eq 1 respects the periodic boundary conditions of the ratchet potential.  

Initial Conditions. The initial state of the electron is a thermally-weighted sum of the 

eigenfunctions of the system, eq 2, where 𝛽 = !
!!!

 is the inverse temperature, 𝑍 = 𝑇𝑟 𝑒!!"  

 𝜌! =
1
𝑍 𝑒!!!!|𝜓!〉〈𝜓!|

!

 (2) 

is the quantum partition function, and |𝜓!〉 is an eigenfunction of the system Hamiltonian. 

Although we can achieve the same steady-state by starting with a symmetric (zero-mean 

velocity) set of plane waves or wavepackets (Figure S1a,b in the Supplemental Material [39]), eq 

2 allows the system to achieve a steady state with the least computational effort. The temperature 

of the system at 𝑡 = 0 and the temperature of the bath are set to 300 𝐾. The temperature of the 

bath influences the final equilibrium state and the decoherence rate, but since the decoherence 

rate is much faster than the dissipation rate, and the system is designed such that the thermal 

equilibrium is never achieved, the effect of the exact temperature on the steady-state mean 

velocity of the electron is minimal (Figure S1c,d in the Supplemental Material [39]). 

The Form of the Ratchet Potential. The ratchet potential is represented as a biharmonic 

Fourier series (Figure 1b,c), eq 3, where L is the spatial period of the ratchet potential, and 𝑎! 

 𝑉 𝑥, 𝑡 = sin!(
𝜋𝑡

𝜏!"#$!!"
) 𝑎!sin

2𝜋𝑥
𝐿 + 𝑎!sin

4𝜋𝑥
𝐿  (3) 

are the coefficients (in units of energy, eV) of the Fourier terms; the range 0 ≤ 𝑎!,𝑎! ≤ 4.5 𝑒𝑉 

is chosen to capture a large set of confining potentials for an electron with an initial kinetic 

energy of 25 𝑚𝑒𝑉 (i.e. 300 𝐾). The spatial period 𝐿 is set to 50 nm, similar to the length scale of 
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state-of-the-art photolithographic patterning techniques. Since 𝐿 is much greater than the length-

scale of atomic potentials, we assume that the electron travels in a parabolic conduction band 

with effective mass 𝑚! = 1, i.e., a free or nearly-free particle, with no static disorder. Our 

conclusions about the general behaviors of biharmonic electron ratchets, including the presence 

of two ratcheting regimes at different levels of friction, do not depend on the absolute value of 

the ratchet spatial period, bath temperature, or coupling constant, as our equation of motion (eq 

1) can be written in dimensionless form (see the Appendix). In the Supplemental Material [39], 

we show two sets of results where we use different values for 𝐿  and 𝛾! than in the main text. 

We vary the oscillation period of the ratchet, 𝜏!"#$!!", about the momentum relaxation half-

life 𝜏!"#$% (50 𝑓𝑠, eq 1). For each ratio !!"#$!!"
!!"#$%

, we calculate the steady state velocity of the 

electron 𝑣 , where the first set of brackets denotes the quantum expectation value, and the 

second set of brackets denotes a time average over one oscillation period of the potential, as a 

function of 𝑎! and  𝑎!. The mean velocity is directly proportional to the current, and we use the 

two terms interchangeably. 

The density matrix of the electron is represented in the Fourier grid basis [40] with 256 grid 

points, and propagated according to eq 1, for 2.5 ps or ten oscillation periods, whichever is 

greater, using the variable order Adams-Bashforth-Moulton predictor-corrector algorithm in 

MATLAB (ode113). We explicitly simulate only one period 𝐿 of the ratchet potential, with 

periodic boundary conditions. Since the coherence length of the electron (as given by its thermal 

wavelength 𝜆 = !
!!!!!!

~1.9 𝑛𝑚) is much smaller than the period, L, of the potential, self-

interference is negligible due to the fast decoherence rate as well as the localized behavior of the 

wavefunction, as shown in the supplementary movies (for example, the latter half of Movies M1 

and M2). 

 

RESULTS AND DISCUSSION 

Figure 2 is a series of color maps of the non-equilibrium steady-state velocity of the electron, 

𝑣 , as a function of the Fourier coefficients 𝑎! and 𝑎!, for a series of ratios !!"#$!!"
!!"#$%

. Figure S2 

in the Supplemental Material [39] contains the full dataset that we calculated (i.e., plots for more 

values of !!"#$!!"
!!"#$%

). Positive current is shown in shades of red and yellow, and negative current is 

shown in shades of blue and purple. A generic, symmetric color bar is shown at the top of the 
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figure; the actual range of 𝑣  represented by that color bar changes from tile to tile in order to 

best visualize the features of each plot. Figure 3 shows the maximum value of 𝑣  versus the 

timescale ratio !!"#$!!"
!!"!"#

. In every case, the maximum value of 𝑣  is positive for reasons we 

discuss below. 

The amplitude of the ratchet potential at any given time depends on the absolute values of 𝑎! 

and 𝑎!, but the ratio of the Fourier coefficients !!
!!

 determines the shape of the ratchet potential, 

see Figure 1b,c. Any straight line drawn on a plot in Figure 2 that goes through the origin traces 

out a series of potentials with the same shape. For example, the dotted lines corresponding to 
!!
!!
= 0.25  represent the widely studied biharmonic approximation to the piecewise linear 

sawtooth ratchet potential, which is chosen as a “typical example” of a ratchet potential [20]. By 

inspection of the plots in Figure 2, we see that, in fact, the peak currents as a function of the 

ratchet shapes we study here, at least those with !!"#$!!"
!!"#$%

> 1, tend to fall on the line with  

𝑎!~0.6𝑎! (shown as dashed lines on the plots in Figure 2). When 𝑎! or 𝑎! is equal to zero 

(along the x and y-axes of the plots in Figure 2) the potential is symmetric, and 𝑣  is zero 

within machine precision. 

The parameter 𝜏!"#$!!" (eq 3) is a measure of the rate at which the electron periodically 

receives energy from the ratchet potential, and 𝜏!"#$% (eq 1) is a measure of the rate at which the 

electron loses energy to the environment. Figure 3 shows a plot of the maximum velocity 𝑣  

at each timescale ratio, !!"#$!!"
!!"#$%

, chosen from all possible biharmonic shapes. This plot has two 

peaks, at !!"#$!!"
!!"#$%

~1 and ~20, separated by an inflection point at !!"#$!!"
!!"#$%

~3. We colloquially 

refer to the ratchets with !!"#$!!"
!!"#$%

< 3 as “fast” ratchets, and ratchets with !!"#$!!"
!!"#$%

> 3 as “slow” 

ratchets. The timescale ratio that produces the global maximum of 𝑣   is ~1; if the ratio is not 

~1, changing the shape of the potential (by changing 𝑎! or 𝑎!) cannot increase the velocity to the 

global maximum. The Supplemental Material [39] shows that these two regimes of ratcheting are 

also distinguishable for ratchets with different values of for 𝜏!"#$!!" (Figure S3) and 𝐿 (Figure 

S4), although we do not necessarily observe a peak in 𝑣  as a function of !!"#$!!"
!!"#$%

 for slow 

ratchets. 
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Mechanisms of Operation for Fast and Slow Ratchets. Our simulations of the behavior of 

the electron in the ratchet potential, shown in the movies in the Supplemental Material [39], 

allow us to understand the bimodal dependence of 𝑣  on !!"#$!!"
!!"#$%

 in Figure 3. Slow ratchets 

operate like classical, overdamped flashing ratchets, as seen in Figure 1a. The wavefunction 

spreads as the potential turns off; as the potential turns on again, it causes an asymmetric 

relaxation, and ratchet current results, see Movie M1. If the oscillation of the potential becomes 

too slow, the wavefunction fully delocalizes before the ratchet potential turns on again, and no 

current results. Additionally, in the limit !!"#$!!"
!!"#$%

≫ 1 the electron remains in the equilibrium state 

of the instantaneous potential, and no current results, see Figure S5 in the Supplemental Material 

[39]. 

In “fast” ratchets ( !!"#$!!"
!!"#$%

~ 1 ), the oscillating potential exerts a high impulse 

(𝐼 = − !"
!"
𝑑𝑡!!!!"#$!!"

! ) on the electron. Under these conditions, the rate of energy input exceeds 

the relaxation rate, and the electron undergoes damped beating inside the wells, see Movie M2 

(1:00 min and onwards). If the beating is resonant with the oscillation frequency of the potential 

(or integer multiples of that oscillation frequency), then the potential turns off as the 

wavefunction spreads, such that the wavefunction releases two wavepackets travelling in 

opposite directions. As the potential turns on again, if the potential surface is sufficiently 

asymmetric, one wavepacket moves to the adjacent well, while the second one is reflected back 

to the original well. Eventually, a localized, right-moving wavepacket redevelops and is 

resonantly accelerated by the oscillating potential. This mechanism leads to net unidirectional 

acceleration of the wavefunction and ratchet current. If, however, the beating is out of phase with 

the oscillations of the potential, then the wavefunction is contracting as the potential turns off, 

and no current results, see Movie M3. Furthermore, in the limit of very fast oscillations 

(!!"#$!!"
!!"#$%

≪ 1), which is quickly approached on the left side of the plot in Figure 3, the electron 

sees an averaged, static potential, and no current is produced, see Figure S6 in the Supplemental 

Material [39]. 

The resonances between the oscillating potential and the beating wavepacket appear in plots 

of 𝑣  versus the oscillation period for a given potential shape (some examples are in Figure 

4a). Resonant behavior due to vibrations of a particle inside a potential well have been observed 
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in classical flashing ratchets where the particle has finite inertia, i.e., is not overdamped [41,42], 

because the equations of motion for overdamped particles have no inertial term that allows for 

beating or other non-equilibrium dynamics. This mechanism is therefore only operative for 

“fast” or weak friction ratchets, and not for “slow” or strong friction ratchets. We note that the 

mechanism for the resonances in current we observe here is distinct from the phase coherence 

that produces current in some quantum ratchet systems [43-48]. 

Since a given potential can induce wavefunction beating that is resonant with the oscillation 

frequency of the potential, we also expect that a given oscillation frequency will be resonant with 

the beating of the wavefunction within different potential shapes. These “resonant shapes” 

manifest as the interference pattern-like features in the plots in Figure 2; these patterns are most 

clearly apparent for 2.18 < !!"#$!!"
!!"#$%

< 4.84, but exist up to !!"#$!!"
!!"#$%

< 9.67. The tilted bands of 

high current are separated by regions where the average velocity is a factor of 102 – 104 lower 

than the current in those bands. The bands of current in Figure 2 are approximately vertical 

rather than horizontal because fixing the value of 𝑎! and varying 𝑎! increases the asymmetry 

while preserving the general shape of the potential, whereas fixing 𝑎! and varying 𝑎! changes 

the shape of the potential and its asymmetry, Figure 1b,c. 

To simulate the interference pattern-like features, let us assume that the electron spends most 

of its time in the deepest wells of the periodic ratchet potential, and calculate its damped, natural 

frequency 𝜔!  from its energy in one period of the static potential 𝑉 𝑥 = 𝑎!sin
!!"
!

+

𝑎!sin
!!"
!

, using the harmonic approximation 𝐸 = ℏ𝜔! (the minimum of the potential is 

deep enough so that the ground state is localized). A numerical solution for the ground state, as 

opposed to evaluating 𝑚𝜔!"#$! = !!!
!!! !!

, is needed for even qualitative accuracy as it takes into 

account the relaxation from the bath. We plot 𝜔! =
!
!!

 as a function of 𝑎! and 𝑎! in Figure 4b. 

We then multiply every value in that plot by, for example, 𝜏!"#$!!" = 48 𝑓𝑠 (!!"#$!!"
!!"#$%

= 0.967) 

such that each point now corresponds to the ratio 𝜏!"#$!!"/𝜏!. Finally, we color integer multiples 

of 𝜏!"#$!!"/𝜏!  (and values that are within ±0.1 of integer multiples) red to obtain the tilted 

vertical stripe pattern shown in the inset of Figure 4b. Within these stripes, the oscillation of the 

potential is synchronized (i.e., an integer multiple) with the beating of the wavefunction, which is 

the source of the resonant peaks in velocity shown in Figure 4a and Figure 2. For increasing 
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values of 𝜏!"#$!!", the number of values of 𝜔! that are integer multiples of 1/𝜏!"#$!!" in the 

space of potential shapes that we examine increases, so the number of bands that fit into the plots 

in Figure 2 increases. The vertical columns in the inset of Figure 4b do not line up exactly with 

the features in Figure 2, because 𝜔! is calculated for a static potential whereas the ratchet is 

time-dependent, and because the harmonic approximation only considers the curvature of the 

potential well at its minimum. 

As !!"#$!!"
!!"#$%

 (i.e. friction) increases, the bands of current in the plots in Figure 2 begin to blend 

together. The resonance condition is weakening because the increasing friction damps the 

beating of the wavefunction before the potential goes through one oscillation cycle. We observe 

a local minimum in ratchet current at !!"#$!!"
!!"#$%

~3, Figure 3, because the oscillation is too slow to 

exploit the beating of the wavefunction before it is damped, and too fast to allow the 

wavefunction to spread. As the ratchet slows further, the impulse from the potential decreases, 

and high-barrier potentials (which, for fast ratchets, provided the high impulse that induced 

beating of the wavefunction) now trap the electron. The peak current therefore moves toward 

lower-magnitude potentials (i.e., the origins of the plots in Figure 2), and the current decreases 

monotonically outward from the origin, along lines of constant shape !!
!!

. We confirmed that the 

interference pattern-like features are not present in plots for the slowest (high friction) ratchets 

by conducting a parameter sweep for !!"#$!!"
!!"#$%

= 12.1 and 0 ≤ 𝑎!,𝑎! ≤ 1.5 𝑒𝑉 at three times the 

energy resolution used to construct the plots in Figure 2; these calculations did not reveal any 

new features. 

The Scaling Relationship between Current Maps. For the set of fast ratchets where 
!!"#$!!"
!!"#$%

< 2.42, as !!"#$!!"
!!"#$%

 decreases it appears that we are zooming in on the features in the plot 

!!"#$!!"
!!"#$%

= 2.42 in Figure 2, such that the striped pattern is eventually no longer apparent. This 

behavior suggests that there is a scaling relationship among the current maps in Figure 2; 

specifically, the overall structure of the velocity map as a function of the scaled coordinates 

𝑎!! = 𝜏!"#$!!"𝑎!  and 𝑎!! = 𝜏!"#$!!"𝑎!  is the same for any fast ratchet. Physically, this result 

implies that all fast ratchets have the same relationship between the ratchet current and the shape 

of the potential. But as we pointed out in the discussion of Figure 3, the absolute magnitude of 
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the current is still controlled by the degree of friction applied to the electron – that is, the value of  
!!"#$!!"
!!"#$%

. Animation A1 shows this scaling behavior in the Supplemental Material [39]. 

For !!"#$!!"
!!"#$%

< 0.846, we do not explore a large enough space 𝑎!,𝑎!  to record the peak 

current, so we observe noise in the plot of 𝑣  vs. !!"#$!!"
!!"#$%

, Figure 3. Extending the upper limit 

for 𝑎! and 𝑎! to 9 eV (from the original 4.5 eV) zooms out and gets closer to the peak current 

(see red triangles on Figure 3). Further increasing 𝑎! and 𝑎! to zoom out to the full plot near 
!!"#$!!"
!!"#$%

= 2.42 however makes the potential too confining and limits the maximum achievable 

current. 

Current Reversals in Overdamped Ratchets. For !!"#$!!"
!!"#$%

> 2.42 the plots in Figure 2 are, 

in general, organized into regions of positive current (upper left region in each plot) and negative 

current (lower right) separated by the line 𝑎! ≈ 0.7𝑎!. The sign of the current in our ratchet 

model is determined by the direction of the asymmetry of the potential, shown for three general 

cases in Figure 5. For 𝑎! ≤ 0.5𝑎! (upper left region of each plot in Figure 2), each repeat unit 

of the potential has one well and one peak (with a shoulder); the asymmetry in this class of 

structures originates from the different distances from the bottom of the well to its two 

neighboring peaks, Figure 5a. In these structures, the current flows from the well to the closer 

peak, which, in our potentials, is always to the positive side (right). For 𝑎! ≥ 0.5𝑎! (lower right 

region in Figure 2), the asymmetric shoulder deepens into a secondary well and peak, Figure 

5b,c. The change in the sign of the current from positive to negative coincides with the depth of 

the secondary well becoming greater than the average kinetic energy of the electron, see Figure 

S7 and Movies M4 in the Supplemental Material [39]. Since the electron can be trapped by the 

secondary well from its starting point in the deepest well, the asymmetry in the potential is now 

due to the difference in heights, instead of distances, to the two adjacent peaks, Figure 5c. The 

spreading of an electron wavefunction in the deepest well is less impeded by the lower peak to 

the left, so the direction of ratchet current in these structures reverses. This flow of negative 

current is, however, countered by the tendency of probability density, once in the secondary well, 

to flow in the direction of the lower peak back to the deepest well. The peak current in the 

negative direction is therefore always smaller than the peak current in the positive direction, and 

thus the global maximum in current for a given ratio !!"#$!!"
!!"#$%

 is always positive, Figure 3. This 
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mechanism does not entirely explain current reversals for fast ratchets, which we are still 

investigating. Current reversals as a function of shape have been observed in “delta-kicked” 

ratchet models [24]; however, the mechanism we describe here depends on the ratchet potential 

trapping the dynamically relaxing wavefunction, a feature that is absent in a delta-kicked model 

since the potential is only on during the instantaneous kick. 

 

CONCLUSIONS 

In summary, we constructed a quantum model of an electron in a flashing ratchet potential. 

The electron experiences dissipation and decoherence through a Lindblad master equation. We 

calculated the average steady-state velocity of the electron in all possible biharmonic shapes and 

large range of oscillation frequencies of the potential (Figure 2). We find that the ratio of 

timescales of oscillation of the potential and dissipation of the electron, !!"#$!!"
!!"#$%

 (i.e., the friction 

on the electron) is the most important parameter in determining the magnitude of the ratchet 

current, Figure 3. Furthermore, we observe two distinct modes of ratchet operation. Weak-

friction ratchets, !!"#$!!"
!!"#$%

< 3 , achieve higher currents than strong-friction (heavily-damped) 

ratchets, by exploiting resonances between the non-equilibrium beating of the wavefunction 

inside the potential wells and the oscillation of the potential. For strong-friction ratchets, 

reversals of current (from positive to negative) in shape space are related intuitively to the type 

of asymmetry present in the potential, Figure 5. The timescale ratio !!"#$!!"
!!"#$%

 can be expressed as a 

combination of multiple sub-relaxation timescales, including relaxation of the electron in-well 

and transmission between barriers, as investigated by Tarlie and Astumian [49], who use a 

potential that switches instantaneously between static “on” and “off” states, but these quantities 

are difficult to deconvolve for a continuously driven system like the one we describe here. 

Quantifying the importance of quantum effects in our model is not straightforward, but we 

can make the following two comments. First, the decoherence lifetime in our system is too fast 

for quantum coherences to be contributing to transport in any way. Second, our system is 

certainly different from one propagated classically (using, for example, the Langevin equation), 

because a quantum equation of motion, even in the fast decoherence limit, allows for tunneling. 

Since tunneling through a flashing barrier has the same transmission probability regardless of 

direction, it is an isotropic mechanism of transport that reduces the overall efficiency of the 
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ratchet by randomizing electron motion, see Movie M5. The quantum master equation is 

essential to revealing that tunneling in a flashing ratchet lowers the current, as opposed to a 

tilting ratchet [19], where a rocking potential changes the tunneling transmission probability 

depending on the incident direction, although tunneling can also decrease the current [50]. 

Flashing ratchets that produce the most current therefore tend to be very confining: the ratio of 

the amplitude of optimal potentials to the steady-state kinetic energy of the electron ranges from 

three for fast ratchets to over thirty for slow ratchets. Due to the height and width of the potential 

barriers, any probability density that is inside classically forbidden regions as the potential turns 

on is reflected in the classical direction, and the amount of tunneling between wells is negligible. 

We do observe that wave-like behavior of the electron, such as the beating of the wavefunction 

seen in fast ratchets, is essential to producing current; this type of resonance is also, however, 

present in classical particle ratchets under certain conditions. We are currently building a 

classical equivalent of our model to quantitatively explore the effect of quantum transport on the 

ratchet current. 

Finally, we note that in Figure 2 increasing !!"#$!!"
!!"#$%

, i.e., increasing the friction on the 

electron, decreases the sensitivity of the current to the biharmonic shape. In fact, in the 

overdamped limit that is a common starting point for many models, our calculations show 

negligible dependence of ratchet behavior on shape, so only studying a single potential shape 

may be appropriate. A similar decrease in the sensitivity of ratchet performance to shape in the 

high damping and/or weak-kick limit has been seen for delta-kicked ratchets [23-25]. Our work 

highlights the importance of searching both shape and frequency space in drawing general 

conclusions about ratchet behavior beyond the overdamped limit, especially since it appears that 

ratchets with a larger inertial component perform better than overdamped ratchets under many 

conditions.  

The oscillation frequencies (THz) and length scales (50 nm) we choose here can be realized 

by using plasmonic nanostructures to concentrate infrared radiation [51]. A periodic array of 

such structures could be used to enhance transport in a solar cell by capturing otherwise 

unabsorbed infrared energy. The Supplemental Material [39] shows, however, that our 

conclusions do hold for other values of the potential period 𝐿 and bath coupling strength 𝛾!. Our 

ability to write the master equation in dimensionless form (see the Appendix) implies that our 

conclusions apply, in general, to non-interacting particles with Ohmic dissipation, because 
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modifying parameters within the dimensionless ratios (such as inserting a specific effective mass 

or 𝐸 𝑘  dispersion) does not introduce any new mechanisms of motion. Different forms of the 

spectral density, which describe the coupling to the bath, can however introduce new timescales 

of dissipation and decoherence that may lead to quantitatively and qualitatively different results 

than what we obtain here. We also expect our assumption of non-interacting particles to fail if 

the Debye screening length is greater than the average inter-electron distance 𝑏 = 1/2𝑁!!!, 

where 𝑁! is the local electron concentration, which may be the case when the wavefunction is 

localized in the wells of the potential [11]. 

In future work, we will explore higher dimensional Fourier series of periodic potentials, 

where we will have access to a larger variety of shapes, with more sophisticated search 

techniques, such as genetic algorithms or simulated annealing, instead of the brute force 

approach we use here. The fact that the ratchet current is sensitive to the variation of any 

parameter shows that such large-scale studies of ratchet parameter space are necessary to 

illuminate general characteristics of ratchets, however physically intuitive or non-intuitive these 

characteristics may be.   
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APPENDIX 

The master equation (eq 1) can be written in dimensionless form using the following 

substitutions: 

 𝑥! =
𝑥
𝐿

 

𝑝! =
𝑝

𝑚𝐿γ!
 

𝑡! = 𝑡γ! 

(A1) 

Yielding the dimensionless master equation and the rescaled kinetic and potential energy 

operators (in atomic units and without the prime annotation): 

 𝜕𝜌
𝜕𝑡

= −
𝑖
γ!

𝐻, ρ − 𝑖𝐿!γ! 𝑥, 𝑝, ρ − 2𝑚!𝑘𝑇𝐿! 𝑥, 𝑥, ρ −
𝑚!𝐿!γ!!

8𝑘𝑇
𝑝, 𝑝, ρ  (A2) 
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𝑇 = 𝑚!𝐿!γ!!
𝑝!

2
 

𝑉 𝑥, 𝑡 = sin!
𝜋𝑡
γ!𝜏

a! sin 2𝜋𝑥 + 𝑎! sin 4𝜋𝑥  

Equation A2 is scale invariant in space because the potential is periodic, hence 𝑥′ can only 

vary between [0,1], and is also scale invariant in time due to decoherence and dissipation (in the 

long time limit, the velocity reaches a steady state). The value of the dimensionless constants in 

front of the double commutators defines a ratio of the three parameters 𝐿, 𝑇, and 𝛾! (the spatial 

period, temperature of the environment, and coupling constant to the environment, respectively) 

that will give the same results for any actual values chosen so long as they are combined in the 

same ratio. 

In the Supplemental Material [39], we show two additional sets of data that lead to different 

values for the dimensionless constants, and thus two different families of solutions. The same 

features that we discuss in the main text, namely two regimes of ratcheting, the peak current and 

resonance features in fast ratchets, and the broad, featureless smears in slow ratchets, remain the 

same. 

  



	

17	
	

FIGURES 

 

 

 

 

Figure 1. Basic description of the flashing ratchet and ratchet potential. (a) An illustration of 
the general mode of operation of a classical overdamped ratchet. The probability density 
function (quantum or classical) begins localized in a well. When the potential turns off, the 
random forces from the bath spread the probability density isotropically. As the potential turns 
on again, the local, periodic asymmetry of the potential surface causes asymmetric relaxation of 
the probability density, rectifying the random motion. This mechanism does not work if the 
switching is much faster or much slower than the characteristic spreading time of the probability 
density function. Only one period of the ratchet potential is simulated, with periodic boundary 
conditions, for the results and discussion. (b,c) The effect on the shape of the biharmonic 
potential 𝑉 𝑥 = 𝑎!sin

!!"
!

+ 𝑎!sin
!!"
!

 of (b) fixing the coefficient 𝑎! while varying 𝑎!, or 
(c) fixing 𝑎! while varying 𝑎!. In (b) the degree of asymmetry changes, while in (c) the shape is 
largely preserved but relative heights of the peaks and depths of wells change. 
 



	

18	
	

 

Figure 2. Plots of the average steady-state velocity 𝑣  of the electron as a function of the 
biharmonic Fourier coefficients 𝑎! and 𝑎!, for a series of ratios of oscillation and dissipation 
time constants, !!"#$!!"

!!"#$%
 (where 𝜏!"#$% is constant). All plots comprise 60×60 calculated values 

of 𝑣  and have the same ranges of values on the x- and y-axes: 0 ≤ 𝑎!,𝑎!,≤ 4.5 eV. The 
absolute values of 𝑣!"# = max ( 𝑣 ) and −𝑣!"# (color bar) are different for each plot; the 
color bar is adjusted from plot to plot to best show the features of the plot. Along lines going 
through the origin, the ratio !!

!!
, and therefore the shape of the ratchet potential, is constant. The 

dotted (𝑎! = 0.25𝑎!) and dashed (𝑎! = 0.6𝑎!) lines correspond to the shape most used in the 
literature and the shape that we find produces the most current for !!"#$!!"

!!"#$%
≳ 1, respectively. 

The full data set is shown in the Supplemental Material [39]. 
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Figure 3. A plot of the maximum average velocity 𝑣 !"# of the electron in the parameter 
space 0 ≤ 𝑎!,𝑎! ≤ 4.5 𝑒𝑉 at each time scale ratio, !!"#$!!"

!!"#$%
, extracted from the plots in Figure 2. 

For reasons explained at the end of the text 𝑣 !"#  is always positive, so 𝑣 !"# 
= | 𝑣 |!"#.  The values of 𝜏!"!"# and of the temperature 𝑇 of the bath are constant across the 
data set. There are two distinct peaks in this plot, centered around !!"#$!!"

!!"#$%
~1 and !!"#$!!"

!!"#$%
~20. 

The noise around !!"#$!!"
!!"#$%

~1 is due to the range of 𝑎! and 𝑎! that we explored not being large 
enough to capture the maximum current; extending the upper range of 𝑎! and 𝑎! to 9 𝑒𝑉 comes 
closer to capturing the maximum current (red triangles). 

 

  

Figure 4. Illustrations of the resonance mechanism for the operation of “fast” flashing ratchets. 
(a) A plot of the average velocity 𝑣  of the electron versus the oscillation period of the ratchet 
potential for three different potential shapes: 𝑎!,𝑎! = 1.98,1.21   (solid), (1.44,0.76) 
(dashed), and 3.50,1.06  (dotted), in eV. The peaks are a result of resonances between the 
frequencies of wavefunction beating and potential oscillation. (b) A plot of the damped, natural 
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frequency 𝜔! of an electron in a static potential defined by biharmonic Fourier coefficients 𝑎! 
and 𝑎!, in the harmonic approximation 𝐸 = ℏ𝜔!. (Inset): The result of multiplying the plot in 
(b) by 𝜏!"#$!!" = 48 𝑓𝑠 (!!"#$!!"

!!"#$%
= 0.9672) and coloring values equal to (𝑛 ± 0.1) red, where 𝑛 

is an integer; the red values correspond to potential shapes where the natural frequency of the 
static potential is resonant with the oscillation frequency. This simulation approximately 
reproduces the interference-like patterns in the plots in Figure 2. 
 

 

Figure 5. Representative potential shapes that lead to positive current (panel a, 𝑎! = 0.25𝑎!), 
zero current (panel b, 𝑎! = 0.7𝑎!), and negative current (panel c, 𝑎! = 𝑎!) for “slow” ratchets, 
i.e., !!"#$!!"

!!"#$%
> 2.42. In panel a, the current direction (red single arrow) is the shorter of two 

distances between a well and its two neighboring peaks, indicated by the double arrows. As 𝑎! 
becomes greater than 0.5𝑎!, the shoulder transitions into a well (panel b). When 𝑎! is equal to 
larger than 𝑎! (panel c), the distance between the deepest well and its two neighboring peaks 
becomes very similar (compare black double arrows), and the asymmetry in the heights of those 
peaks controls the direction of current (blue single arrow). The maximum negative current we 
observe is smaller in magnitude than the maximum positive current we observe because 
trapping of the electron in the secondary well, which only occurs for scenarios like that in panel 
c, re-randomizes the direction of the current, as explained in the text. 
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