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The characteristic equation for a linear delay differential equation (DDE) has countably infinite
roots on the complex plane. This paper considers linear DDEs that are on the verge of instability,
i.e. a pair of roots of the characteristic equation lie on the imaginary axis of the complex plane, and
all other roots have negative real parts. It is shown that, when small noise perturbations are present,
the probability distribution of the dynamics can be approximated by the probability distribution of
certain one dimensional stochastic differential equation (SDE) without delay. This is advantageous
because equations without delay are easier to simulate and one-dimensional SDE are analytically
tractable. When the perturbations are also linear, it is shown that the stability depends on a specific
complex number. The theory is applied to study oscillators with delayed feedback. Some errors in
other articles that use multiscale approach are pointed out.
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I. INTRODUCTION

Delay differential equations (DDE) arise when the evolution of a variable at any time depends on the history of
the variable. The evolution of many physical systems depends on their history owing to finite conduction velocities.
Naturally, these systems are modeled by DDE. DDEs arise in many areas: biological systems, population dynamics,
machining processes, viscoelasticity, laser optics etc. See [1] for description of some examples. Many models of
physiological systems, disease models, population dynamics involve DDE—see Mackey-Glass equation [2] for example.

The subject of this paper is linear DDE at the verge of instability. For example, consider the equation

z(t) = kx(t — 1). (1)
Seeking a solution of the form z(t) = e'*, we find that A\ must satisfy the characteristic equation A — ke=* = 0. When
k € (=%,0), all roots of the characteristic equation have negative real parts (see corollary 3.3 on page 53 of [3]).
When x = —3 a pair of roots i3 are on the imaginary axis and all others have negative real parts. When x < —%
some of the roots have positive real part. Hence, the system (1) is on the verge of instability at x = —F. We study
effect of perturbations on such systems, for example,

() = (—g + sg(t)) o(t — 1)

where £ is a noise and € < 1 denoting the strength of the perturbation.
Such instability situations arise, for example, in machining processes. An oscillator of the form

G(t) +264(t) + p*q(t) = —rp* [g(t) — q(t — 7)) (2)

is used to describe a phenomenon called ‘regenerative chatter’ in machining processes [4]. The model is as follows: A
cutting tool is placed on a workpiece that is attached to a shaft rotating with time period r. The tool vibrates as it
cuts the material from the workpiece. Let ¢(t) describe the position of a point on the machine tool. The force acting
on the tool is proportional to the depth of the chip being cut and the depth is approximated as the difference between
the present position (g(t)) of the tool and its position one revolution earlier (¢(t — r)). The coefficient & is the force
coefficient which depends, among other factors, on the width of cut. It is known that, for a fixed r, there exists a
critical k. such that the amplitude ¢ of the oscillator decreases exponentially if k¥ < k. and increases exponentially
if Kk > k.. When k = k. oscillations of constant amplitude persist. This oscillatory behavior is called ‘chatter’. In
machining, the goal is to have a large rate of cut. The greater the rate, the larger is k, and chatter occurs when & is
larger than a critical value resulting in poor surface finish. Researchers explored the possibility of achieving chatter
suppression by varying structual parameters of the tool like damping and stiffness (see [5, 6]). Suppose there are
small random perturbations in the natural frequency p in (2) such that p = p,(1 + eo(£(t))) where o is a mean-zero
function of the noise £ and € < 1 is the strength of the perturbation, then on expanding in powers of € and discarding
terms of higher order, we have

G(t) 4+ 2¢4(t) + poq(t) = —rpg la(t) — q(t — 7))
+ea(€(t)) [-2(1 + K)pogq(t)] + o (§(t)) [26pog(t —7)] (3)

which can be studied as a perturbation of (2). Also, small random perturbations in the properties of the material
being cut could affect the tool dynamics—see [7].

Delay equations on the verge of instability arise also, for example, in the study of eye pupil [8], and act of human
balancing [9]. In [10], authors make a case for studying effect of noise on oscillators with delayed feedback. As a
prototypical oscillator they consider the van der Pol model

G(t) +wig(t) +nq(t — r) =Bq(t) + rq(t —r) — bg*()q(t) + q(t)&(t) (4)

with £ a Gaussian white noise with zero mean and variance (£(¢)£(t')) = 2Dd(t — t/).

Deterministic and stochastic DDE have been well studied in literature—see for example the books [11] (determin-
istic) and [12] (stochastic). Deterministic DDE at the verge of instability are also well studied—see [13] for averaging
approach, [14] and [15] for multiscale approach. Stochastic DDE at the verge of instability, with noise being white,
are studied by employing multiscale approach in [16, 17] and [10, 18]; by averaging approach in [19-21]; and by
center-manifold approach in [22].

However, [16, 17] and [10, 18] have committed serious errors in the analysis. These are pointed out in the appendix
A. Sections A1 (errors of [16, 17]) and A 2 (errors of [10, 18]) can be read without further preparation. References [19-
21] restrict their analysis to noise being white and do not consider stronger deterministic perturbations as considered



here in section V. [23] considers a different kind of instability (one root of characteristic equation is zero and all other
roots have negative real parts), which is reviewed in section VII.

This article deals with systems that can be studied as perturbations of linear DDE at the verge of instability. In
recent articles [24] and [25] we have shown rigorously that, under certain conditions, the dynamics of such systems
forced by white noise can be approximated (in a distributional sense) by the dynamics of a one-dimensional
stochastic differential equation (SDE) without delay. The purpose of this article is three-fold:

1. To exploit the results of [24] and [25] to show how the analysis of systems at the verge of instability can be
simplified. The advantage arises because equations without delay are easier to simulate and one-dimensional
SDE are analytically tractable. The articles [24] and [25] deal rigorously with scalar systems forced by white
noise. In this article we give (without proofs) explicit formulas for the approximating dynamics of vector-valued
systems forced by white noise (equations of the form (7) and (43)).

The approach taken in this article is similar to that in [19-21], in the sense that all use the spectral theory for
DDE and averaging. However, [19-21] consider specific applications of the equations of the form (7) but do
not consider the stronger perturbations as in equation (43). When dealing with equation (43), the averaging
approach that we take does not assume the existence of center-manifold (rigorous results about center-manifold
for stochastic DDE are not known!). Further, the formulas (55)—(56) presented here, regarding the stronger
perturbations G, in (43), are of independent interest. When applied in the deterministic DDE setting, they
provide an alternate way to compute the effect of center-manifold terms on the amplitude of critical mode (more
details are provided in section V).

2. To point out the errors in existing approaches that deal with white noise case.

3. To study systems forced by other general kind of noises (for example a continuous-time two-state markov chain).
Theoretical results for this case (equations of the form (8)) dealt in section VI do not appear anywhere else. A
sketch of the proof of the main result (theorem VI.1) is provided in appendix D.

These claims would become more clear after the next two sections where the mathematical framework is explained.
Also, in the case where the perturbations are also linear, a complex number is identified which alone dictates the
stability of the system.

The organization of the rest of the paper is given at the end of the next section, after presenting the preliminaries.

II. MATHEMATICAL SETUP OF DDE
A. Notation

. R denotes the set of real-numbers and C denotes the set of complex numbers.

Ae

. e means a function whose evaluation at 6 € R is e*?

. * as superscript indicates transpose,

. Z is complex conjugate of z,

T = W N

. v € R™ means v is n X 1 matrix with each entry in R and v € R™* means v is 1 X n matrix with each entry in
R. The line underneath serves as a reminder that the quantity is multidimensional. Similar for C"* and C™*.

B. Equations considered in the article

Let x(t) be a R™-valued process governed by a DDE with maximum delay 7. The evolution of = at each time ¢
requires the history of the process in the time interval [t —r,t]. So, the state space can be taken as C := C([—r, 0]; R"™),
the space? of continuous functions on the interval [—r,0] with values in R™. At each time ¢, denote the [t — r,]
segment of = as Il;z, i.e. Il;x € C and

ILz(0) = z(t+6), for@e[-r0].

I However see [26] for related results. One of the special cases of theorem 4.1 of [26] is the following: In the case that zero is a fixed point
of a stochastic DDE and the stochastic system linearized about zero does not have zero as a lyapunov exponent then local stable and
unstable manifolds exist. These manifolds are the set of initial conditions which converge to or diverge from zero at an exponential rate.

2 The space C is Banach space when equipped with sup norm: ||n|| := SUPge[—r,0) [N(0)] for n € C.



Now, a linear DDE can be represented in the following form

b)
Moz = p € C, ()

{I(t) = LO(HtI)a t> 07
where Lo : C — R” is a continuous linear mapping on C and ¢ is the initial history required. For example, &(t) =
—5z(t — 1) can be represented using the linear operator given by Lo(n) = —5n(—1) for n € C.

We assume there exists a bounded matrix-valued function g : [—7,0] — R™*™ continuous from the left on the
interval (—r,0) and normalized with p(0) = 0,,x5, such that

Lon = / du(@)n(9), Vnec. (6)
[77«70]
This is not a restriction: every continuous linear operator Lo has such a representation. For example, & = —Zx(t —1)
us 0=—r
can be represented with p(f) = < 2 ’
P with y1(0) 0 0> —r.

This article deals with perturbations of linear DDE, i.e. equations of the form

{d:v(t) = Lo(IL,z)dt + e2G(Iyz)dt + e F(IL,z)dW (t), ¢ >0, -

Ipx =p eC,

where F,G : C — R"™ are possibly nonlinear, W is R-valued Wiener process and £ < 1 is a small number signifying
perturbation. The following equations are also considered:

(8)

dx(t) = Lo(Ilyx)dt + e2G () dt + o (E(t))F(Iz)dt, t >0,
oz =¢p € C,

where F, G : C — R™ are possibly nonlinear, £ is a noise process (satisfying some assumptions) and o is a mean-zero
function of the noise £. For example, one can have £ as a finite-state markov chain.
us

As an example, consider # = kZ(t — 1) — #3(t) where s has small perturbations about —% according to x =

—Z +eo(&(t)) + e where £ is a noise. Then z(t) = e 'Z(t) can be put in the form (8) with Lo(n) = —Zn(-1),

F(n) =n(=1) and G(n) = —n*(0) + n(-1).
The operator L is asumed to be such that the unperturbed system (5) is on the verge of instability, i.e. Lq satisfies
the following assumption.

Assumption 1. Define

AN = Myuxn —/ du(0)er,
[7"010]

where I is the identity matriz. The characteristic equation
det(A(N) =0, recC (9)
has a pair of purely imaginary solutions +iw. and all other solutions® have negative real parts.

Since (7) and (8) would be studied as perturbations of the linear DDE (5), a brief overview of the unperturbed
system (5) would be given now.

C. The unperturbed system (5)

The content in this section can be found in chapter 7 of [11] and chapter 4 of [27].

3 Typically there are countably infinite other roots.



1. Projection onto eigenspaces

The space C can be split as C = P@®Q where P is the eigenspace of the critical eigenvalues +iw.. Since P corresponds
to the critical eigenvalues +iw,, the projection of the dynamics of the unperturbed system onto P is purely oscillatory
with frequency w.. Since @) corresponds to the eigenvalues with negative real part, the projection of the dynamics of
the unperturbed system onto ) decays exponentially fast.

Here we show, given an 7 € C, how to find the projection onto the space P. For details, see chapter 7 of [11] and
chapter 4 of [27].

Any n € C can be written as n = 7+ (I — m)n where 7 € P and (I —7)n € Q. Here 7 is the projection operator
m:C — P and [ is the identity operator. The projection 7 can be constructed as follows: Let

D= [0y, Dy], Di(e) =de’®, Py(e) =de (10)
where d € C" is chosen such that
Alios)d = O (1)
Note that each ®; belongs to C'([—r,0]; C™). Define the bilinear form (-,-) : C([0, r]; C"*) x C([—r,0],C™) — C, given
by

0 ]
(1) = H(O)n(0) — / / (s — 0)du(B)n(s)ds. (12)
Let
_|:\I]1:| _ —lwee =7 _iwee
U= , Ui(e) =cdae *,  Uy(e) = cdye’™*®, (13)

where dy € C"* is chosen such that
do A(iwe) = 01y, (14)

and the constant ¢ is chosen such that
(Here 0;; = 1if i = j and zero if i # j.)

Writing (U, n) = [ Eg;’gi ] we obtain for the projection 7 : C — P,

m(n) = &V, n) = &1(¥1,7) + P2(Va, ). (16)

Note that (U, 7n) and (¥, n) are complex conjugates and so are ®; and Ps.

2. Behaviour of solution on the eigenspaces

The solution to the unperturbed system (5) can be written as
iz = 7llix + (I — m)lix = Pz(t) + s
where z(t) = (U, II;x) and y; = [l;z — ®z(t). Note that z € C? is a 2-component vector with 2o = z1, and ®z(t) € P
and y; € Q. It can be shown that

A6) = B2(t), B= {Z’”C 0 } (17)

0 —itwe

i.e. z oscillate with constant amplitude and frequency w,.. So, 22129 is a constant in time. Further, it can be shown
that ||y;|| decreases® to zero exponentially fast (because the dynamics on @ is governed by eigenvalues with negative
real parts).

4 This is the sup norm on C.



D. The perturbed systems (7) and (8)

Define the function h : C — R by
b(n) = 2(V1,n)(¥2,m), neC. (18)

As noted above,
221(t)22(t) = 2(¥1, [ 2) (Vo [L;x) = h(I;x)

is a constant for the unperturbed system (5). When we deal with the perturbed system (7) or (8), the quantity
H(t) := h(II;x) evolves much slowly compared to x and z;. In (7), because a Weiner process has the property
that ‘the rescaled process t — eW (t/2) has the same probability distribution as that of a Wiener process’, the noise
perturbations take O(1/£?) time to significantly affect the H dynamics. Also, the prturbation G is of strength &2.
Hence, significant changes in H occurs only in times of order 1/e2. In (8), even though the strength of the noise
perturbation is €, because ¢ is a mean-zero function of the noise, significant changes in H occurs only in times of
order 1/&2.

Our claim is that, under certain conditions on the coefficients F' and G, the probability distribution of the process
H(t/e?) converges to the probability distribution of a SDE without delay. Because of the nature of decay on @,
[ly¢]| decays to small values exponentially fast, and so studying H is enough to obtain a good approximation to the
behaviour of z in (7) and (8). How to obtain the SDE is shown in later sections.

Remark II.1. The reason why studying H would be useful is the following: for the moment assume the part of
solution in the stable eigenspace Q is zero, i.e. Iz = ®z(t) and (I — )z = 0. Then, for the j'" component of x

we have z;(t) = (ILx(0)); = (d);21(¢) + (d)22(t) where d is choosen in (10). Noting that zo = zZ1 and that dynamics
of z; is predominantly oscillatory with frequency w., we find that the dynamics of x; is predominantly oscillatory

with amplitude 2|(d);z1| or what is the same \/4(d);(d);2122 = |(d);|v/32z122 = |(d);|V2H. Hence the magnitude of

H indicates the amplitude of oscillation of x (usually the amplitude might differ from |(d);|V2H by a slight amount
because the part of the solution in Q, i.e. (1 — m)IL,x is not exactly zero).

The rest of the paper is organized as follows. Equations of the form (7) are considered in section III and convergence
of the probability distribution of H process for such equations is stated in theorem III.1. Examples illustrating the
usefulness of theorem III.1 are done in section IV. Equations similar to (7) but with stronger perturbations (equation
(43)) are considered in section V and convergence of the probability distribution of H process for such equations is
stated in theorem V.1. The physical arguments leading to theorem V.1 are explained in section V. However, the
application oriented reader can utilize remark V.2 to immediately apply theorem V.1 (notation is available in section
V A). Analogous results for equations of the form (8) are in section VI.

A crucial role is played by the vector ¥(0). So the symbol W is reserved for ¥(0).

¥ 2L (o).

IIT. THE PERTURBED SYSTEM (7)

As noted above h(IT;z) for the perturbed system (7) varies slowly compared to x. Changes in h(II;z) are significant
only on times of order 1/e2. Hence, we rescale time and write X¢(¢) = x(t/c?) where x is governed by (7).

Under the above time-scaling, the x time-series would be compressed by a factor of €2. So, in order to be able
to write the evolution equation for X¢, we need to define a new segment extractor II; as follows: for a R™ valued
function f defined on [—£2r, o) the [t — &%r, t] segment is given by

(I /) (6) = f(t+£%6), —r <6 <0. (19)
Now, the process X has the same probability law as that of a process satisfying
1
dXe(t) = E—QLO(HfXE)dt + GI; X®)dt + F(II; X°)dW (t), t>0, IIGX° =9 e, (20)

where W is R-valued Wiener process®.

5 We have used the fact that for a Wiener process W, eW (t/e?) has the same probability law as a Wiener process.



Write He(t) := b(IIf X°) with b defined in (18). Using Ito formula, it can be shown that H=(¢) satisfies

dHE(t) = b(TI; X *)dt + o (17 X°)dW, HE(0) = b(ep), (21)
where
bn) = E()G(n) + ZA(01F () (2 (), (22)
o(n) = E(m)F(n), (23)
E(n) = 2((T1, n) U5 + (T, n)¥1) (24)

Recall that we can write the solution as II; X¢ = ®z(¢t) + (I — m)II5X¢ where z(t) := (¥,1I5X¢). Note that the
evolution of z;(t) = (¥;, I X©) is fast compared to the evolution of H® and is predominantly oscillatory. Heuristically,
the z; oscillate fast along trajectories of constant b (the effect of E%LO) while at the same time diffusing slowly across
the constant b trajectories (the effect of perturbations G, F'). Hence, the z; in the above coefficients b and o can be
averaged.

Theorem III.1. In the case when

(i) F is constant, and G is cubic and has stabilizing effect, or

(ii) F is either linear or constant and G is Lipschitz,

the probability distribution of H® from (21) until any finite time T > 0 converges, as ¢ — 0, to the probability
distribution of a process h which is the solution of the SDE

dh(t) = by (h(t))dt + o (h(t))dW (1), h(0) = h(e),

where by and o are obtained by averaging the functions in (22) and (23) as described below in section IIIA. The
perturbation G is said to have ‘stabilizing effect’ if the deterministic system h = by (h) is stable.

Note that H encodes information only about the critical component 711 X*¢ of the solution. The above results
should be augmented with a result that the stable component (I — m)II°X¢ is small. Proof of theorem (III.1) and a
result to the effect that the stable component of the solution is small are presented in [25] (also see [24] for the case
when G is Lipschitz and F' is constant).

A. Evaluation of by and oy

To evaluate by and oy at a specific value h € R, we consider a solution IT;z of the unperturbed system (5) that
remains in the space P for all time and such that h(IT;2) = h. For this purpose define

of 1 twet
4 5\/271@[ © t] (25)

e—iwc

eiwct

Note that 5" € P for all time and the z coordinates of 5} given by %\/ 2h { o —iwet } evolve according (17). Hence ' is

the solution of the unperturbed system with the initial condition n{j. Further, h(n]') = 2(3v/2he™<!)(3v/2he~"<!) = h.
Now, the averaged coefficients by and opy are given by

1 27 /we

br(h) = G /0 b (nf') dt, (26)
27 [we

) =g [ el (27)

The following fact would be useful in the evaluation of above averages: for nl', E defined in (24) becomes (on using

(15))

E(nl) = V2h(Ue” et 4 Wyeiwet),



IV. EXAMPLES

In this section we show three examples. The first is a simple scalar system—we study the perturbations of &(t) =
—5z(t —1). In section IV A, while studying cubic nonlinear perturbations and additive white noise perturbations, we
illustrate the results of previous section and show how the averaged process can yield information about the z process.
This example is a running one in the sense that we revisit it when studying stronger deterministic perturbations in
section V and different kinds of noise in section VI.

The purpose of the second example is to propose a conjecture. When perturbations are linear as well, we identify
a complex number and claim that it alone dictates the stability of the system. We provide support to our conjecture
using numerical simulations on @(t) = —Fx(t — 1).

The third is the van der Pol oscillator (4). Here we illustrate the stabilizing/destabilizing effects of noise and
show how the averaging results obtained in the previous section give good enough description of the effects of noise
and allow us to compute how much bifurcation thresholds are displaced in presence of noise when compared to the
deterministic case.

A. A scalar equation
Consider the following equation:
da(t) = —gx(t — 1)dt + 223 (t — 1)dt + codW. (28)

In this case Lon = —3n(—1), G(n) = n*(—1) and F(n) = 0. The characteristic equation A + Ze~* = 0 has countably

infinite roots on the complex plane. The roots with the largest real part are +iw, = +i%. Let ®(f) = [e'2¢ e#27).
Now, ¥ can be evaluated (using (12) to (15)) to be
_[a+ig)teiEe
\Ij(.)_ (1_i%)—lei%o
The averaged drift and diffusions can be calculated using (22)—(27) as
L. 3 . .
b (h) =20, Wy0?% — 5(2'(\1/1 — Wy))h?, (29)
0% (h) = 40, Uy02h. (30)

In section VD, we illustrate how the averaged equation dh = by (h)dt 4+ o (h)dW can be used to gain information
about (28) (recall remark II.1). The section VD can be read now, setting v, = 0 in (59).

B. Linear perturbations

In this section we consider the case where perturbations are also linear, and identify a complex number which alone
dictates the stability of the system. Note that we restrict to systems satisfying assumption 1. [28] discusses methods
to obtain bounds on the maximal exponential growth rates of more general class of delay equations. However the
bounds given in [28] are not optimal for systems satisfying assumption 1.

Consider

dx(t) = Lo(Ilz)dt + e Ly (yx)dW (), (31)
where L; are linear operators, with Lg satisfying assumption 1. The averaged equation corresponding to (31) is
dh(t) =bg(h)dt + og(h)dW (t), (32)
where by and op can be evaluated using (22)—(27) as

b (h) = Cyh, o2 (h) = C,h?,
Cy= (‘1’11?1‘1)1)(@2131‘1)2) + (‘1’1L1‘P2)(¢/2L1‘b1),
Cy = (U L1 &y + Uy Ly ®9)? + 2(W L1 Do) (U Ly By).



The solution to (32) is given by

h(t) = h(0) exp ((cb Slees JO_UW@)) | (33)

The Lyapunov exponent for the averaged equation (32) can be calculated to be

1
Aavg = lim n In A(t)

t—o00

1 1 W@
= lim 7 In7(0) + (Cy — 500) +vCo tlggo —

t—o00
1
= (Cb - 500)
1/ . .
= —5 ((\111qu)1)2 + (W2L1@2)2) .

Define A5 () := 11n SUPse[t—mry |75(8)| with m € N such that mr > i—: (here m is chosen so as to avoid oscillations

in the modulus of z). We conjecture that for large ¢, A°(t) is close to €4 Aavy. The 3 arises from the fact that h is
quadratic in x.

We verify the above conjecture using the sytem:
dx = —gx(t — 1)dt +ex(t — 1)dW, (34)

ie. Lon = —%n(—1) and Lin = n(—1). The Lyapunov exponent for (32) can be calculated to be Agyg &= —0.122 (the

matrices U and ® are already calculated in section TV A). Eighty realizations of trajectories of (34) are simulated
with € = 0.1 and initial condition (IIpz)(#) = cos(w.f) for § € [—r,0]. In the figure 1 we show the box plot for
A5(t) == 1In SUPse(i—s5,4 |2(s)]. For t large, mean of A*(t) is close to —0.0006 and we have £2 I Xaug &~ —0.0006. For
details of the numerical scheme see appendix E.

10% 2\

110 112 114 116 118 1207
t/1000

FIG. 1. Box-plot of A*(t) = 1 In SUP,¢(¢—5r,¢ |[T(8)] for t betwen 110,000 and 120,000 in steps of 2000. The z process is simulated
using (34) with ¢ = 0.1. Line inside the box (red) is the mean of 80 realizations. Lower end of the box (blue) is 25th percentile
and upper end of the box (blue) is 75th percentile.

Recalling that \ijg and L;P, are the complex conjugates of \ill and L, P, respectively, we find that
)\avg = —Re[(\iflLﬁI)l)?] = —|\i/1L1(I)1|2 COS(29*),
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where 6, is the angle of the complex number \111L1<I>1. The stability condition Agyg < 0 translates to cos(26.) > 0. If

the conjecture that for large ¢, A°(t) is close to 52%)\%9 is true, then the complex number \illLﬁI)l alone dictates the
stability of (31).

C. wvan der Pol oscillator

In this section we consider the oscillator modeled by equation (4), which was considered in [10]. In studying (4), our
intentions are three fold: (i) to point out® the errors in the analysis of [10], (ii) illustrate the stabilizing/destabilizing
effects of noise, (iii) show that the averaging results obtained in the previous section give good enough description of
the effects of noise.

The oscillator (4) has natural frequency wy which would be altered by the delayed-feedbacks ng(t —r) and xq(t —r).
Negative of 3 indicates the strength of linear damping in the oscillator. The coefficient b, if positive, is the strength
of nonlinear damping in the oscillator. ~

Since we intend to study the effect of small noise perturbations, we scale D = 2D with € < 1. Since we study the
dynamics close to the zero fixed point, we zoom-in and write z1(t) = Lq(t) and x2(t) = 1¢(¢). Then, the oscillator
(4) can be put in the following form (using Ito interpretation)

dr(t) = Lo(TLz)dt + &2 ( b (2):1:2 ® ) dt + V2D < II(E 9 ) AW (1) (35)

1

where W is Wiener process and Log = ffr du(0)p(9) with

du(6) = ( 8}0 é)%( )+ (_On 2>6r(9>,

where &y and §_, are delta functions, i.e. [dop = ¢(0) and [6_,¢ = ¢(—r) for ¢ € C.
The characteristic equation becomes

“ABH N+ (n— KN e ™ 4w =0. (36)

Since our intention is to study the effect of small noise perturbations on the oscillator when it is at the verge of
instability, we assume that the parameters of the problem are such that the characteristic equation has two roots
+iw, on the imaginary axis and all other roots have negative real parts. With this assumption the unperturbed
system #(t) = Lo(II;z) is on the verge of instability. Figure 2 shows the stability boundary.

The matrices ® and ¥ can be evaluated (using (10) to (15)) as

e e—iwco
O(e) = (iwce — e wee > = (21 ®2),

(wO _|_776sz7") Wee C(ch)ezwc.

TWe®

TWe®

where
c= (W2 + e ™" (n +inrw. + krw?) +wd) L. (37)

Remark IV.1. The process h(IL;z) with b defined in (18) has additional significance for this problem. If Iz was
such that the stable part (I — m)llzx was zero, then Wz = nllyx = $z(t), which gives

_ _ _ | 2 +=(@)
x(t) = Iz (0) = ©1(0)z1 () + P2(0)22(t) = iwe(z1 () — 2(1)
from which we get h(IT;x) by tel 221(t)22(t) = 3((x1(t))? + (z2(t)/we)?) which represents some kind of energy in the
oscillator (note that x1 is position and xz is veloczty) Usually [1(I— 7T)Ht$|| decays to very small values exponentially
fast and hence H(IL,z) differs from the ‘energy’ +((x1(1))? + (z2(t)/we)?) by a little amount.

6 This is done in appendix A
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FIG. 2. Boundary of stability for the fixed point (x1 = 0,22 = 0) of the system (35) withe = 0, wo = 1, kK = 0, n = 0.3. For each
delay r there exists a critical value . such that for § < . the fixed point is stable and for 8 > . the fixed point is unstable.
In the inset, (theoretically predicted) stability boundary in presence of noise is shown with dashed line (obtained using (41)).
For this, e = 0.1, D =1 and b = 1. For B in the region below the dashed line, theoretical results predict that the (0,0) fixed
point is stable in presence of noise. Above the dashed line the fixed point looses stability; nevertheless invariant density exists.
So, theoretical results predict that the noise has destabilized the region between solid and dashed lines. The point marked by
* in the inset is » = 2, § = —0.301. For this point we show in figure 3 the invariant density obtained by numerical simulations.
The theoretically obtained invariant density (obtained in (42)) is in very good agreement with the actual density obtained from
numerical simulations.

Using (22)—(27) we have

b (h) = (2D)2]c[2w2h — bw?%(c + R,
0% (h) = (2D) (2]c]*w? + (iwe(e — ¢))?) R

To understand whether noise has a stabilizing or destabilizing effect, lets consider the damping 3 as a bifurcation
parameter. Write 3 = 3.+ ¢2/3 and assume that at € = 0, 3 satisfies the characteristic equation (36). Then, the effect
of S is to add another term S(c + ¢)w?h to by. Then, we can write the averaged equation as

dh = by (h)dt 4+ o (h)dW, (38)
where

by (h) = Coh+CPh2,  o%(h) = C, 12,

N 3 (c+c)/2
Cy = (2D)2|c|2w? 4 B lera/2)
b= ( )|C|W< oD |c?
cl = —bw?%(c +0),

C, = (2D)2/c*w? (1 4 2e=c)/2if C)/%)z) |

cf?
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To focus on the effect of noise, for the moment we ignore the nonlinearities by setting b = 0 in (35). Corresponding
averaged system then becomes

dh = Cyh + \/CyhdW. (39)

The above system is unstable when” Cj, — %Ca > 0, i.e. when

3 ¢)/2 c—c)/20)% 1
B _(cto)/2 _ (( C)2/ 9 1 (40)
2Dlc|  lc| lc| 2
Let ¢ = 92 and g, = (% - %) Tt can be shown® that if 8. < 0, then ¢; > 0.
Assume (. < 0. Then, (40) holds when
LA 3 (41)
2Dle] <

If noise was not present, i.e. D = 0 in (35), then the (z; = 0,25 = 0) fixed point of (39) would have been unstable
for any B > 0 (this is because — B specifies how much additional damping is present in the system). If noise is present
and ¢, > 0, then the (z; = 0,2, = 0) fixed point of (39) is stable even for 0 < § < 2D|¢|sa/s1. So, noise has a
stabilizing effect if ¢o > 0.

Similar reasoning shows that the noise has destabilizing effect if ¢ < 0. If the noise was not present, then the
(x1 = 0,22 = 0) fixed point of (39) would have been stable for any § < 0. If noise is present and ¢z < 0, then (39) is
unstable even for 2D|c|sz/s1 < B < 0. So, noise has a destabilizing effect if ¢, < 0. This is the scenario presented in
the inset of figure 2.

The stability of (35) when b # 0 depends on the stability of averaged nonlinear system (38). However the theorem
II1.1 deals with only weak convergence of probability distributions and hence is not adequate to transfer the stability
properties from the averaged system to the original system (35). Neverthelss we give an account of the stability of the

averaged system (38). When the nonlinearity is destabilizing, i.e. C’ZSQ) > 0, the system (35) cannot be stable. When
0152) < 0and Cj — %Cg < 0 then the trivial solution & = 0 is the only equilibrium point of (38) and is stable. When

052) < 0and Cy — %Ca > 0 the trivial solution of (38) becomes unstable; nevertheless an invariant density exists. It
is given by (obtained by solving steady-sate Fokker-Planck equation)

20y
X %o S gy _

ph) =g M e x=2-G)/G, (42)
Co

where I is the Gamma function.
The averaging results for (35) hold on times of order 1/, whereas stability concerns with times ¢t — co. Never-
theless, we expect that, for small ¢,

1. the invariant density from (42) is a good approximation to the steady-state density of (23 + (z2/w.)?) from
(35)

2. bifurcation threshold as predicted by averaging would be good approximation to the actual bifurcation threshold
of (35).

The usefulness of the averaging results is shown in figure 3. Let the parameters be specified by the point marked by ‘x’
in the inset of figure 2. When ¢ = 0, the (z1 = 0,22 = 0) fixed point of the oscillator (35) would be stable because ‘x’
lies below the stability boundary (solid line in figure 2). However, in presence of noise the stability boundary is shifted
by €22D|c|s2/s1 (dashed line in figure 2). Now the fixed point loses stability; nevertheless invariant density exists.

7 note that the solution is similar to (33).
8 Note that sign(s1) = sign(<LE) = sign(% + %) Using (37) we have

cc
T (@7 = 2(w2 4 WB) F (et 4 e firwee T () — iwek) — irweet e (n 4 dwek).
Employing A = +iw. in the characteristic equation (36) we get,
irwcefi“’”(n —iwek) — irwcei‘*’cr(n +iwek) = —2Bcrwz,
(e + emWeT) = (w2 — wd)(eWeT + eT V2 4 Biwe(e2iWe — e 2iweT),
Hence ¢! + (2) 7! = 2(w2 + w?) + %(wg — w@)(ewer 4 emiwer)2 4 %Bciwc(ezwcr — e~ 2weT) — 28.rw?2 which can be simplified as
e+ (@) = 2w2(1 + cos? wer) + 2w2 (1 — cos? wer) — Bewe (2rwe + sin 2wer) which is positive if B < 0.
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FIG. 3. Cumulative distribution function (CDF) of the invariant density of 1 (27 + (z2/w)?) obtained from numerical simulation
of (35) with parameters specified by the point marked by ‘*’ in the inset of figure 2 (wo =1, kK =0, n = 0.3, £ = 0.1, D=1,
b=1,r=2, 8 =—0.301). This agrees with the CDF of the density given in (42). For this case, the deterministic bifurcation
threshold is 8. = —0.2987 and the predicted threshold in presence of noise is 8. + 522D|c|<2/q1 = —0.3027.

Numerical simulation is done with 3200 samples and the cumulative distribution function (CDF) of the steady-state
density of 3 (2} + (w2/w.)?) is plotted in figure 3. Also shown is the CDF arising from the averaging result (42). The
figure 3 indeed shows that the density from (42) is a good approximation to the steady-state density of 3 (23 +(z2/w.)?)
from (35).

Numerical simulations in the case ¢ < 0 with € = 0.1 show very good agreement with theoretical averaging results
for B in the range . + 0.9¢%(2D|c|s2/s1) < B < Be. Very close to the theoretically predicted bifurcation threshold in
the presence of noise, i.e. 8~ f.+ e2(2D|c|s2/<1), the agreement is not very good. Actual bifurcation threshold in
presence of noise (denoted by ¢ noi) obtained from numerical simulations of (35), is within 10% of the theoretically
predicted value?, i.e. .+ 1.16%(2D|cls2 /1) < Bemoi < Be + £2(2D|clsa/s1). For details of the numerical scheme see
appendix E. For the numerical simulations verifying this claim, see the supplemental file [29].

V. STRONGER DETERMINISTIC PERTURBATIONS

Here we consider systems with slightly stronger deterministic perturbations:
dz(t) = Lo(Ilz)dt + eG,(Ix)dt + *G(x)dt + eF(ILx)dW (t), (43)

where W is R-valued Wiener process.

As an example, consider the noisy perturbation dz = —Z#(t — 1)dt + 2 (t)dt + 2odW of the DDE #(t) = —Z#(t —
1) 4+ &%(t). Then x(t) = ¢ 'Z(t) can be put in the form (43) with Lo(n) = —5n(-1), F(n) = o, G(n) = 0 and
Gq(n) = n*(0).

The effect of G, in (43) is significant in just times of order 1/ whereas the effects of G and F' are significant in
times of order 1/e%. So we consider only those G, which are such that a certain kind of time averaged effect of G is
Z€ero:

1

27w
—iwel T h _
27 Jw /0 € 1 Gy(ny) dt =0, (44)

9 Note that the theoretical averaging results concern with limit € — 0, but here we took € = 0.1.
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where 1l is defined in (25). The assumption 44 is a natural one: for example, G, which are homogenously quadratic
in n (say Gq(n) = (n(0))?) satisfy the property (44).
Writing X¢(t) = z(t/£?), equation analogous to (20) becomes

AXe(t) = E%Lo(ngxg)dt + éGq(HfXa)dt + GIIEXE)dt + FIEXE)dW (1), >0, (45)
5X° =g eC.

Using Ito formula, He(t) := h(II; X¢) satisfies
dHE(t) = é(qu(nixa) + 0 )(II5 X #))dt + b(IT5 X ) dt 4 o (115 X5)dW, HE(0) = h(yp), (46)

where b, o and E are same as in (22), (23), (24) respectively, and

bW () = E(n)Gy(mn), (47)
b3 () = E(n)(Gy(n) — Gy(mn)). 1)

Recall that we can write the solution as IIf X¢ = ®z(t) + (I — m)II; X® where z(t) := (¥, 117 X°). Note that the
evolution of z;(t) = (¥, II{ X¢) is fast compared to the evolution of H® and is predominantly oscillatory. Heuristically,
the z; oscillate fast along trajectories of constant b (the effect of E%LO) while at the same time diffusing slowly across
the constant b trajectories (the effect of perturbations G, G4, F'). Hence, the effect of z; in the above coefficients b and
o can be averaged out. Our goal is to obtain an averaging result akin to theorem III.1. However, the terms arising

2;/“) 027T/w E(nf)Gq(nf) dt equals zero

as well'?. Hence, when the oscillations are averaged, the leading order contribution of % (1) is zero. However, because
of the % multiplying % ("), higher order effects must be taken into account.

from G should be dealt with carefully. The assumption 44 would entail that

We give explicit formulae for the contributions from 4% and ¢(?), using solutions of the unperturbed system
with n specific initial conditions. Atleast when Gy is purely quadratic, the averaged terms arising from b®F) would
be the same as what one gets from a formal center-manifold and normal-form calculation. However we do not assume
the existence of a center-manifold. The following method however has an advantage in that numerical integration can
be used to find the answers. To provide an illustration of how the method works, a simple example without delay is
worked in appendix B. To state the formulae, we need to set up some notation.

A. Notation

For ¢ € C, let T(t)¢ denote the solution at time ¢ of the unperturbed linear system (5) with initial condition
oz = ¢, i.e. T(t)p = Iz where x is governed by (5).

Let 140y : [-7,0] — R"*™ denote the matrix valued function
Inxn, 0=0,
1y (0) = 49
©© {o 0 #0, )

where I is the identity matrix. For a constant n x 1 vector v, one can solve the unperturbed linear system (5) with
Hox = 11o3n. The solution is indicated by T'(t)1ov.
Recall that 7 is the projection operator onto the critical eigenspace and is given by (16). Even though 140,z does

not belong to C (because it is not continuous), the definition 7(1{pyv) := ®(¥, 1pyv) still makes sense!! using the
bilinear form (12). On evaluation of the bilinear form we find that
m(1gopn) = Vv. (50)

The meaning of T(t)wl{o}y and T(t)(1 — 7)1 {oy2 should now be clear.

10 This follows from the fact that E(n}) = v2h(e~ et Wy + et y) and ¥y is the conjugate of ¥,
11 Rigorous way to extend the space C to include the discontinuities and the decomposition of the extended space as P @ Q is discussed in
(11].
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Suppose G : C — R¥ and let n,¢ € C. Then (£.V)G(n) denotes the Frechet differential of G' evaluated at 7 in the
direction of &, i.e.

In a moment we would see the motivation for defining the following:

ploy = int { ¢ 0+ (@ Omn) = 33 |} |} 51

o) = /OM (T Gal)) - 7) 10

~»
—
VA
S~—
3
=
S~—
QU
VA

(52)

o) = [ (101 Gal) 7) 02T ), (53)

0

B. Averaging

Theorem V.1. In the case when F' is constant and G, G, are Lipschitz and G, satisfies (44); the probability distri-

bution of HF until any finite time T > 0, converges as € — 0, to the probability distribution of a process h which is
the solution of the SDE

dh(t) = (b + 05" + 65 (A(t))dt + o (h(t))dW (1), 7(0) = b(p),

where by and o are same as in (26) and (27) and b‘}}(k) for k=1,2 are given by

27 fwe
(k 1
b2 (h) = T /0 al? (nf') dt, (54)

where Nl is defined in (25). The coefficients b%}(k) are written more explicitly in (55)—(56).

The proof of the above result can be found in [24]. The key idea in obtaining the averaged effect of G, is this:

Let ¢ be the function whose differential along the trajectory of the unperturbed system equals b% (1) defined in
(47). Then the average effect of b% (! is negative of the average of ‘the differential of ¢?(!) along the direction of the

perturbations’. In symbols: the function ¢®()(n) = — fop(n) b¢(D(T(s)n)ds is such that 4 ‘tzocq’(l)(f(t)n) =M (n).
The differential of ¢?(1) along the direction of the perturbations is (1{0}G4(1).V)c?(!) (1) which evaluates to —a®) ()
(plus an additional term whose average turns out to be zero due to assumption 44). The average effect of %) is the

average of a®(1). Similar is the reasoning for b¥¢(2). For details see!? section 9 of [24]. To illustrate the above idea, a
simple example without delay is worked out in appendix B. We urge the reader to study appendix B to gain intuition

about the process of obtaining the drift coefficients b?{’(i).

The term b‘}i}(l) is solely due to the critical eigenspace, and the term b%’,@) arises from the interaction between stable
eigenspace and critical eigenspace. When G is purely quadratic, these are the same terms that arise from a formal
center-manifold calculation.

Note that H encodes information only about the critical component of the solution 7l X¢. The above results
should be augmented with a result that the stable component (I — 7)II°X¢ is small. Proof of theorem V.1 and a
result to the effect that the stable component of the solution is small are presented in [24].

Remark V.1. It is clear from (48) that, if we had totally ignored the stable component, i.e. if we had set (I —

mIIEXE =0 at the very beginning of the analysis, we would miss the term b%’,@).

12 124] deals with scalar systems and does not employ polar coordinates. Hence the form of expressions differ from here. However they
evaluate to same numbers as here. The key difference is: [24] writes an element 7 € P as z1 cos(we') + 22 sin(we+) with 2; € R. Here we
write as z1e'™e' + zoe "™We' with z; € C and 20 = 77.
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Remark V.2. The coefficients bg(k) can be written more explicitly as

bq (1) b 1 27 fwe p (27 /we)—t p 5 \i]G 5 0 eiwcs \i]G 5
; — t * -
H ( ) 27T/wc ‘/0 /0 S ( ( Q(nt )) |: e~ wes 0 :| q(ntJrs))

\/ﬁ 27 fwe 27 /we)—t B N N
i [ a [ s (@G0T ) (Gl (55)

27 fwe 0o n R
= o [ is UG (O~ i) V) EovsCatil)s 69

where Nl is defined in (25), and
E = e Wy 4 ei“’ct\ilg, (57)

and e; denotes unit vector in the j*" direction of R™. To check how these explicit forms follow from (51)—(54) refer to
appegdil’ C. If G, is a polynomial, the terms in (55) can be put in Mathematica to get explicit functional dependence
on h; otherwise numerical integration can be done at specific h values. For the term in (56) the integral IQW/% can
be evaluated first using mathematica and then fo can be done using numerical integration. All that we would need
is the solutions of the unperturbed system with n different initial conditions (I —w)1lgye; for j =1,...,n. Since the
initial condition (I —m)1oye; belong to the stable space Q, the solution T(s)(I— 7)10ye; decays exponentially fast to

zero and hence then integral fooo need not be evaluated until infinity—a reasonable large upper limit would be enough
to get a good enough approrimation. An example is done next section to illustrate the above computations. Note that,
when applied in a deterministic DDE setting, the above formulas provide an alternate way to compute the effect of
center-manifold terms on the amplitude of critical mode.

C. Example
Consider the equation (28) with added quadratic nonlinearity G,(n) = (n(—1))*
dx(t) = —ga:(t — 1)dt + 223 (t — 1)dt + eadW + ex?(t — 1)dt (58)

We apply theorem V.1. Note that by and oy are already evaluated (see equations (29) and (30)). We continue using
the ® and V¥ from section IV A.

Now we evaluate b‘}}(l) and b‘}}(z) using (54). In section VD we show by numerical simulations how the averaged
dynamics would be useful to gain information about (58).

Note that (£.V)G4(n) = 2n(—1)&(—1). We also write it as 277|_1§‘_1 to avoid writing too many braces. Using the

formula (55), we have b%’,(l)(h) = L [2m/we ( (2W/wc)7t%(t, s) ds) dt where

27 fwe JO 0

g@’ 8) = 2@1@2(6iwcs +6_iwcs)(nf|_1)2(nf+s|_1 + v hgt-i-s ntJrs‘ 1 @‘_1653@)(77f|_1) ’

where 5l is defined in (25). Using Mathematica we get b%’((l)(h) = —64h?/(4 + m2)? ~ —0.3327h2.
To evaluate b%’,@)(ﬁ) using (56), we first evaluate the fo%/ “* integral. We have

0 1 27 fwe R
(2
b3 (h) = / (W% [ VaREL2 T(s)(l—mm}\1><nf!1>2dt> ds

4h? °° .
= /0 (2 + 7 cos(ms) + 2sin(ms)) (T(s)(I — m)1goy|_,) ds
The fooo integral can be evaluated numerically by simulating the unperturbed system with the initial condition

(I — )10y, ie. 1ggy — @ We get b4 (h) ~ —0.7893h2
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D. Verification by numerical simulations

This section illustrates the results of theorems III.1 and V.1 using numerical simulations and also shows how the
averaged I process can be used to gain information about the original 2 dynamics (recall remark II.1). For details of
the numerical scheme see appendix E.

Consider
da(t) = —Za(t = 1)dt + *qa®(t = Dt + codW + ey,a®(t — V. (59)
Draw a random sample of size Ngqm, with /i values {h?}fvzslamp . Simulate them according to
dn(t) = (brr + 05" + b5 (B(0))dt + 0w (h(t))dW, (60)

for 0 <t < Tepg, where by and oy are obtained from (29), (30), and b%}(i) are obtained in section V C:

N 3 . .
(ber + b5 42 (h) = 20, ¥00° — 7e5 (i1 = 02))h* —~7(0.3327 + 0.7893) 1, (61)
O?{(h) = 4@1@20’2ﬁ.

Fix e. Simulate (59) for 0 < t < T.nq/e? using initial history {+/2h0 cos(wee)}r "

Fix a number H* and let 7° be the first time |x(t)| exceeds v2H* and 7" be the first time A(t) exceeds H*, i.e.
7= inf{t > 0: |z(t)| > V2H*},
= inf{t > 0: h(t) > H*}.

We can check whether the following pairs are close.

1. the distribution of h(Ily,, ,/-2x) from (59) (where b is defined in (18)) and the distribution of i(Teyq) from (60),

2. the distribution of €27¢ and the distribution of 7.

We took e = 0.025, H* = 1.5, Tepag = 2, Nyamp = 4000, and \/Q{FL?}?S'IWP = 1.2. Figures 4 and 5 answer the above
questions. Three cases are considered with o = 1 fixed: (7, = 0,7 =0), (74 = 0,7 = 1), (7, = 1/v/3,7. = 0).

CDF

FIG. 4. Cumulative distribution function (CDF) of h(II,,.2x) (org) and i(2) (avg). The numbers in brackets are (vg,7e)
values.

From the figures we can see that it is enough to study the averaged equations for h(Il;z) to get a good approximation
of the behaviour of x. The distribution of h(IT;z) (note that \/2h gives the amplitude of oscillations) is well predicted
by the distribution of the averaged system h; and the distribution of time taken by x to exceed a threshold 2H* is
well predicted by the time taken by the averaged process h to exceed H*. Because the averaged equations do not contain
any delay, they are easier to analyse and simulate numerically.
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FIG. 5. Cumulative distribution function (CDF) of €*7° (org) and CDF of 7" (avg). The numbers in brackets are (vq,7c)
values. The CDF value at £27° = 2 indicates the fraction of the sample whose modulus exceeded v2H* before the time 2/s2.

VI. OTHER KINDS OF NOISE

Here we consider equations of the form

{dw(t) = Lo(ILz)dt + co(&)F(Iz)dt, ¢ >0, 62)

Mz = p € C,

where F' : C — R™ is Lipschitz, with atmost linear growth and three bounded derivatives; and ¢ is a noise process
whose state space is denoted by M, and ¢ : M — R.
We make the following assumptions on the noise €.

Assumption 2. The noise £ is a M-valued time-homogenous Markov process with transition probability function, v,
given by

V(tvguB) :]P){gt S B|€0 :g}

for B a borel subset of M. There exist a unique invariant probability measure U and positive constants ¢; and co such
that for all t > 0,

sup /M Wt €, dC) — B(dC)] < cre°t,

(eM

i.e. the transition probability density converges to stationary densilty exponentially fast. The function o is bounded,
and such that [y, o(&)o(d€) = 0.

Other requirements are: M is locally compact separable metric space; the transition semigroup is Feller with o(-)
in the domain of the infinitesimal generator.

For example, a finite-state continuous-time markov chain satisfies the above requirements.
The autocorrelation of the noise process £ is denoted by R:

1) = [ o) ([ 0@ vts..d0) olas) (63)

For the perturbed system (62), h(Il;x) varies slowly compared to 2. Changes in h(IT;x) are significant only on
times of order 1/e2. Hence, we rescale time and write X¢(t) = x(t/?) where x is governed by (62). Also, we write

& = &(t/€?).
Using the segment extractor II defined in (19), X¢ satisfies

{dXE(t) = LLo(IEXE)dt + Lo (&5)F(IEXE)dt, >0, (64)

X =g eC.
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Write He(t) := b(IIE X ). Then H=(t) satisfies

AH (1) = <o (6 )b(IT; Xt #2(0) = b(p) (65)

where

where FE is defined in (24).

Using the technique of martingale problem, we can prove!3 the following result (a sketch of proof is given in appendix
D):

Theorem VI.1. Under the conditions on F' and noise £ listed before; the probability distribution of H® converges, as
e — 0, to the distribution of the process h which is the solution of the SDE

dh(t) = b (h(t))dt + o (h(t))dW (1), h(0) =b(e),

with coefficients by and o given by

=g [ 20ty ([ R0 ) at

) =g [ ([ 00 (F010F 00 ) st as)

where n' is defined in (25).

We urge the reader to study appendix D to gain intuition about the process of obtaining the coefficients by and
op. Akin to the formulas (55)—(56), the coefficient by can be written more explicitly as

b (h) = ﬁ /0 T /O s <2R(s) (TF ()" Lg}cs eg } @F(nf+s))

\/ﬁ 27 fwe 00 .
tpre [ [ R 0N, (F610) T @),

j=1

where 7 is defined in (25), € is defined in (57), and e; is the unit vector in the j* direction of R”™. Similarly,

) ah

27 Jwe 0o
Thih) = 5 / i / ds (EF () R(3) Erra F(1l.)))-

It would be easier to do the f027r/ “* integral before the [ integral.

Analogous results for systems without delay are found in section 4 of [30]. Even systems with delay can be put in
the framework of [30]. Equations of the form (62) with F(0) = 0 and [}, 0(£)7(d€) # 0 (i.e noise is not mean zero)
are studied in [31].

Remark VI.1. In the equation (62), we could have included the deterministic perturbations G and G, as done in
equation (43); but the averaged drift terms arising from these would be same as in the previous sections.

13 Proof of theorem (VI.1) and a result to the effect that the stable component of the solution is small would be published in a different
article.
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A. Linear perturbations

When F(n) = Lin where Ly : C — R™ is a linear operator, the expressions for by and oy can be more explicitly
evaluated using the autocorrelation function as follows. Let T be the 2 x 2 matrix Y;; = V;L1®;. Let

Roz/ R(s)ds,

0

Rgc:/ R(s) cos(2w,s)ds,
0

RV:/ R(s)e™ ™0, Ly (T(s)(I — )10y L1®1) ds,
0

By = / R(s)e™=* By Ly (T(s)(I — m)10) L1s) ds.
0

Then,

br(h) = Cyh, o3 (h) = C,h?

where

Cy = ((Tu + Ya2)2Ro + 4T 19 91 Roe + Ry + Rz) ;

Co =2 ((Tll + T22)*Ro + 2T12T21R2C) .

Remark VI.2. Note that if we had totally ignored the stable modes, i.e. if we set (I — m)II;X® = 0 at the very
beginning of the analysis, we would not have the terms Ry and Rs.

The Lyapunov exponent for the averaged equation
dh(t) = by (h)dt + op(h)dW, (67)
can be calculated to be

1 . .
Aavg = Cy — §Ca =2Y15T 91 Roe + R1 + Ry. (68)

Using singular perturbation methods and Furstenberg-Khasminskii formula, the following theorem for scalar pro-
cesses is proved in [32] and [33].

Theorem VI.2. Consider (62) with F(n) = Li(n) where Ly : C — R is linear. Let the top Lyapunov exponent of the
process x be defined by

1
A :=limsup=In sup |z(s)]. (69)

t—00 set—r,t]
Then \¢ = 52%)\%9 +0(e%).

The same can be said about vector valued processes.

B. Verification by numerical simulation

Consider the system
da(t) = —g:c(t — 1)dt + eo(&)a(t — 1)dt. (70)
Let £ be a two-state symmetric markov chain with switching rate g/2, i.e.

.1 o1
lim = P1a(t) = g/2 = lim 2 P (1) (71)
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FIG. 6. Cumulative distribution function (CDF) of h(IT; .2x) (org) and h(1) (avg).

CDF

FIG. 7. Cumulative distribution function (CDF) of e*7° (org) and CDF of 7" (avg). The CDF value at £27° = 1 indicates the
fraction of particles whose modulus exceeded v2H* before the time 1/¢2.

where P;_,;(t) is the probability of transition from state i to state j in time ¢. Let o({ = 1) = —0({ = 2) = gp. We
then have the autocorrelation as R(s) = oge™9%.

We consider two cases g = 2 or g = 6 with 09 = 1. The averaged equations are

g=2:  dh(t) =0.3734 hdt + V0.9873 hdW,
g=6:  dh(t) =0.1715hdt + /0.4245 hdW.

Using same notation as in section VD, we fix ¢ = 0.025, Tepg = 1, H* = 1, Nygmp = 4000 and \/2{71?}1]-\[:51“7”” =1.

The equation (70) is simulated for time Tp,q/e? with initial history {/272 cos(w.e)} 5", We obtain the following
figures 6 and 7 which show that the averaged system gives a good approximation of the original system. For details
of the numerical scheme see appendix E.
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FIG. 8. \auvg as a function of the delay in the perturbation (r1) and the rate of switching of the noise (g) for equation (73).

The top Lyapunov exponent A° is close to 52%)\(“,9 by theorem VI.2. Note that both Aqvg < 0 (stabilization) and Agug > 0
(destabilization) are possible.

VII. DISCUSSION

Delay equations with noise perturbations as considered in section VI display interesting similarities with non-delay
systems. For example, [34] considers coupled oscillators with one of the oscillators stable, in the following form. Let

J be the symplectic matrix ( 01

10 ), I be the 2 x 2 identity matrix and O be the 2 x 2 zero matrix. Let z € R* be

governed by

o) = (5 51Dy ) o) +eote) (3 Y )al0 (72)

where K, L, M, N are 2 x 2 matrices. The oscillator with frequency w; is coupled to the stable oscillator of frequency
wa. [34] shows that the Lyapunov exponent of the above system can be written in terms of quantities analogous
to Ry, R, Rl defined in section VI A. Further they show that both stabilization and destabilization are possible
depending on the matrix coefficients K, M and N.

The delay system that we considered under the assumption 1 can be thought of as a coupled oscillator system
with one critical mode and infinitely many stable modes (the characteristic equation has a pair of roots +iw., and all
other roots have negative real part). The lyapunov exponent obtained in (68) suggests that both stabilization and
destabilization are possible. To illustrate this, consider

dx(t) = —g:v(t —1)dt +eo(&§)x(t —rqy)dt (73)

with £ a two-state symmetric markov chain with states o(§) € {+1, —1} and rate of switching ¢g/2 (defined in (71)).
Theorem VI.2 says that the Lyapunov exponent A° (defined in (69)) is close to e24 Ayg where Aqyg is evaluated in (68).
Figure 8 shows how %/\,wg varies with the delay in the perturbation (r1) and rate of switching (g) of the two-state
markov chain. Note that both Aq,g < 0 (stabilization) and Agyg > 0 (destabilization) are possible.

Even the white noise allows for both possibilites. As mentioned in section IV B, the lyapunov exponent Agug
corresponding to (31) equals — Re[(U,L,®;)?]. Applying to dz(t) = —Za(t — 1)dt + ex(t — r1)dW we find that
Aavg < 0 for 1 < 0.8609 and Agyg > 0 for 0.8609 < r; < 1.

The above examples raise the question whether stabilization or destabilization is possible when the noise is additive,
i.e. the coefficient F is a constant independent of the state x. To answer this question, as an example, consider (59).
The corresponding averaged equation is (60), with the averaged drift and diffusion coefficients given by (61). Note
that the diffusion 0%1 is zero only if h = 0 and when h = 0, the drift is 2@1@202 = 2|\i11|202 > 0. Thus additive noise
destroys the fixed points and hence stabilization is not possible.

The averaging results presented in this article allow us to simplify the analysis of delay systems at the verge of
instability. The average