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We discuss the Giardinà-Kurchan-Peliti population dynamics method for evaluating large devia-
tions of time averaged quantities in Markov processes [Phys. Rev. Lett. 96, 120603 (2006)]. This
method exhibits systematic errors which can be large in some circumstances, particularly for sys-
tems with weak noise, with many degrees of freedom, or close to dynamical phase transitions. We
show how these errors can be mitigated by introducing control forces within the algorithm. These
forces are determined by an iteration-and-feedback scheme, inspired by multicanonical methods in
equilibrium sampling. We demonstrate substantially improved results in a simple model and we
discuss potential applications to more complex systems.
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I. INTRODUCTION

In many physical systems, interesting and impor-
tant behaviour is associated with rare events – ex-
amples include crystal nucleation, slow transitions in
biomolecules [1–3], rare transitions in turbulent flows [4,
5], and extreme events in climate dynamics [6]. Many
computational methods for sampling these events have
been proposed and exploited [1, 3, 5, 7–18]. One family
of methods is based around population dynamics [19–24],
in which several copies of a system evolve in parallel: the
copies which exhibit the rare behaviour of interest are
copied (or cloned) while other copies are discarded. The
result is that typical copies within the population dy-
namics reproduce the desired rare events in the original
system. One such method has recently been employed
to characterise a particular class of rare events [7, 8], in
which time-averaged physical quantities exhibit large de-
viations [25, 26] from their typical values in the large time
limit. Studies of such events have revealed new and un-
expected features in glass-formers [27], biomolecules [28–
30], non-equilibrium transport [31, 32] and integrable sys-
tems [8]. In this article, we identify a pitfall that limits
the computational efficiency of the population dynamics
method, and we show that the method can be modified
so as to avoid this problem. The issue at stake is the
number of copies of the system that must be considered
in order to obtain accurate results – if very many copies
are required then the method is difficult to apply, es-
pecially if even a single system is complex or contains
many degrees of freedom. In some relevant cases then
the standard population dynamics method requires an
exponentially large population to be effective [33]. How-
ever, the method that we propose here, which is an im-
proved version of the population dynamics, inspired by
multicanonical methods in equilibrium systems [13, 14]
(or adaptive importance sampling [15–18]), can still be
effective in these cases.

The intuitive description of the problem that we iden-
tify is the following. The population dynamics is charac-

terised by two different distributions, which describe the
state of the system at some fixed final time, and its state
at intermediate times. We show that in situations where
the two distributions have a small overlap, the popula-
tion dynamics is affected by a serious sampling problem,
in which statistical estimators of the quantities of interest
become dominated by just a few samples. One relevant
case is that of systems with weak noise, for which the
two distributions become more and more concentrated
around their most likely values, so that they quite gen-
erally have zero overlap: this leads to an unavoidable
failure of the population dynamics. In this article, we
describe how to modify the population dynamics so as to
maintain the two distributions close to each other, thus
solving the sampling problem. We argue that this new
method will provide a step-change in the complexity of
the systems for which large deviation computations can
be performed.

The structure of the paper is as follows: we introduce
our model and the population dynamics algorithm in Sec-
tion II. We discuss sampling problems associated with
this algorithm in Section III. In Section IV, we introduce
our main idea, which is to combine a controlling force
with the population dynamics algorithm, in order to re-
solve the sampling issues. In Section V, we numerically
demonstrate this method in a simple Brownian particle
model. Finally, in Section VI, we describe the potential
for future applications and extensions of this work.

II. MODEL AND METHODS

A. Rare event problem

The rare events that we consider can take place in a
variety of models. To illustrate the method, consider a
particle moving in d-dimensions, whose position x ∈ Rd

obeys a Langevin equation

ẋt = F (xt) +B(xt)ξt, (1)
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where ξ is a d-dimensional Gaussian white noise of unit
variance, F (x) ∈ Rd a deterministic force, and the ma-
trix B(x) specifies the action of the noise on the particle.
[34]. We use the Itō convention [35] for stochastic cal-
culus throughout this paper, although one can also work
with the Stratonovich convention by using a transforma-
tion formula to relate one convention to the other [36].

We restrict to ergodic systems, and we focus on rare
events in which a time averaged quantity Λ(τ) takes some
non-typical value. Here τ is the long time period over
which the average is taken, and

Λ(τ) = Λd(τ) + Λc(τ) (2)

consists of a “scalar” contribution

Λd(τ) =
1

τ

∫ τ

0

λd(xt)dt (3)

and a “vector” one

Λc(τ) =
1

τ

∫ τ

0

λc(xt) · dxt, (4)

where λd,c are arbitrary functions of the particle posi-
tion x. The first contribution Λd(τ) is a time-average of
a quantity λd that depends only on the position x (i.e. a
time-average of a static function such as a particle den-
sity or an energy density), whereas the second contribu-
tion Λc(τ) includes transitions of x as seen from the form
λc(xt) · dxt (i.e. Λc(τ) is an average of a dynamic func-
tion such as a particle current or an energy current [37]).
See also the explanation around eq.(34) in [38] for a ped-
agogical introduction of Λ(τ). This class of observable
includes many physically and mathematically interesting
examples, and fluctuations of these quantities have been
intensively studied recently, where examples are entropy
production [39, 40], dynamical activity [27, 41], and par-
ticle fluxes [42].

In the limit of large τ , ergodicity of the system means
that the observable Λ(τ) is almost surely equal to its typi-
cal value Λ. Our aims are (i) to estimate the (small) prob-
ability of deviations from this value, and (ii) to generate
the rare trajectories that lead to these deviations. This is
an important problem because these non-typical trajec-
tories can exhibit interesting and unusual structures, in-
cluding misfolded proteins [29, 30], stable glass states [27]
and travelling waves in models of particle transport [31].

To achieve these aims, the standard theoretical
route [25, 39] is to introduce a biasing field h, which
controls deviations of Λ(τ) from its typical value. Specif-
ically, we consider an ensemble of paths X = (xt)

τ
t=0 with

(unnormalised) probability density

Ph[X] = π0(x0) exp

[
−
∫ τ

0

L(xt, ẋt)dt+ hτΛ(τ)

]
, (5)

where

L(x, ẋ) = 1
2 [ẋ− F (x)] · κ(x)−1[ẋ− F (x)] (6)

is a Lagrangian density that describes the (unbiased)
model (1); π0(x) is the initial condition for the trajec-
tories, that can be arbitrary and which we take to be
the stationary probability distribution of the unbiased
model in the numerical examples. Also, κ = BBT where
the notation BT indicates a matrix transpose [43].

Normalised averages with respect to Ph are denoted
by 〈·〉h and we use these averages to characterise the rare
trajectories associated with deviations of Λ(τ) from Λ,
for the model in Eq. (1). We define the scaled cumulant
generating function (CGF):

G(h) = lim
τ→∞

τ−1 log〈eτhΛ(τ)〉0. (7)

In the limit of large τ , the probability distribution of
Λ(τ) satisfies a large deviation principle, and can be ob-
tained by a Legendre transformation of G(h), (for which
we assume that the large deviation function of Λ(τ) is
convex [25, 26].) In the same limit, for a given deviation
Λ from Λ, there exists a bias h?(Λ) for which 〈·〉h?(Λ)

is equivalent to a conditional average over trajectories
with Λ(τ) = Λ [44]. Biased averages with respect to the
biased distribution Ph, which are numerically evaluated
through the population dynamics, thus enable to charac-
terise the trajectories of the original dynamics for which
time-averaged physical quantities exhibit large deviations
from their typical values in the large time limit.

B. Population dynamics method

There are several computational methods that allow
evaluation of averages with respect to Ph [7, 11, 12, 45].
In the population dynamics method [7], one considers
Nc copies (or clones) of the system. These clones evolve
independently as a function of the time t, except that
(for h > 0) clones with small Λ(t) are periodically re-
moved (eliminated) from the system, while clones with
large Λ(t) are duplicated (cloned), to maintain a con-
stant population. The algorithm is illustrated in Fig. 1
and described fully in Appendix A 1. This method biases
the dynamics towards the rare events of interest. For suf-
ficiently large Nc (and large enough τ), the method pro-
vides accurate estimates of G(h) and it generates sample
paths consistent with the biased distribution Ph.

C. Numerical example

To show the operation of the population dynamics
method, we introduce a simple model of diffusion in a
quartic potential. That is, F (x) = −x3 and B(x) =

√
2ε,

where ε is the noise strength (or temperature). We take
λc = 0 and λd = x(x+ 1). For h < 0 the distribution Ph
is concentrated on trajectories with small values of λd,
which tend to localise near x ≈ − 1

2 . Here we focus on
the case h > 0, which leads to unusually large values of
λd. Those can be realised either for x > 0 or x < 0 but
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FIG. 1. (Color online) (a) Trajectories xa(t) generated by
population dynamics at fixed total population Nc = 4 for the
model system described in Section II C (ε = 1, h = 1). The
different colours or line types, which are the green (dark grey
in the printed version) solid line, green dashed line, yellow
(light grey in the printed version) solid line and yellow dashed
line, represent different copies. At certain times, some copies
of the system are removed (× symbols) and others are du-
plicated (◦ symbols). The time interval ∆T for the cloning
procedure is set to be 0.05, and the time step for solving the
Langevin equation is 0.001 (See Appendix A 1 for the details
of the algorithm). (b) Representative sample paths x̃a(t) for
the distribution Ph[X], derived from those in (a) by keep-
ing only trajectories surviving up to final time τ = 30. For
each cloning event, we also copy the history of the trajectory,
which replaces the history of the eliminated trajectory. This
means that the trajectories (x̃a(t))Nca=1 overlap, especially for
early times. For example, in panel (b), the point A appears
in the past of the four points B1,. . . ,B4. For any point xa(t)
(such as A,B1,B2,. . . ), we define the multiplicity ma(t, τ) as
the number of trajectories that include this point, and sur-
vive until the final time τ . So for point A, the multiplicity
is ma(t, τ) = 4 but for B1,. . . ,B4 then ma(t, τ) = 1. (For
all points in the trajectories who die before τ , which are not
drawn in the panel (b), ma(t, τ) = 0.)

at large τ this rare event is almost always realised by tra-
jectories that have x > 0 (as illustrated in Fig. 1). This
simple problem can be solved exactly in the zero-noise
limit (see Appendix D).

The operation of the population dynamics method is
illustrated in Fig. 1. Fig. 1(a) shows four copies of the

system that evolve in time, except that some trajectory
segments stop and others branch, as the cloning operates.
Fig. 1(b) shows four representative trajectories (sample
paths) for the distribution Ph[X], which have been re-
constructed from panel (a), by tracing backwards in time
from the clones that survived up to the final time τ .

III. SAMPLING ERRORS WITHIN
POPULATION DYNAMICS

A. Distributions pend and pave

The accuracy of the population dynamics is limited by
the number of clones Nc used in its numerical implemen-
tation, as we now explain. Consider the distribution

pave(x) = lim
τ→∞

〈
τ−1

∫ τ

0

δ(xt − x)dt
〉
h
, (8)

which indicates the fraction of time spent at position x,
within the biased ensemble. We also define

pend(x) = lim
τ→∞

〈δ(xτ − x)〉h , (9)

which indicates the fraction of trajectories for which the
particle’s final position is x. For the stationary state of
the dynamics (1), which corresponds to h = 0, time-
translational invariance ensures that pave = pend. How-
ever, this is not the case for biased ensembles where
h 6= 0, as illustrated in [7, 46] and in Fig. 2.

The population dynamics method provides estimates
of both pave and pend. Let the position of clone a at
time t be xa(t), with a = 1 . . . Nc. Recalling Fig. 1(a),
note that the functions xa(t) are not continuous in time
and do not represent sample paths for the distribution
Ph[X]. However, from the definition of the population
dynamics algorithm (as explained in Appendix A 1), the
distribution of xa(t) can be used to estimate pend(x), as

pend(x) ' 1

τNc

∫ τ

0

Nc∑

a=1

δ(x− xa(t))dt. (10)

In order to construct sample paths, which we denote
by x̃a(t), we trace backwards in time from the clones
that survive up to τ , as shown in Fig. 1(b). There are
still Nc paths x̃a, but these overlap, particularly at early
times. Since these trajectories correspond to Ph[X], the
distribution of x̃a gives an estimate of pave(x), as:

pave(x) ' 1

τNc

∫ τ

0

Nc∑

a=1

δ(x− x̃a(t))dt. (11)

The approximate equalities in the relations (10) and (11)
become exact in the limit Nc →∞ and τ →∞, in which
the population dynamics gives exact results.

We show numerical examples of these functions in
Fig. 2, for a particle moving in a quartic potential, as
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FIG. 2. (Color online) (a-d) Distributions pend(x) and pave(x), defined in (8) and (9), calculated from the population dynamics
method, with various numbers of clones Nc. The different panels correspond to a different value of h (h = ±1) or a different
distribution function (pend(x) or pave(x)): (a) pend(x) for h = −1, (b) pave(x) for h = −1 , (c) pend(x) for h = 1, and (d)
pave(x) for h = 1. For all panels, we set ε = 1 and τ = 30. The numerically exact result is plotted as a black line. We repeat
the simulation 1200/Nc times and the result is the average of them (this procedure means that we vary Nc while keeping a
fixed computational cost). The results of the population dynamics converge to the analytical ones as Nc increases. (e) pave(x)
for h = 1 (improved estimation) calculated from a population dynamics method with control-with-feedback, as described in
Section IV C and Section V. Results are shown after two iterations of the feedback procedure. The exact distribution pave(x) is
again shown as a black line. The comparison between (d) and (e) indicates that the convergence with respect to Nc is improved
significantly by the control-with-feedback method. The variance m2 and the relative entropy D2 defined in (12) and (13) both
measure how much large values of Nc are required for the cloning procedure to be reliable. For the panel (b), (d) and (e), these
values are (m2 = 0.068, D2 = 0.039), (m2 = 0.33, D2 = 0.17) and (m2 = 0.0064, D2 = 0.0032) respectively.

introduced in Section II C. We estimate pave and pend

from (10) and (11), and show them in Fig. 2. In the
same figure, we also plot the numerically exact distri-
butions, obtained by numerical solution of a modified
Fokker-Planck equation (see [25] and Appendix B 2). The
population dynamics converges to the exact result as Nc
is increased. Also shown in Fig. 2 are results using the
control-with-feedback method that we introduce in this
paper: these results will be discussed in later sections.

B. Multiplicity

The population dynamics method gives accurate re-
sults in the limit of large Nc. The central idea is that
in a large population, short-lived rare fluctuations will
occur. Based on these short-lived fluctuations, we du-
plicate some of the clones: repeated application of this
procedure generates the long-lived fluctuations that are
relevant for large deviation theory. For this to be effec-
tive, the population on which the cloning operates must
be large enough to capture the relevant short-lived fluc-

tuations. That is, the cloning part of the algorithm can
allocate extra statistical weight to configurations that are
already present in the population, but new configurations
are only generated by the natural (unbiased) dynamics
of the system.

Assuming that Nc is large enough for efficient oper-
ation of the algorithm, the configurations that are as-
sociated with long-lived dynamical fluctuations are dis-
tributed as pave, but the cloning step operates on a pop-
ulation distributed as pend. From the argument above, it
is clear that if typical samples from pave are rare with re-
spect to pend, then a large population is required in order
to obtain accurate results. To quantify this, it is useful
to define the multiplicity ma(t, τ) of clone a at time t
as the number of its descendants that survive until the
final time τ (see Fig. 1). Rewriting (8) as pave(x) '

1
τNc

∫ τ
0

∑Nc
a=1ma(t, τ)δ(x− xa(t))dt and comparing with

(9), one sees that for a clone with position x = xa(t), the
expected value of its future multiplicity is pave(x)/pend(x).
Since the clone positions xa(t) are distributed as pend,
averaging this future multiplicity over configurations x
yields

∫
pend · (pave/pend)dx =

∫
pave(x)dx = 1, which
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reflects the fact that the population size is constant in
time.

In practice, the distribution of the multiplicity ma(t, τ)
is very broad, and typical multiplicities are far from their
average values. There are many clones for which no de-
scendants survive until time τ (see Fig. 1(a)), in which
case ma(t, τ) = 0. In order to maintain an average
multiplicity of 1, these zero-multiplicity clones are bal-
anced by a small number of clones with larger multiplic-
ity. It is useful to define Ñc(t, τ) as the number of clones
that are present in the population at time t, for which
ma(t, τ) > 0. Numerical results for Ñc(t, τ) are shown
in Fig. 3 – this quantity decreases rapidly as t decreases
away from τ , showing that many clones have no surviving
descendants: it follows that the multiplicities of the sur-
viving clones must be large. From (11), one sees that if

Ñc(t, τ) is small, numerical estimates of pave contain only
a small number of independent samples, which can lead
to large numerical uncertainties within the algorithm.

Moreover, the presence of large multiplicities within
the cloning scheme can lead to large systematic errors,
which cannot be reduced by averaging over repeated runs
of the same algorithm. On running the system with a
fixed population, the future multiplicity of any clone is
bounded above by the population size Nc. We will show
in the next section that this constraint has serious impli-
cations for systems in the small noise limit. More gener-
ally, in order to characterise whether a system requires a
large population or not, it is useful to define two numbers
that measure how different are the distributions pave and
pend. These are

m2 =

∫
pend(x)

[(
pave(x)

pend(x)

)2

− 1

]
dx (12)

and

D2 =

∫
pave(x) log

(
pave(x)

pend(x)

)
dx. (13)

Given that pave(x)/pend(x) is the expected future multi-
plicity of a clone at x, we recognise m2 as the variance
of this multiplicity, with respect to the distribution pend

of clone positions (recall that the average multiplicity
with respect to this distribution is equal to unity). Sim-
ilarly D2 is the relative entropy of pave with respect to
pend [47]: this is related to the controlling forces that
will be introduced in Section IV. Large values of m2

and D2 indicate that pend and pave are different from
each other, in which case larger values of Nc will be re-
quired for accurate results within population dynamics.
For the two cases h = ±1 shown in Fig. 2, we have for
h = −1 that (m2, D2) = (0.068, 0.039) while for h = +1,
(m2, D2) = (0.33, 0.17), reflecting the larger populations
required for accurate results when h = +1. Obtaining
general estimates of the actual population size Nc re-
quired for convergence is an important goal for future
work.
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FIG. 3. (Color online) The number of independent (distinct)

clones Ñc(t) obtained from the normal population dynamics
method (green line or dark grey line in the printed version)
for h = −1 (a) and h = 1 (b). The line type corresponds
to the value of noise intensity: ε = 1 (solid line) and ε =
0.1 (dashed line). We set Nc = 20 and τ = 30. When the
distributions pave and pend are very different from each other,
we expect that Ñc(t) decreases rapidly as t decreases from
τ : to illustrate this, note that (for ε = 1) m2 = 0.068 for
h = −1 and m2 = 0.33 for h = 1: the same ordering is
preserved for smaller ε. We also plot Ñc(t) obtained from
the controlled population dynamics (yellow line or light grey
line in the printed version) with the control-with-feedback
explained in Section IV C and Section V. The larger values of
Ñc(t) obtained with the control-with-feedback method lead
to smaller statistical uncertainties in the results.

C. Sampling problems for weak noise

The effect described in the previous section is par-
ticularly severe for systems where the random (noise)
force in (1) is small. To illustrate this case, we set

B(x) =
√

2εB0(x), consistent with the numerical exam-
ple of Sec. II C (for which B0 = 1). The small noise limit
is then ε → 0. We define x∗ = arg maxx[pave(x)] as the
most likely value of x, within the distribution pave. The
population dynamics requires that the typical multiplic-
ity of a clone with position x∗ should be (at least) of
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order m∗ ≡ pave(x∗)/pend(x∗). This clearly cannot be
achieved unless Nc >∼ m∗, which provides an estimate of
the number of clones required for accurate results.

This multiplicity m∗ increases exponentially as the
noise intensity of the system becomes small. In this
limit, the dynamics of the system runs increasingly slowly
so it is natural to rescale either the time variable or
(equivalently) the biasing field h as G̃(h̃) ≡ εG(h) with

h̃ ≡ hε. (This scaling also appears in the hydrody-
namic limit of microscopic models [48].) In this limit,
pave and pend satisfy a large deviation principle with re-
spect to the noise intensity ε: pave(x) ∼ e−Iave(x)/ε and
pend(x) ∼ e−Iend(x)/ε. Hence, m∗ ∼ eIend(x∗)/ε, where
we used Iave(x∗) = 0. This indicates that we need an
exponentially large Nc as ε becomes small. More quanti-
tatively, we define a characteristic noise intensity ε∗ by

ε∗ ≡ 1

Iend(x∗)
. (14)

For ε < ε∗, we expect that population dynamics can not
be used practically, because of the exponentially large Nc
required.

As a numerical example, we again consider the Brow-
nian particle introduced in Section II C. We numerically
estimate ε∗ by using a quadratic approximation of the
large deviation function Iend(x). We plot it as a green
vertical line in Fig. 4. In the same figure, we show the re-
sult of the population dynamics for G̃(h̃) as ε is reduced,
with a red constant line corresponding to the analytical
value of G̃(h̃) in the ε → 0 limit (See Appendix D 3 for
its determination). Below the characteristic value ε∗, the
population dynamics method converges very poorly as
Nc increases.

IV. POPULATION DYNAMICS WITH A
FEEDBACK CONTROL

A. Controlled dynamics

To resolve the sampling issues described in the pre-
vious section, we introduce a “control strategy”, which
modifies the original model (1), in order to make the
rare events of interest more likely. (These large deviation
problems have dual representations in terms of optimal
control problems [49–54], which provide a natural inter-
pretation of the method presented here.) The modified
model is

ẋt = F (xt) + w(xt) +B(xt)ξt, (15)

where w(x) is a controlling force which we write as

w(x) = hκλc(x)− κ∇V (x), (16)

where V acts as a potential. A straightforward calcula-
tion shows that averages with respect to the biased dis-
tribution Ph can be rewritten as averages with respect
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FIG. 4. (Color online) Estimates of G̃(h̃ = 1), as ε is varied.
We compare results from the normal population dynamics
and from the control-with-feedback method explained in Sec-
tion IV C and Section V. The analytical result for limε→0 G̃(h̃)
is shown as a red dashed line, and the characteristic value of
the noise intensity ε∗, defined in (14), is plotted as a green
vertical solid line. The standard method fails for ε smaller
than ε∗ but the control-with-feedback method (black contin-
uous line and black circles) converges to the correct value even
for ε < ε∗.

to this modified dynamics, but with a bias on a different
observable Λw, which replaces Λ. That is, by defining

Λw =
1

τ

∫ τ

0

λw(xt)dt (17)

with

λw = λd +
1

h
[(F + w/2) · κ−1w − 1

2Tr(HV κ)], (18)

in which HV is a Hessian matrix with elements
(∂2V/∂xi∂xj), we have

Ph[X] = Pw[X]eV (xτ )−V (x0) (19)

with

Pw[X] = π0(x0) exp
[
−
∫ τ

0

Lw(xt, ẋt)dt+hτΛw(τ)
]
, (20)

where Lw is the action corresponding to the controlled
Langevin equation (15) obtained by replacing F 7→ F+w
in (6). See Appendix B for details of the derivation. We
stress that these relations are satisfied for any control w.

Averages with respect to Pw are denoted by 〈·〉w, and
can be calculated using the population dynamics method
with the modified model (15). Physically, equation (19)
says that rare events for the system (1) have an alter-
native characterisation as rare events for the controlled
system (15). More precisely, from (19), the averages 〈·〉h
and 〈·〉w are not equal, but their associated probabil-
ity distributions differ only through boundary terms at
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initial and final times. For large τ , we focus on prop-
erties far from initial and final times, in which case the
averages 〈·〉h and 〈·〉w are equivalent. This equivalence
implies that

pwave = pave, (21)

where pwave is defined as in (8) but for the controlled pop-
ulation dynamics (15). On the other hand, when we con-
sider properties close to the final time τ (which are not
relevant for the large deviations of time-averaged quanti-
ties), the two averages 〈·〉h and 〈·〉w are different in gen-
eral. For example, the end-time distribution pwend for the
controlled dynamics differs from its uncontrolled coun-
terpart as

pwend ∝ pende−V (x), (22)

as read from (19) (or see Appendix B 2 for a detailed
derivation of (21) and (22)). Thus the control w al-
lows pwend to be varied, while always keeping pwave con-
stant (and hence leaving unchanged the bulk properties
of Ph, which are relevant for the large deviations of time-
averaged quantities).

B. Optimal control

These results apply for any control force w, but a
(unique) optimal choice w∗ can be defined by the con-
dition

pw
∗

ave = pw
∗

end. (23)

From (12,13), this result implies that for the controlled
population dynamics, m2 = D2 = 0: all clones have
expected future multiplicity of unity, regardless of their
position. In fact, this case also implies that λw

∗
(x) is

independent of x (see Appendix B 2), so that there is no
cloning or deletion of clones in the optimally-controlled
population dynamics algorithm. That is, all multiplici-
ties are equal to unity (not just their expected values).
The result is that the optimally-controlled process [50–
54] generates directly the path measure Ph, up to the
corrections given in (19) [38, 55–58]. Note also that D2,
as defined in (13) for the original population dynamics,
is also related to an average of the optimal control po-
tential V ∗ (where V ∗ is the potential V corresponding
to the optimal control w∗), since log[pave(x)/pend(x)] =

−V ∗(x)− log[
∫

e−V
∗(x′)pend(x′)dx′].

The optimal control can be estimated by using the pop-
ulation dynamics with any non-optimal control force w
(or its corresponding potential V ). We perform the pop-
ulation dynamics and generate sample paths from Pw.
From the definition of the optimal force (23) with the re-
lations between pwend,ave and pend,ave (21), (22), we obtain

V ∗(x) = V (x) + log
pwend(x)

pwave(x)
. (24)

Since all terms on the right-hand side of (24) can be mea-
sured from the population dynamics with a non-optimal
control w, this allows an estimate of V ∗, and hence of w∗.

C. Control-with-feedback for population dynamics

Based on (24), we arrive at the following iteration and
feedback scheme for efficient analysis of large deviations
of Λ(τ). Starting with the original population dynam-
ics of [7], we obtain estimates p0

end and p0
ave of pend and

pave, and we use (24) to obtain an estimate of the opti-
mal control potential V ∗, which we denote by V 1. We
then repeat the population dynamics calculation with a
control force w = w1 derived from the potential V 1. We
use results from this new calculation together with (24)
to obtain a new (more accurate) estimate of the optimal
control. Iterating this scheme, the estimate of V ∗ at it-
eration r is V r. As V r → V ∗, we have from (24) that
pwend → pwave, and hence the sampling problems described
in Sec. III B are reduced. This improves the accuracy of
the population dynamics method.

Given sufficiently many clones Nc, the original method
of [7] can already provide accurate results, but we have
demonstrated that for finite Nc there may be large sys-
tematic errors. The strength of our scheme is that on re-
peated iteration, the control potential V approaches the
optimal control V ∗, and the errors within the method are
reduced. Thus, the numerical accuracy of the method in-
creases as the scheme is iterated.

For the implementation of this iteration scheme, we
require a computational representation of the function
V (x), and its gradient ∇V . From (24), a natural choice
might be to represent pave and pend by histograms, based
on a discretisation of the configuration space. However,
this choice does not facilitate estimation of ∇V , and it
is also unfeasible in high-dimensional systems. We there-
fore use a potential V that is defined in terms of a set of
basis functions ζi, with coefficients ci:

V (x) =

k∑

i=1

ciζi(x). (25)

where k is the size of the basis set.

At stage r of our iterative scheme, the coefficients c
are denoted by cr = (cri )

k
i=1. In the absence of prior in-

formation about the optimal control V ∗, the first stage
of the method (r = 0) uses the original population dy-
namics, so c0i = 0 for all i. In stage r + 1, we update
these coefficients according to (24) so that the potential
V r+1 in the next stage is the best available estimate of
V ∗. There is considerable freedom in how to obtain this
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estimate: we take

cr+1 = argminc

∫

Ωr

[
V r(x) + log

pw,rend(x)

pw,rave (x)

−
k∑

i=0

ciζi(x)

]2

dx, (26)

where pw,rend is the numerical estimate for pwend obtained
at iteration r, and similarly pw,rave . The state space Ωr is
defined as the space where pw,rave > 0 (note that pw,rend(x) >
0 whenever pw,rave (x) > 0, from the definition of how to
construct x̃a(t) as shown in Fig. 1(b)).

We emphasise that, for any basis set ζi (with any trun-
cation number k), eq. (19) is satisfied, meaning that if the
number of clones Nc and the time τ are large enough, the
result of any controlled population dynamics always leads
to the same results, which can also be obtained from
the original (uncontrolled) population dynamics. How-
ever, the choice of the expansion functions ζi(x) (and the
value of the truncation number k) does affect the com-
putational cost, through the number of clones required
for convergence, as discussed in Section III B.

D. Advantages of the control-with-feedback for
population dynamics, and relation to other methods

Compared to the original population dynamics
method, the addition of control forces and the use of
iteration and feedback increase the complexity of the
method presented here. Here, we summarise the im-
provements that these changes achieve. Typically, exist-
ing methods either exploit an ensemble (population) of
copies of the system [19–24], or they use modified (con-
trolled) dynamical rules to drive the system towards rare
events of interest [12–18, 53], or they use path-sampling
methods [27, 59]. All these methods are useful, but the
population-based methods can suffer convergence prob-
lems, due to the very large populations required in some
problems. On the other hand, the controlled methods
require accurate estimation of an optimal control force
that is typically a high-dimensional and complex object,
which can be difficult to represent computationally (see
for example [60]). Path sampling methods are most ef-
fective when the ensemble Ph has time-reversal symme-
try, which limits their applicability in non-equilibrium
settings. The method proposed here is a mixture of
the population-based and control-based methods, as il-
lustrated schematically in Fig 5.

In terms of the applicability of this new method, we ex-
pect the following general behaviour. For complex high-
dimensional problems, accurate representation of the op-
timal control V ∗ is likely to be difficult, but we expect
even approximate representations of V ∗ to significantly
improve the performance of the population dynamics
method. Thus, the controlled method should reduce the
computational cost of problems that are already tractable

e.g.) Giardinà-Kurchan-Peliti method

e.g.) Multi-
canonical
ensemble 
methodText

Modified dynamics

Population dynamics

Controlled population 
dynamics method

FIG. 5. (Color online) A schematic map illustrating the
methodological situation of the controlled population dynam-
ics.

using population dynamics, allowing access (for example)
to larger system sizes and larger values of the bias param-
eter h. On the other hand, for relatively simple problems
such as the particle in a quartic potential of Sec. II C, the
original population dynamics fails for small noise (Fig. 2)
but we would expect that a solution by the controlled
method of [12] might already be possible. However, for
a similar model in three or more dimensions, we expect
that the method of [12] would already be challenging,
due to the difficulty of representing exactly the effective
potential. Here, we combine that control strategy with
population dynamics: we arrive at a flexible method that
exploits the strengths of both approaches, and which we
anticipate will be effective in a wide variety of problems.

V. NUMERICAL EXAMPLE

To illustrate the control-with-feedback method, we
consider the numerical example from Section II C, and
we take the effective description in (25) to be a quartic
polynomial: ζi(x) ≡ xi (that is, “x raised to the power i”)
and k = 4. For the first iteration of the method we take
(c0i )

k
i=1 = 0. Note that this potential-parametrisation of

V cannot capture the exact V ∗, neither for ε > 0 nor
in the limit ε → 0 (see Appendix D). This emphasises
that the control-with-feedback method does not require
a perfect representation of the optimal control in order
to improve the convergence of the population dynamics
method.

Fig. 2 shows estimates of the distribution pave ob-
tained using the original cloning method (Fig. 2(a-d)),
compared with the results obtained using control-with-
feedback procedure proposed here (Fig. 2(e)). (Two it-
erations of the feedback were used, which allow an accu-
rate estimate of the optimal control potential V ∗.) The
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comparison between Fig. 2(d) and Fig. 2(e) shows that
the number of clones required to obtain convergence to
the exact result is much reduced using the control-with-
feedback method.

In the weak-noise limit ε→ 0, one can see this advan-
tage more clearly. In this limit, a sampling issue arises
because of the exponential increase of the required num-
ber of copies Nc, as discussed in Section III C. Fig. 3(a)

shows numerical results for G̃(h̃), as ε is reduced. The
normal population dynamics converges very poorly for
small noise, ε < ε∗. However, the controlled population
dynamics does not fail at small ε because it maintains
pwend ≈ pwave [61].

We then consider statistical errors. Fig. 3(b) shows
the number of distinct clone positions in the popula-
tion, Ñc(t). Again, the control-with-feedback method
performs better than the original method, in that it av-
erages over a larger sample of distinct positions, reducing
the statistical errors.

Finally, in order to illustrate how the control-with-
feedback method improves the standard population dy-
namics method, in Fig. 6, we show the integrands of m2

and D2 defined in (12) and (13) [62]. As discussed in
Section III B and Section III C, the standard population
dynamics has sampling issues, which are captured by the
deviations of m2 and D2 from 0. In the figure, we can see
that the control-with-feedback method greatly reduces
the values of m2 and D2 close to 0, ensuring that pwend and
pave are closer than in the original cloning, thus yielding
better performances as seen throughout this section.

VI. OUTLOOK

We have shown that the performance of the population
dynamics algorithm for sampling large deviations [7] can
be improved by introducing a controlling force w. Given
the optimal choice for this force, the rare events of in-
terest in large deviation theory can be characterised as
typical trajectories of the controlled system without any
cloning. In complex systems with many degrees of free-
dom it is likely that the optimal w cannot be determined
exactly, but even non-optimal controls can still signifi-
cantly improve both the statistical and the systematic
errors associated with the population dynamics method
(see Section V). It is straightforward to improve existing
population dynamics codes to include this approach: we
expect that it will significantly expand the range of sys-
tems for which numerical calculations can be performed,
including open quantum systems [63, 64], or more com-
plex molecular dynamics models than those considered
so far [27, 59].
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tion dynamics method (w = 0) and for the control-with-
feedback method (w: obtained from the control-with-feedback
method)). For the control-with-feedback method, we set
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corresponding to m2 and D2.
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Appendix A: Population dynamics method

In this appendix, complementing Section II B and Sec-
tion III A, we explain the details of the population dy-
namics algorithm.
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1. Population dynamics algorithm

The population dynamics is a numerical technique de-
signed to evaluate a large deviation function associated
to the cumulant generating function (CGF) of a time-
averaged observable Λ(t). Each step of the algorithm
consists of a first sub-step in which the normal (unbi-
ased) dynamics of the system is simulated for a time
∆T , followed by an elimination-multiplication sub-step.
(The elimination-multiplication sub-step is also called a
cloning step, or a mutation-selection step.) In detail, the
method is:

1. Generate Nc initial conditions, for example, drawn
from the stationary state of the unbiased (h = 0)
dynamics.

2. Repeat the following procedure M times. (The it-
eration index is m = 0, 1, . . . ,M − 1.)

(a) For each copy of the system, perform the
normal dynamics from t = m∆T to (m +
1)∆T . We denote each trajectory by xa(t).
(Throughout this section, a = 1, 2, ...., Nc.)
During the simulation, for each trajectory, cal-
culate

sa = exp
{
h [(t+ ∆T ) Λ(t+ ∆T )− tΛ(t)]

}
. (A1)

(b) For each trajectory a, calculate an integer na
as

na =

⌊
sa∑
b sb

Nc + η

⌋
, (A2)

where η is a random number uniformly dis-
tributed on [0,1] and b·c denotes the lower in-
teger part. Calculate and store the quantity
Sm =

∑
b sb.

(c) Multiply or eliminate each trajectory a so that
it appears na times in the new population.
(For example, if na = 0 then trajectory a is
deleted. If na = 5 then we retain trajectory a
and we introduce 4 new copies of that trajec-
tory.)

(d) Eliminate or multiply trajectories within the
population, chosen randomly and uniformly,
so that the total number of surviving trajec-
tories is Nc.

(e) Go back to (a), using the current set of config-
urations xa((m + 1)∆T ) as initial conditions
for the next iteration of the normal dynamics.

Note that if the population were not kept constant in
step 2c above, then the population would expand by a
factor of Sm/Nc. It follows that the CGF can be esti-
mated as

G(h) ' 1

M ∆T

∑

m

log
Sm
Nc

. (A3)

Also, averages over the population at the final time τ are
estimates of averages with respect to pend:

∫
f(x)pend(x)dx ' 1

Nc

Nc∑

a=1

f(xa(τ)), (A4)

which follows from the definition of pend. When estimat-
ing pend, we can improve the statistics by using the his-
tory of xa(t). That is, assuming an ergodicity property,
we can replace f(xa(τ))) by its time average, leading to

∫
f(x)pend(x)dx ' 1

τNc

∫ τ

0

Nc∑

a=1

f(xa(t))dt. (A5)

This means that the empirical distribution of xa(t) is an
estimator for pend, as announced in (10).

In order to generate the sample paths corresponding to
the biased measure Ph, we also need to copy the history
of trajectory (not just the current configuration of x) in
the selection-mutation procedure in step 2.(b) of the al-
gorithm. This fact is directly derived from the definition
of Ph. Thus, the xa(t) defined above do not correspond
to sample paths of Ph. The paths are obtained as x̃a(t),
which are defined as those trajectories that survive until
the final time τ (see Fig. 1). In numerical simulations,
there are several ways to generate (or reconstruct) these
trajectories, as we now explain.

2. Generating continuous sample paths x̃a(t) for
the biased dynamics

A simple way to characterise x̃a(t) is the following:
If we do not require full sample paths but only wish
to evaluate the biased average of an additive observable
A(τ) =

∫ τ
0
a(x(t)) dt, a simple method [65] consists in

attaching a value of the observable A to every trajec-
tory and, at every time step, to update its value and
copy/delete it together with the trajectory. Then, an
evaluation of the biased average of A is given by an aver-
age of the numerical values of A: this average runs over
all trajectories that are present at the final time. For ex-
ample, when we divide the configuration space into small
bins and take ai(x(t)) = 1 if x(t) is in bin i, Ai(τ)/τ is
an estimate of pave, integrated across the ith bin.

For the small systems where we can store all of the
trajectories in the population dynamics, we can generate
full sample paths corresponding to x̃a. The procedure is
as follows: we first generate all the trajectories, and then
select those that survive until the final time τ . Consider-
ing the Nc copies at final time, indexed by 1 ≤ a ≤ Nc,
one can follow the ancestors of every copy. Upon every
coalescence observed backwards in time (corresponding
to multiplications of clones in the original forwards sim-
ulation), one increments a counter ma(t, τ) by the num-
ber of trajectories which have coalesced. At the end of
the procedure, the counters (ma(t, τ))1≤a≤Nc represent,
at time t, the number of descendants of a copy a at final
time τ .
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Appendix B: Derivation of the ratio of path
probability density (19)

In this appendix, complementing Section IV we derive
the relation between Ph[X] and Pw[X], eq.(19). We show
the derivation in two ways, one based on path probability
densities (stochastic differential equations) and the other
on Fokker-Plank equations.

1. Derivation using path probability density

We denote a trajectory of the system by X =
(x(t))0≤t≤τ . From the definitions of Ph[X] and Pw[X],
we have

Pw[X]e−hτΛw(τ)

Ph[X]e−hτΛ(τ)
= exp

[∫ τ

0

(ẋ− F ) · κ−1wdt

− 1

2

∫ τ

0

w · κ−1wdt

]
(B1)

The integrand on the right-hand side is written as

(ẋ− F ) · κ−1w − 1

2
w · κ−1w

= ẋ · (−∇V + hλc)−
(
F +

1

2
w

)
· κ−1w, (B2)

where we have used the expression of w(x) as given in
the main text (w(x) = κ [−∇V (x) + hλc(x)]). We then
consider the integral of the first term on the right hand
side: ∫ τ

0

ẋ · (−∇V ) dt. (B3)

Since the trajectory X is generated from the stochastic
differential equation (15) and we use the Itō convention,
the time-derivative of V (x(t)) is given by Itō’s formula

d

dt
V = ẋ · ∇V +

1

2
Tr
[
BTHVB

]
. (B4)

Here HV is a Hessian matrix defined as (HV )i,j = ∂V
∂xi∂xj

.

Combining (B4,B3) we have
∫ τ

0

ẋ · (−∇V ) dt = −V (x(τ)) + V (x(0))

+

∫ τ

0

1

2
Tr
[
BTHVB

]
dt. (B5)

Thus, from (B1), (B2) and (B5), we get

Pw[X]e−hτΛw(τ)

Ph[X]e−hτΛ(τ)
= e−V (x(τ))+V (x(0))

× exp

{∫ τ

0

[1

2
Tr
[
BTHVB

]
+ hẋ · λc

−
(
F +

w

2

)
· κ−1w

]
dt

}
(B6)

Finally, by noticing Tr
[
BTHVB

]
= Tr [HV κ] and us-

ing the definitions of Λw and Λ, the right hand side
is e−V (x(τ))+V (x(0))ehτΛ(τ)−hτΛw(τ). Hence one arrives at
Eq. (19).

2. Derivation using time-evolution operator

An alternative derivation of (19) is obtained by us-
ing a ‘tilted’ generator (or master operator) for the bi-
ased ensemble of trajectories. Let uh(x, τ) be the (un-
normalised) probability density at time τ , obtained as
a marginal of the path distribution Ph. As discussed,
for example, in Appendix A.2 of [38], this distribution
evolves in time according to a generalised Feynman-Kac
formula as

∂

∂τ
uh = Lh[uh], (B7)

with

Lh[f ] ≡LFFP[f ] + h (λd + λc · F ) f

+
h2

2
(λc · κλc) f − h∇ · (κλcf) .

(B8)

Here, the Fokker-Planck operator LFFP is

LFFP[f ] = −∇ · [Ff ] +
1

2

∑

i,j

∂2

∂xi∂xj
κijf, (B9)

where the superscript F on LFFP indicates that the par-
ticle feels the physical force F introduced in (1).

For the controlled population dynamics, the analogue
of uh is uw(x, τ), which evolves as ∂

∂τ u
w = Lw[uw], with

Lw[f ] ≡ LF+w
FP [f ] + hλwf. (B10)

The relation (19) follows from a duality relation be-
tween Lh and Lw:

Lh[f ] = eV Lw[fe−V ]. (B11)

This relation may be verified directly from (B8,B10), not-
ing that the potential V is related to the control w via
the definition w = hκλc − κ∇V .

From (B7), we note that the operator Uhτ = eτL
h

corresponds to integration forward in time over a du-
ration τ . Similarly Uwτ = eτL

w

, and from (B11) we have
Uhτ [f ] = eV Uwτ [fe−V ]. Setting f(x) = δ(x − x0), then
uh(x, τ |x0, 0) = Uhτ [f ] is the (unnormalised) probability
density at x, for a particle that was at x0 a time τ earlier.
Defining similarly uw(x, τ |x0, 0), (B11) implies

uh(x, τ |x0, 0) = eV (x)uw(x, τ |x0, 0)e−V (x0). (B12)

Hence one arrives at (19) of the main text.
This approach also provides insight into the distribu-

tions pave and pend, as discussed in [7, 56]. One easily
sees that

pend(x) = lim
τ→∞

uh(x, τ |x0, 0)∫
x′
uh(x′, τ |x0, 0)

, (B13)
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which is independent of x0. Similarly,

pave(x) = lim
τ→∞

∫
x1
uh(x1, τ/2|x)uh(x, 0|x0,−τ/2)∫

x′,x1
uh(x1, τ/2|x′)uh(x′, 0|x0,−τ/2)

.

(B14)
For large τ , the propagator uh is dominated by the largest
eigenvalue of Lh, as

uh(x, τ |x0, 0) ' pend(x)eG(h)τq(x0), (B15)

where pend(x) is the dominant right eigenvector of Lh (re-
quired for consistency with (B13)), the associated eigen-
value is G(h), and q(x) is the dominant left eigenvec-
tor. The approximate equality in (B15) is valid for
large times, up to corrections of order e−λτ , where λ is
the spectral gap of Lh. Combining (B13-B15) we have
pave(x) ∝ pend(x)q(x).

This approach also shows why pave is not affected
by the control force w: the dominant left and right
eigenvectors of Lh are q and pend so (B11) means that
the dominant eigenvectors of Lw are qw = qeV and
pwend = e−V pend. Hence it is clear that pwave = qwpwend =
qpend = pave.

In the special case where w is given by the optimal
control w∗ (that is defined as the control w satisfying the
condition pwave = pwend in the main text), one can show
that the controlled system is described by the auxiliary
process [56] (or the “driven process” [38]), which is a
Markov process whose path probability density is equiv-
alent to Ph in its stationary regime. (Indeed, pw

∗

ave = pw
∗

end

implies qw
∗

= 1, which expresses that Lw
∗

conserves
probability.) In this case, one has [38]

e−V Lh[feV ] = LF+w∗

FP [f ] +G(h)f, (B16)

where G(h) is a constant (independent of x): this is the
cumulant generating function. Comparing with (B11)
one sees that λw

∗
(x) is independent of x, from which it

follows that the population dynamics in this case has no
cloning or deletion of clones (this property is true for all
finite Nc: all clones have equal weights at all times).

Appendix C: An example of the feedback-algorithm

Here, in order to complement Section IV C, we explain
the algorithm used within the feedback population dy-
namics. The procedure is a combination of the popula-
tion dynamics and an iterative construction of a control
potential V (x) that is close to the optimal control V ∗.
There is considerable flexibility in the precise definitions
of the estimators used in this algorithm, but these choices
have proven effective in the simple model problem con-
sidered here.

1. Generate Nc initial conditions, for example, drawn
from the stationary distribution of the original (un-
biased) system.

2. Repeat the following feedback procedure R times
(the iteration index is r = 0, 1, . . . , R − 1). We
denote by V r(x) the control potential V (x) for it-
eration r and we take V 0(x) = 0.

(a) Perform the population dynamics for the sys-
tem as explained in Appendix A, using a time
interval Mτ0. The unbiased evolution within
the method includes the control force wr that
is obtained from the control potential V r, and
the elimination-multiplication step uses the
corresponding biasing factor Λw

r

. The time
τ0 between elimination-multiplication steps
should be larger than the correlation time of
the system. From each time segment (indexed
by m), estimate the distributions

pm,r1 (x) =
1

Ncτ0

Nc∑

a=1

∫ (m+1)τ0

mτ0

δ[x− xa(t)]dt (C1)

and

pm,r0 (x) =
1

Nc(τ0 − tend)

×
Nc∑

a=1

∫ (m+1)τ0−tend

mτ0

δ[x− x̃a(t)]dt, (C2)

where the trajectories x̃ are defined on the
time interval [mτ0, (m + 1)τ0], as specified in
Appendix A 2. The shift parameter tend is
chosen so that p0 is an accurate estimator for
pave, by excluding times t that are too close to
the final time (m+ 1)τ0. If τ0 is large enough,
all results should depend weakly on tend.

(b) Having completed M time segments within
the population dynamics, evaluate pw,rend(x)
and pw,rave (x) as

pw,rend(x) =
1

M

∑

m

pm,r1 (x), (C3)

pw,rave (x) =
1

M

∑

m

pm,r0 (x). (C4)

(c) Finally, from these distribution functions, cal-
culate V r+1(x) in terms of a sum of basis func-
tions, according to Eq. (26). In practice, note
that it is not necessary to keep track of the full
distributions p0 and p1, but only those statis-
tics that are required to solve the minimisa-
tion in (26). Also, it is sometimes convenient
to take V r+1(x) = V r(x)(1 − α) + Vnew(x)α,
where Vnew(x) is the control potential speci-
fied by the right hand side of (26), and α is
a parameter (with 0 < α ≤ 1) that acts to
suppress large fluctuations in V .
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3. Go back to step 2 and perform the next iteration
(r + 1), with the control potential V r+1, and ini-
tial conditions for the clones given by their current
states xa(Mτ0).

Appendix D: Langevin system with quartic potential

In this final appendix, in order to complement Sec-
tion V, we explain the property of the system we con-
sidered there: the parameters are given by d = 1,
F (x) = −x3, B(x) =

√
2ε, λd(x) = λ(x) ≡ x + x2 and

λc(x) = 0. We focus on the small-noise limit ε → 0.

Throughout this section, h corresponds to h̃ in the main
text (see below).

The main features of the limit ε→ 0 are

• The distribution pave(x) concentrates on a point
xave that is a root of the polynomial

3x5 − 4hx− 2h = 0.

This function is sketched in Fig. 7. For h > 0, the
concentration is at the positive root (xave > 0); for
h = 0 one has xave = 0. For negative h, the point
xave decreases quickly from zero and localises at
xave ≈ 1

2 .

• There is a second-order dynamical phase transition
at h = 0, which appears as divergence of the second
derivative of the dynamical free energy, G′′(h) (see
Fig. 8, below).

• The distribution pend(x) concentrates on a point
xend, with xend 6= xave in general. This leads
to poor convergence of the population dynamics
method for small ε, as discussed in the main text.

• Even though the system is simple, the analytical
expressions of pave and pend are not straightfor-
ward. In particular, the perfect potential V ∗(x)
corresponding to w∗(x) is not expressed exactly as
the quartic polynomial expansion used to perform
a numerical evaluation of w(x) – however, as de-
scribed in the main text, this does not affect the
effectiveness of the numerical procedure.

Below, relying on the Euler-Lagrange equation, we derive
the analytical results of G(h), pave and pend in ε → 0,
from which these features are obtained.

1. Euler-Lagrange equation (Instanton equation)

We consider the following finite time cumulant gener-
ating function:

Gτ,ε(h) =
ε

τ
log
〈

e(τ/ε)hΛ(τ)
〉

st
, (D1)

where 〈 〉st means the average with respect to the path
with a stationary initial condition. (Hereafter, we denote

-1.5 -1.0 -0.5 0.5 1.0 1.5
x

-15

-10
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10
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h=0

h=1

h=2

FIG. 7. (Color online) Plots of the polynomial 3x5−4hx−2h
for several h. The roots of this polynomial determine the
concentration points of pave(x) for ε→ 0 in the model system
considered below.

this initial distribution function by Pst(x).) The function

Gε(h) ≡ limτ→∞Gτ,ε(h) corresponds to G̃(h̃) in the main
text. By taking ε→ 0, we obtain the following variational
principle:

lim
ε→0

Gτ,ε(h)

= −1

τ
min
x0,xτ


 min

(x(t))τt=0
x(0)=x0,x(τ)=xτ

∫ τ

0

L(ẋ(t), x(t))dt+ Ffree(x0)




(D2)

with the Lagrangian L(ẋ, x) defined as

L(ẋ, x) ≡ 1

4
(ẋ− F (x))

2 − hλ(x), (D3)

and also the free energy function Ffree(x0) defined as

Ffree(x0) ≡ − lim
ε→0

ε logPst(x0) =
1

4
x4

0 + const. (D4)

Then, the corresponding Euler-Lagrange equation
(Hamilton equation), which is obtained from minimising
this action, is

ẋ = −x3 + 2p (D5)

ṗ = 3px2 − h(2x+ 1), (D6)

with the required initial and the final conditions as

p(0) =
∂Ffree(x)

∂x

∣∣∣∣
t=0

= x(0)3 (D7)

p(τ) = 0. (D8)

We analyse these equations numerically and analytically
in [66]. The following results are based on that study.
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2. Steady solutions

Here, we consider the steady solutions of these in-
stantons, which is defined as the solution obtained from
ẋst = ṗst = 0 in (D5) and (D6). These conditions lead to

pst =
1

2
x3

st (D9)

and

3x5
st − 4hxst − 2h = 0. (D10)

We plot the left-hand side of (D10) as a function of x
in Fig. 7 for several fixed h. The figure shows that this
equation has three solutions, when h is larger than a
certain value (larger than 0).

3. Cumulant generating function

From the variational principle (D2), even in the case
where there are multiple instanton solutions, the cumu-
lant generating function can be calculated. This is based
on the observation that the instanton solution corre-
sponding to the minimum is time-independent [67]. More
precisely, by combining this observation with the varia-
tional principle (D2), we get

lim
ε→0

Gε(h) = max
xst

Gst(xst), (D11)

with

Gst(xst) ≡ −
1

4
x6

st + h
(
x2

st + xst

)
. (D12)

We plot the ε → 0 result, limε→0Gε(h), in Fig. 8,
from which we can see that the generating function
has a kink at the origin, which is the sign of the dy-
namical phase transition in this system, appearing in
the zero-temperature limit.Asymptotic analysis allows to
find G(h) ∼ A±|h|1/5 with A± depending on the sign of
h, as illustrated on Fig. 8.

4. Analytical expressions of pend(x) and pave(x) in
ε→ 0

Finally, we write the explicit analytical expressions of
pend(x) and pave(x) in the ε → 0 limit. We consider
the biased (unnormalised) probability density uh intro-
duced in the beginning of Section B 2. We also con-
sider the same function but with fixed initial condition
uh(x, τ |x0, τ). By using these function, we introduced
two logarithmic functions defined as

WF(x, t) ≡ ε log uh(x, t), (D13)

WB(x, t) ≡ ε log

∫
uh(y, t|x, 0)dy. (D14)

From the generalised Feynman-Kac formula (B7), we ob-
tain the time evolution equation for them as

∂

∂t
WF(x, t)

= −ε ∂
∂x
F (x)− F (x)

∂

∂x
WF(x, t)

+ ε

(
∂

∂x

)2

WF(x, t) +

(
∂

∂x
WF(x, t)

)2

+ hλ(x).

(D15)

and

∂

∂t
WB(x, t)

= F (x)
∂

∂x
WB(x, t) + ε

(
∂

∂x

)2

WB(x, t)

+

(
∂

∂x
WB(x, t)

)2

+ hλ(x).

(D16)

These equations can be solved in ε = 0 with t large
limit. Indeed, by setting WF(x, t) = tG(h) + WF(x)
and WB(x, τ − t) = (τ − t)G(h) + WB(x) with G(h) ≡
limε→0Gε(h) in these expressions, we obtain the equa-
tions to determine WF(x) and WB(x) as

∂WF(x)

∂x
=

1

2

[
F (x)

+ Ch(x)
√
F (x)2 − 4hλ(x)−min

y
[F (y)2 − 4hλ(y)]

]
,

(D17)

and

∂WB(x)

∂x
=

1

2

[
− F (x)

+ Ch(x)
√
F (x)2 − 4hλ(x)−min

y
[F (y)2 − 4hλ(y)]

]
.

(D18)

with

Ch(x) = 1 (x < xmin), (D19)

Ch(x) = −1 (x > xmin), (D20)

where

xmin ≡ Argminx
[
F (x)2 − 4hλ(x)

]
. (D21)

Equations (D17) and (D18) are the key result in this
subsection. From them, we indeed get

pend(x) ∼ exp

[
(1/ε)

∫ x 1

2

[
F (y)

+ Ch(y)
√
F (y)2 − 4hλ(y)−min

z
[F (z)2 − 4hλ(z)]

]
dy

]

(D22)
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FIG. 8. (Color online) (a) Generating function limε→0Gε(h). (b) The first derivatives, where the green (dark grey in the
printed version) solid line represents (d/dh) limε→0Gε(h), the red dotted line represents −(d/dh) limε→0Gε(−h) and the black

solid line represents a straight line h1/5. From this panel, we find that the first derivative converges to 0 as a power law
∼ h1/5, (as can also be checked analytically). (c) The second derivative of limε→0Gε(h) with respect to h. These are calculated
from (D11-D12). We can see that the second derivative shows a singularity at h = 0, although the first derivative converges to
0. This represents a second-order dynamical phase transition.

and

pave(x) ∼ exp

[
(1/ε)

∫ x

Ch(y)

×
√
F (y)2 − 4hλ(y)−min

z
[F (z)2 − 4hλ(z)] dy

]
.

(D23)

Also from the same equations, we get the most probable
x in pend(x) and pave(x) with ε → 0. We denote them
by xend and xave, respectively. Then, from (D22) and
(D23), we find that these values satisfy

xave = Argmaxxst
Gst(xst) (D24)

where Gst(h) is defined in (D11), and

F (xave)2

4h
= λ(xave)− λ(xend). (D25)

Since F (xave)2

4h 6= 0, xave and xend are different from each
other. In other words, pave and pend concentrate on dif-
ferent values of their argument in the ε → ∞ limit, as
announced in the main text.

For checking the validity of the obtained expressions,
we numerically solve the equations (D15) and (D16) dur-
ing a sufficiently large time interval t. We set h = 1
(Fig. 9(a) and Fig. 9(c)) and h = −1 (Fig. 9(b) and
Fig. 9(d)). The different colours represent the differ-
ent values of ε: yellow, blue, red lines correspond to
ε = 1, 0.5, 0.1, respectively. In the same figure, we plot
the analytical lines (D17) and (D18), with Ch = 1 (for
all x) (black solid line) and Ch = −1 (for all x) (black
dashed line). We can see the convergence of the numeri-
cal lines (with decreasing ε) towards the analytical lines
(D17) and (D18), where + sign is chosen for x < xmin

and − sign is chosen for x > xmin.
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FIG. 9. (Color online) The functions ∂WF(x, t)/∂x ((a) and (b)) and ∂WB(x, t)/∂x ((c) and (d)) obtained in the large t limit
by solving numerically (D15) and (D16) [yellow lines or light grey lines in the printed version]. We set h = 1 ((a) and (c))
and h = −1 ((b) and (d)). The line types correspond different values of ε: dash-dotted, dashed and solid lines correspond to
ε = 1, 0.5, 0.1, respectively. To illustrate the determination of the ± sign of Ch in the analytical results (D17) and (D18), we
also plot on each subfigure those results with the choice of Ch = 1 (for all x) as black solid lines and the choice of Ch = −1
(for all x) as black dashed lines. As the noise goes to zero, we observe the convergence of the functions ∂WF(x, t)/∂x and
∂WB(x, t)/∂x determined numerically at large t towards the analytical line (D17) and (D18), where the + sign in ± is taken
for x < xmin and the − sign is taken for x > xmin.
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