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The characteristic equation for a linear delay differential equation (DDE) has countably infinite
roots on the complex plane. This paper considers linear DDEs that are on the verge of instability,
i.e. a pair of roots of the characteristic equation lie on the imaginary axis of the complex plane, and
all other roots have negative real parts. It is shown that, when small noise perturbations are present,
the probability distribution of the dynamics can be approximated by the probability distribution of
certain one dimensional stochastic differential equation (SDE) without delay. This is advantageous
because equations without delay are easier to simulate and one-dimensional SDE are analytically
tractable. When the perturbations are also linear, it is shown that the stability depends on a specific
complex number. The theory is applied to study oscillators with delayed feedback. Some errors in
other articles that use multiscale approach are pointed out.
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I. INTRODUCTION

Delay differential equations (DDE) arise when the evolution of a variable at any time depends on the history of
the variable. The evolution of many physical systems depends on their history owing to finite conduction velocities.
Naturally, these systems are modeled by DDE. DDEs arise in many areas: biological systems, population dynamics,
machining processes, viscoelasticity, laser optics etc. See [1] for description of some examples. Many models of
physiological systems, disease models, population dynamics involve DDE—see Mackey-Glass equation [2] for example.
The subject of this paper is linear DDE at the verge of instability. For example, consider the equation

ẋ(t) = κx(t− 1). (1)

Seeking a solution of the form x(t) = etλ, we find that λ must satisfy the characteristic equation λ−κe−λ = 0. When
κ ∈ (−π

2 , 0), all roots of the characteristic equation have negative real parts (see corollary 3.3 on page 53 of [3]).
When κ = −π

2 a pair of roots ±iπ2 are on the imaginary axis and all others have negative real parts. When κ < −π
2

some of the roots have positive real part. Hence, the system (1) is on the verge of instability at κ = −π
2 . We study

effect of perturbations on such systems, for example,

ẋ(t) =
(

−π
2
+ εξ(t)

)

x(t− 1)

where ξ is a noise and ε≪ 1 denoting the strength of the perturbation.
Such instability situations arise, for example, in machining processes. An oscillator of the form

q̈(t) + 2ζq̇(t) + p2q(t) = −κp2 [q(t)− q(t− r)] (2)

is used to describe a phenomenon called ‘regenerative chatter’ in machining processes [4]. The model is as follows: A
cutting tool is placed on a workpiece that is attached to a shaft rotating with time period r. The tool vibrates as it
cuts the material from the workpiece. Let q(t) describe the position of a point on the machine tool. The force acting
on the tool is proportional to the depth of the chip being cut and the depth is approximated as the difference between
the present position (q(t)) of the tool and its position one revolution earlier (q(t − r)). The coefficient κ is the force
coefficient which depends, among other factors, on the width of cut. It is known that, for a fixed r, there exists a
critical κc such that the amplitude q of the oscillator decreases exponentially if κ < κc and increases exponentially
if κ > κc. When κ = κc oscillations of constant amplitude persist. This oscillatory behavior is called ‘chatter’. In
machining, the goal is to have a large rate of cut. The greater the rate, the larger is κ, and chatter occurs when κ is
larger than a critical value resulting in poor surface finish. Researchers explored the possibility of achieving chatter
suppression by varying structual parameters of the tool like damping and stiffness (see [5, 6]). Suppose there are
small random perturbations in the natural frequency p in (2) such that p = po(1 + εσ(ξ(t))) where σ is a mean-zero
function of the noise ξ and ε≪ 1 is the strength of the perturbation, then on expanding in powers of ε and discarding
terms of higher order, we have

q̈(t) + 2ζq̇(t) + p20q(t) = −κp20 [q(t)− q(t− r)]

+εσ(ξ(t)) [−2(1 + κ)p0q(t)] + εσ(ξ(t)) [2κp0q(t− r)] , (3)

which can be studied as a perturbation of (2). Also, small random perturbations in the properties of the material
being cut could affect the tool dynamics—see [7].
Delay equations on the verge of instability arise also, for example, in the study of eye pupil [8], and act of human

balancing [9]. In [10], authors make a case for studying effect of noise on oscillators with delayed feedback. As a
prototypical oscillator they consider the van der Pol model

q̈(t) + ω2
0q(t) + ηq(t− r) =βq̇(t) + κq̇(t− r) − bq2(t)q̇(t) + q(t)ξ(t) (4)

with ξ a Gaussian white noise with zero mean and variance 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′).
Deterministic and stochastic DDE have been well studied in literature—see for example the books [11] (determin-

istic) and [12] (stochastic). Deterministic DDE at the verge of instability are also well studied—see [13] for averaging
approach, [14] and [15] for multiscale approach. Stochastic DDE at the verge of instability, with noise being white,
are studied by employing multiscale approach in [16, 17] and [10, 18]; by averaging approach in [19–21]; and by
center-manifold approach in [22].
However, [16, 17] and [10, 18] have committed serious errors in the analysis. These are pointed out in the appendix

A. Sections A 1 (errors of [16, 17]) and A 2 (errors of [10, 18]) can be read without further preparation. References [19–
21] restrict their analysis to noise being white and do not consider stronger deterministic perturbations as considered
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here in section V. [23] considers a different kind of instability (one root of characteristic equation is zero and all other
roots have negative real parts), which is reviewed in section VII.
This article deals with systems that can be studied as perturbations of linear DDE at the verge of instability. In

recent articles [24] and [25] we have shown rigorously that, under certain conditions, the dynamics of such systems
forced by white noise can be approximated (in a distributional sense) by the dynamics of a one-dimensional

stochastic differential equation (SDE) without delay . The purpose of this article is three-fold:

1. To exploit the results of [24] and [25] to show how the analysis of systems at the verge of instability can be
simplified. The advantage arises because equations without delay are easier to simulate and one-dimensional
SDE are analytically tractable. The articles [24] and [25] deal rigorously with scalar systems forced by white
noise. In this article we give (without proofs) explicit formulas for the approximating dynamics of vector-valued
systems forced by white noise (equations of the form (7) and (43)).

The approach taken in this article is similar to that in [19–21], in the sense that all use the spectral theory for
DDE and averaging. However, [19–21] consider specific applications of the equations of the form (7) but do
not consider the stronger perturbations as in equation (43). When dealing with equation (43), the averaging
approach that we take does not assume the existence of center-manifold (rigorous results about center-manifold
for stochastic DDE are not known1). Further, the formulas (55)–(56) presented here, regarding the stronger
perturbations Gq in (43), are of independent interest. When applied in the deterministic DDE setting, they
provide an alternate way to compute the effect of center-manifold terms on the amplitude of critical mode (more
details are provided in section V).

2. To point out the errors in existing approaches that deal with white noise case.

3. To study systems forced by other general kind of noises (for example a continuous-time two-state markov chain).
Theoretical results for this case (equations of the form (8)) dealt in section VI do not appear anywhere else. A
sketch of the proof of the main result (theorem VI.1) is provided in appendix D.

These claims would become more clear after the next two sections where the mathematical framework is explained.
Also, in the case where the perturbations are also linear, a complex number is identified which alone dictates the
stability of the system.
The organization of the rest of the paper is given at the end of the next section, after presenting the preliminaries.

II. MATHEMATICAL SETUP OF DDE

A. Notation

1. R denotes the set of real-numbers and C denotes the set of complex numbers.

2. eλ• means a function whose evaluation at θ ∈ R is eλθ

3. * as superscript indicates transpose,

4. z̄ is complex conjugate of z,

5. v ∈ Rn means v is n× 1 matrix with each entry in R and v ∈ Rn∗ means v is 1 × n matrix with each entry in
R. The line underneath serves as a reminder that the quantity is multidimensional. Similar for Cn and Cn∗.

B. Equations considered in the article

Let x(t) be a Rn-valued process governed by a DDE with maximum delay r. The evolution of x at each time t
requires the history of the process in the time interval [t−r, t]. So, the state space can be taken as C := C([−r, 0];Rn),
the space2 of continuous functions on the interval [−r, 0] with values in Rn. At each time t, denote the [t − r, t]
segment of x as Πtx, i.e. Πtx ∈ C and

Πtx(θ) = x(t+ θ), for θ ∈ [−r, 0].

1 However see [26] for related results. One of the special cases of theorem 4.1 of [26] is the following: In the case that zero is a fixed point
of a stochastic DDE and the stochastic system linearized about zero does not have zero as a lyapunov exponent then local stable and
unstable manifolds exist. These manifolds are the set of initial conditions which converge to or diverge from zero at an exponential rate.

2 The space C is Banach space when equipped with sup norm: ||η|| := supθ∈[−r,0] |η(θ)| for η ∈ C.
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Now, a linear DDE can be represented in the following form

{

ẋ(t) = L0(Πtx), t ≥ 0,

Π0x = ϕ ∈ C, (5)

where L0 : C → R
n is a continuous linear mapping on C and ϕ is the initial history required. For example, ẋ(t) =

−π
2x(t − 1) can be represented using the linear operator given by L0(η) = −π

2 η(−1) for η ∈ C.
We assume there exists a bounded matrix-valued function µ : [−r, 0] → Rn×n, continuous from the left on the

interval (−r, 0) and normalized with µ(0) = 0n×n, such that

L0η =

∫

[−r,0]

dµ(θ)η(θ), ∀η ∈ C. (6)

This is not a restriction: every continuous linear operator L0 has such a representation. For example, ẋ = −π
2x(t− 1)

can be represented with µ(θ) =

{

π
2 θ = −r,
0 θ > −r.

This article deals with perturbations of linear DDE, i.e. equations of the form

{

dx(t) = L0(Πtx)dt+ ε2G(Πtx)dt + εF (Πtx)dW (t), t ≥ 0,

Π0x = ϕ ∈ C, (7)

where F,G : C → Rn are possibly nonlinear, W is R-valued Wiener process and ε ≪ 1 is a small number signifying
perturbation. The following equations are also considered:

{

dx(t) = L0(Πtx)dt + ε2G(Πtx)dt+ εσ(ξ(t))F (Πtx)dt, t ≥ 0,

Π0x = ϕ ∈ C, (8)

where F,G : C → Rn are possibly nonlinear, ξ is a noise process (satisfying some assumptions) and σ is a mean-zero
function of the noise ξ. For example, one can have ξ as a finite-state markov chain.
As an example, consider ˙̃x = κx̃(t − 1) − x̃3(t) where κ has small perturbations about −π

2 according to κ =

−π
2 + εσ(ξ(t)) + ε2 where ξ is a noise. Then x(t) = ε−1x̃(t) can be put in the form (8) with L0(η) = −π

2 η(−1),

F (η) = η(−1) and G(η) = −η3(0) + η(−1).
The operator L0 is asumed to be such that the unperturbed system (5) is on the verge of instability, i.e. L0 satisfies

the following assumption.

Assumption 1. Define

∆(λ) = λIn×n −
∫

[−r,0]

dµ(θ)eλθ ,

where I is the identity matrix. The characteristic equation

det(∆(λ)) = 0, λ ∈ C (9)

has a pair of purely imaginary solutions ±iωc and all other solutions3 have negative real parts.

Since (7) and (8) would be studied as perturbations of the linear DDE (5), a brief overview of the unperturbed
system (5) would be given now.

C. The unperturbed system (5)

The content in this section can be found in chapter 7 of [11] and chapter 4 of [27].

3 Typically there are countably infinite other roots.
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1. Projection onto eigenspaces

The space C can be split as C = P⊕Q where P is the eigenspace of the critical eigenvalues±iωc. Since P corresponds
to the critical eigenvalues ±iωc, the projection of the dynamics of the unperturbed system onto P is purely oscillatory
with frequency ωc. Since Q corresponds to the eigenvalues with negative real part, the projection of the dynamics of
the unperturbed system onto Q decays exponentially fast.
Here we show, given an η ∈ C, how to find the projection onto the space P . For details, see chapter 7 of [11] and

chapter 4 of [27].
Any η ∈ C can be written as η = πη+(I − π)η where πη ∈ P and (I − π)η ∈ Q. Here π is the projection operator

π : C → P and I is the identity operator. The projection π can be constructed as follows: Let

Φ = [Φ1, Φ2], Φ1(•) = deiωc•, Φ2(•) = d̄e−iωc• (10)

where d ∈ Cn is chosen such that

∆(iωc) d = 0n×1. (11)

Note that each Φi belongs to C([−r, 0];Cn). Define the bilinear form 〈·, ·〉 : C([0, r];Cn∗)×C([−r, 0],Cn) → C, given
by

〈ψ, η〉 := ψ(0)η(0)−
∫ 0

−r

∫ θ

0

ψ(s− θ)dµ(θ)η(s)ds. (12)

Let

Ψ =

[

Ψ1

Ψ2

]

, Ψ1(•) = c d2e
−iωc•, Ψ2(•) = c̄ d̄2e

iωc•, (13)

where d2 ∈ Cn∗ is chosen such that

d2 ∆(iωc) = 01×n (14)

and the constant c is chosen such that

〈Ψi,Φj〉 = δij . (15)

(Here δij = 1 if i = j and zero if i 6= j.)

Writing 〈Ψ, η〉 =
[

〈Ψ1, η〉
〈Ψ2, η〉

]

we obtain for the projection π : C → P ,

π(η) = Φ〈Ψ, η〉 = Φ1〈Ψ1, η〉+Φ2〈Ψ2, η〉. (16)

Note that 〈Ψ1, η〉 and 〈Ψ2, η〉 are complex conjugates and so are Φ1 and Φ2.

2. Behaviour of solution on the eigenspaces

The solution to the unperturbed system (5) can be written as

Πtx = πΠtx+ (I − π)Πtx = Φz(t) + yt

where z(t) = 〈Ψ,Πtx〉 and yt = Πtx− Φz(t). Note that z ∈ C2 is a 2-component vector with z2 = z̄1, and Φz(t) ∈ P
and yt ∈ Q. It can be shown that

ż(t) = Bz(t), B =

[

iωc 0
0 −iωc

]

, (17)

i.e. z oscillate with constant amplitude and frequency ωc. So, 2z1z2 is a constant in time. Further, it can be shown
that ||yt|| decreases4 to zero exponentially fast (because the dynamics on Q is governed by eigenvalues with negative
real parts).

4 This is the sup norm on C.
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D. The perturbed systems (7) and (8)

Define the function h : C → R by

h(η) := 2〈Ψ1, η〉〈Ψ2, η〉, η ∈ C. (18)

As noted above,

2z1(t)z2(t) = 2〈Ψ1,Πtx〉〈Ψ2,Πtx〉 = h(Πtx)

is a constant for the unperturbed system (5). When we deal with the perturbed system (7) or (8), the quantity
H(t) := h(Πtx) evolves much slowly compared to x and zi. In (7), because a Weiner process has the property
that ‘the rescaled process t 7→ εW (t/ε2) has the same probability distribution as that of a Wiener process ’, the noise
perturbations take O(1/ε2) time to significantly affect the H dynamics. Also, the prturbation G is of strength ε2.
Hence, significant changes in H occurs only in times of order 1/ε2. In (8), even though the strength of the noise
perturbation is ε, because σ is a mean-zero function of the noise, significant changes in H occurs only in times of
order 1/ε2.
Our claim is that, under certain conditions on the coefficients F and G, the probability distribution of the process

H(t/ε2) converges to the probability distribution of a SDE without delay. Because of the nature of decay on Q,
||yt|| decays to small values exponentially fast, and so studying H is enough to obtain a good approximation to the
behaviour of x in (7) and (8). How to obtain the SDE is shown in later sections.

Remark II.1. The reason why studying H would be useful is the following: for the moment assume the part of
solution in the stable eigenspace Q is zero, i.e. Πtx = Φz(t) and (I − π)Πtx = 0. Then, for the jth component of x
we have xj(t) = (Πtx(0))j = (d)jz1(t) + (d̄)jz2(t) where d is choosen in (10). Noting that z2 = z̄1 and that dynamics
of zi is predominantly oscillatory with frequency ωc, we find that the dynamics of xj is predominantly oscillatory

with amplitude 2|(d)jz1| or what is the same
√

4(d)j(d̄)jz1z2 = |(d)j |
√
4z1z2 = |(d)j |

√
2H. Hence the magnitude of

H indicates the amplitude of oscillation of x (usually the amplitude might differ from |(d)j |
√
2H by a slight amount

because the part of the solution in Q, i.e. (1 − π)Πtx is not exactly zero).

The rest of the paper is organized as follows. Equations of the form (7) are considered in section III and convergence
of the probability distribution of H process for such equations is stated in theorem III.1. Examples illustrating the
usefulness of theorem III.1 are done in section IV. Equations similar to (7) but with stronger perturbations (equation
(43)) are considered in section V and convergence of the probability distribution of H process for such equations is
stated in theorem V.1. The physical arguments leading to theorem V.1 are explained in section V. However, the
application oriented reader can utilize remark V.2 to immediately apply theorem V.1 (notation is available in section
VA). Analogous results for equations of the form (8) are in section VI.

A crucial role is played by the vector Ψ(0). So the symbol Ψ̂ is reserved for Ψ(0).

Ψ̂
def
== Ψ(0).

III. THE PERTURBED SYSTEM (7)

As noted above h(Πtx) for the perturbed system (7) varies slowly compared to x. Changes in h(Πtx) are significant
only on times of order 1/ε2. Hence, we rescale time and write Xε(t) = x(t/ε2) where x is governed by (7).
Under the above time-scaling, the x time-series would be compressed by a factor of ε2. So, in order to be able

to write the evolution equation for Xε, we need to define a new segment extractor Πε
t as follows: for a R

n valued
function f defined on [−ε2r,∞) the [t− ε2r, t] segment is given by

(Πε
tf) (θ) = f(t+ ε2θ), −r ≤ θ ≤ 0. (19)

Now, the process Xε has the same probability law as that of a process satisfying

dXε(t) =
1

ε2
L0(Π

ε
tX

ε)dt+G(Πε
tX

ε)dt+ F (Πε
tX

ε)dW (t), t ≥ 0, Πε
0X

ε = ϕ ∈ C, (20)

where W is R-valued Wiener process5.

5 We have used the fact that for a Wiener process W , εW (t/ε2) has the same probability law as a Wiener process.
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Write Hε(t) := h(Πε
tX

ε) with h defined in (18). Using Ito formula, it can be shown that Hε(t) satisfies

dHε(t) = b(Πε
tX

ε)dt+ σ(Πε
tX

ε)dW, Hε(0) = h(ϕ), (21)

where

b(η) = E(η)G(η) +
1

2
4(Ψ̂1F (η))(Ψ̂2F (η)), (22)

σ(η) = E(η)F (η), (23)

E(η) = 2(〈Ψ1, η〉Ψ̂2 + 〈Ψ2, η〉Ψ̂1). (24)

Recall that we can write the solution as Πε
tX

ε = Φz(t) + (I − π)Πε
tX

ε where z(t) := 〈Ψ,Πε
tX

ε〉. Note that the
evolution of zi(t) = 〈Ψi,Π

ε
tX

ε〉 is fast compared to the evolution of Hε and is predominantly oscillatory. Heuristically,
the zi oscillate fast along trajectories of constant h (the effect of 1

ε2L0) while at the same time diffusing slowly across
the constant h trajectories (the effect of perturbations G,F ). Hence, the zi in the above coefficients b and σ can be
averaged.

Theorem III.1. In the case when
(i) F is constant, and G is cubic and has stabilizing effect, or
(ii) F is either linear or constant and G is Lipschitz,
the probability distribution of Hε from (21) until any finite time T > 0 converges, as ε → 0, to the probability
distribution of a process ȟ which is the solution of the SDE

dȟ(t) = bH(ȟ(t))dt+ σH(ȟ(t))dW (t), ȟ(0) = h(ϕ),

where bH and σH are obtained by averaging the functions in (22) and (23) as described below in section IIIA. The

perturbation G is said to have ‘stabilizing effect’ if the deterministic system ~̇ = bH(~) is stable.

Note that H encodes information only about the critical component πΠεXε of the solution. The above results
should be augmented with a result that the stable component (I − π)ΠεXε is small. Proof of theorem (III.1) and a
result to the effect that the stable component of the solution is small are presented in [25] (also see [24] for the case
when G is Lipschitz and F is constant).

A. Evaluation of bH and σH

To evaluate bH and σH at a specific value ~ ∈ R, we consider a solution Πtx of the unperturbed system (5) that
remains in the space P for all time and such that h(Πtx) = ~. For this purpose define

η~t
def
=

1

2

√
2~Φ

[

eiωct

e−iωct

]

. (25)

Note that η~t ∈ P for all time and the z coordinates of η~t given by 1
2

√
2~

[

eiωct

e−iωct

]

evolve according (17). Hence η~t is

the solution of the unperturbed system with the initial condition η~0 . Further, h(η
~
t ) = 2(12

√
2~eiωct)(12

√
2~e−iωct) = ~.

Now, the averaged coefficients bH and σH are given by

bH(~) =
1

2π/ωc

∫ 2π/ωc

0

b
(

η~t
)

dt, (26)

σ2
H(~) =

1

2π/ωc

∫ 2π/ωc

0

σ2
(

η~t
)

dt. (27)

The following fact would be useful in the evaluation of above averages: for η~t , E defined in (24) becomes (on using
(15))

E(η~t ) =
√
2~(Ψ̂1e

−iωct + Ψ̂2e
iωct).
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IV. EXAMPLES

In this section we show three examples. The first is a simple scalar system—we study the perturbations of ẋ(t) =
−π

2x(t− 1). In section IVA, while studying cubic nonlinear perturbations and additive white noise perturbations, we
illustrate the results of previous section and show how the averaged process can yield information about the x process.
This example is a running one in the sense that we revisit it when studying stronger deterministic perturbations in
section V and different kinds of noise in section VI.
The purpose of the second example is to propose a conjecture. When perturbations are linear as well, we identify

a complex number and claim that it alone dictates the stability of the system. We provide support to our conjecture
using numerical simulations on ẋ(t) = −π

2x(t− 1).
The third is the van der Pol oscillator (4). Here we illustrate the stabilizing/destabilizing effects of noise and

show how the averaging results obtained in the previous section give good enough description of the effects of noise
and allow us to compute how much bifurcation thresholds are displaced in presence of noise when compared to the
deterministic case.

A. A scalar equation

Consider the following equation:

dx(t) = −π
2
x(t − 1)dt+ ε2x3(t− 1)dt+ εσdW. (28)

In this case L0η = −π
2 η(−1), G(η) = η3(−1) and F (η) = σ. The characteristic equation λ+ π

2 e
−λ = 0 has countably

infinite roots on the complex plane. The roots with the largest real part are ±iωc = ±iπ2 . Let Φ(θ) = [ei
π

2
θ e−iπ

2
θ].

Now, Ψ can be evaluated (using (12) to (15)) to be

Ψ(•) =
[

(1 + iπ2 )
−1e−iπ

2
•

(1− iπ2 )
−1ei

π

2
•

]

.

The averaged drift and diffusions can be calculated using (22)–(27) as

bH(~) = 2Ψ̂1Ψ̂2σ
2 − 3

2
(i(Ψ̂1 − Ψ̂2))~

2, (29)

σ2
H(~) = 4Ψ̂1Ψ̂2σ

2
~. (30)

In section VD, we illustrate how the averaged equation d~ = bH(~)dt+ σH(~)dW can be used to gain information
about (28) (recall remark II.1). The section VD can be read now, setting γq = 0 in (59).

B. Linear perturbations

In this section we consider the case where perturbations are also linear, and identify a complex number which alone
dictates the stability of the system. Note that we restrict to systems satisfying assumption 1. [28] discusses methods
to obtain bounds on the maximal exponential growth rates of more general class of delay equations. However the
bounds given in [28] are not optimal for systems satisfying assumption 1.
Consider

dx(t) = L0(Πtx)dt + εL1(Πtx)dW (t), (31)

where Li are linear operators, with L0 satisfying assumption 1. The averaged equation corresponding to (31) is

d~(t) = bH(~)dt + σH(~) dW (t), (32)

where bH and σH can be evaluated using (22)–(27) as

bH(~) = Cb~, σ2
H(~) = Cσ~

2,

Cb = (Ψ̂1L1Φ1)(Ψ̂2L1Φ2) + (Ψ̂1L1Φ2)(Ψ̂2L1Φ1),

Cσ = (Ψ̂1L1Φ1 + Ψ̂2L1Φ2)
2 + 2(Ψ̂1L1Φ2)(Ψ̂2L1Φ1).
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The solution to (32) is given by

~(t) = ~(0) exp

(

(Cb −
1

2
Cσ)t+

√

CσW (t)

)

. (33)

The Lyapunov exponent for the averaged equation (32) can be calculated to be

λavg = lim
t→∞

1

t
ln ~(t)

= lim
t→∞

1

t
ln ~(0) + (Cb −

1

2
Cσ) +

√

Cσ lim
t→∞

W (t)

t

= (Cb −
1

2
Cσ)

= −1

2

(

(Ψ̂1L1Φ1)
2 + (Ψ̂2L1Φ2)

2
)

.

Define λεj(t) :=
1
t ln sups∈[t−mr,t] |xj(s)| with m ∈ N such that mr > 2π

ωc
(here m is chosen so as to avoid oscillations

in the modulus of x). We conjecture that for large t, λε(t) is close to ε2 1
2λavg. The 1

2 arises from the fact that ~ is
quadratic in x.
We verify the above conjecture using the sytem:

dx = −π
2
x(t− 1)dt+ εx(t− 1)dW, (34)

i.e. L0η = −π
2 η(−1) and L1η = η(−1). The Lyapunov exponent for (32) can be calculated to be λavg ≈ −0.122 (the

matrices Ψ̂ and Φ are already calculated in section IVA). Eighty realizations of trajectories of (34) are simulated
with ε = 0.1 and initial condition (Π0x)(θ) = cos(ωcθ) for θ ∈ [−r, 0]. In the figure 1 we show the box plot for
λε(t) := 1

t ln sups∈[t−5,t] |x(s)|. For t large, mean of λε(t) is close to −0.0006 and we have ε2 1
2λavg ≈ −0.0006. For

details of the numerical scheme see appendix E.

−10

−9

−8

−7

−6

−5

−4

−3

−2

110 112 114 116 118 120
t /1000

10
4  λ

ε

FIG. 1. Box-plot of λε(t) = 1
t
ln sups∈[t−5r,t] |x(s)| for t betwen 110,000 and 120,000 in steps of 2000. The x process is simulated

using (34) with ε = 0.1. Line inside the box (red) is the mean of 80 realizations. Lower end of the box (blue) is 25th percentile
and upper end of the box (blue) is 75th percentile.

Recalling that Ψ̂2 and L1Φ2 are the complex conjugates of Ψ̂1 and L1Φ1 respectively, we find that

λavg = −Re[(Ψ̂1L1Φ1)
2] = −|Ψ̂1L1Φ1|2 cos(2θ∗),
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where θ∗ is the angle of the complex number Ψ̂1L1Φ1. The stability condition λavg < 0 translates to cos(2θ∗) > 0. If

the conjecture that for large t, λε(t) is close to ε2 1
2λavg is true, then the complex number Ψ̂1L1Φ1 alone dictates the

stability of (31).

C. van der Pol oscillator

In this section we consider the oscillator modeled by equation (4), which was considered in [10]. In studying (4), our
intentions are three fold: (i) to point out6 the errors in the analysis of [10], (ii) illustrate the stabilizing/destabilizing
effects of noise, (iii) show that the averaging results obtained in the previous section give good enough description of
the effects of noise.
The oscillator (4) has natural frequency ω0 which would be altered by the delayed-feedbacks ηq(t− r) and κq̇(t− r).

Negative of β indicates the strength of linear damping in the oscillator. The coefficient b, if positive, is the strength
of nonlinear damping in the oscillator.
Since we intend to study the effect of small noise perturbations, we scale D = ε2D̃ with ε≪ 1. Since we study the

dynamics close to the zero fixed point, we zoom-in and write x1(t) =
1
εq(t) and x2(t) =

1
ε q̇(t). Then, the oscillator

(4) can be put in the following form (using Ito interpretation)

dx(t) = L0(Πtx)dt+ ε2
(

0
−bx21(t)x2(t)

)

dt+ ε
√

2D̃

(

0
x1(t)

)

dW (t) (35)

where W is Wiener process and L0φ =
∫ 0

−r dµ(θ)φ(θ) with

dµ(θ) =

(

0 1
−ω2

0 β

)

δ0(θ) +

(

0 0
−η κ

)

δ−r(θ),

where δ0 and δ−r are delta functions, i.e.
∫

δ0φ = φ(0) and
∫

δ−rφ = φ(−r) for φ ∈ C.
The characteristic equation becomes

−λβ + λ2 + (η − κλ)e−λr + ω2
0 = 0. (36)

Since our intention is to study the effect of small noise perturbations on the oscillator when it is at the verge of
instability, we assume that the parameters of the problem are such that the characteristic equation has two roots
±iωc on the imaginary axis and all other roots have negative real parts. With this assumption the unperturbed
system ẋ(t) = L0(Πtx) is on the verge of instability. Figure 2 shows the stability boundary.
The matrices Φ and Ψ can be evaluated (using (10) to (15)) as

Φ(•) =
(

eiωc• e−iωc•

iωce
iωc• −iωce

−iωc•

)

=
(

Φ1 Φ2

)

,

Ψ(•) =
(

c(ω2
0 + ηe−iωcr)e−iωc• c(−iωc)e

−iωc•

c̄(ω2
0 + ηeiωcr)eiωc• c̄(iωc)e

iωc•

)

=

(

Ψ1

Ψ2

)

,

where

c = (ω2
c + e−iωcr(η + iηrωc + κrω2

c ) + ω2
0)

−1. (37)

Remark IV.1. The process h(Πtx) with h defined in (18) has additional significance for this problem. If Πtx was
such that the stable part (I − π)Πtx was zero, then Πtx = πΠtx = Φz(t), which gives

x(t) = Πtx(0) = Φ1(0)z1(t) + Φ2(0)z2(t) =

[

z1(t) + z2(t)
iωc(z1(t)− z2(t))

]

from which we get h(Πtx)
by def
= 2z1(t)z2(t) =

1
2 ((x1(t))

2 + (x2(t)/ωc)
2) which represents some kind of energy in the

oscillator (note that x1 is position and x2 is velocity). Usually ||(I −π)Πtx|| decays to very small values exponentially
fast and hence h(Πtx) differs from the ‘energy’ 1

2 ((x1(t))
2 + (x2(t)/ωc)

2) by a little amount.

6 This is done in appendix A
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FIG. 2. Boundary of stability for the fixed point (x1 = 0, x2 = 0) of the system (35) with ε = 0, ω0 = 1, κ = 0, η = 0.3. For each
delay r there exists a critical value βc such that for β < βc the fixed point is stable and for β > βc the fixed point is unstable.
In the inset, (theoretically predicted) stability boundary in presence of noise is shown with dashed line (obtained using (41)).

For this, ε = 0.1, D̃ = 1 and b = 1. For β in the region below the dashed line, theoretical results predict that the (0, 0) fixed
point is stable in presence of noise. Above the dashed line the fixed point looses stability; nevertheless invariant density exists.
So, theoretical results predict that the noise has destabilized the region between solid and dashed lines. The point marked by
∗ in the inset is r = 2, β = −0.301. For this point we show in figure 3 the invariant density obtained by numerical simulations.
The theoretically obtained invariant density (obtained in (42)) is in very good agreement with the actual density obtained from
numerical simulations.

Using (22)–(27) we have

bH(~) = (2D̃)2|c|2ω2
c~− bω2

c

1

2
(c+ c̄)~2,

σ2
H(~) = (2D̃)

(

2|c|2ω2
c + (iωc(c̄− c))2

)

~
2.

To understand whether noise has a stabilizing or destabilizing effect, lets consider the damping β as a bifurcation
parameter. Write β = βc+ ε

2β̃ and assume that at ε = 0, β satisfies the characteristic equation (36). Then, the effect

of β̃ is to add another term β̃(c+ c̄)ω2
c~ to bH . Then, we can write the averaged equation as

d~ = bH(~)dt+ σH(~)dW, (38)

where

bH(~) = Cb~+ C
(2)
b ~

2, σ2
H(~) = Cσ~

2,

Cb = (2D̃)2|c|2ω2
c

(

1 +
β̃

2D̃

(c+ c̄)/2

|c|2

)

,

C
(2)
b = −bω2

c

1

2
(c+ c̄),

Cσ = (2D̃)2|c|2ω2
c

(

1 +
2((c̄− c)/2i)2

|c|2
)

.
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To focus on the effect of noise, for the moment we ignore the nonlinearities by setting b = 0 in (35). Corresponding
averaged system then becomes

d~ = Cb~+
√

Cσ~dW. (39)

The above system is unstable when7 Cb − 1
2Cσ > 0, i.e. when

β̃

2D̃|c|
(c+ c̄)/2

|c| >
((c̄− c)/2i)2

|c|2 − 1

2
. (40)

Let ς1 = (c+c̄)/2
|c| and ς2 =

(

((c̄−c)/2i)2

|c|2 − 1
2

)

. It can be shown8 that if βc < 0, then ς1 > 0.

Assume βc < 0. Then, (40) holds when

β̃

2D̃|c|
>
ς2
ς1
. (41)

If noise was not present, i.e. D̃ = 0 in (35), then the (x1 = 0, x2 = 0) fixed point of (39) would have been unstable

for any β̃ > 0 (this is because −β̃ specifies how much additional damping is present in the system). If noise is present

and ς2 > 0, then the (x1 = 0, x2 = 0) fixed point of (39) is stable even for 0 < β̃ < 2D̃|c|ς2/ς1. So, noise has a
stabilizing effect if ς2 > 0.
Similar reasoning shows that the noise has destabilizing effect if ς2 < 0. If the noise was not present, then the

(x1 = 0, x2 = 0) fixed point of (39) would have been stable for any β̃ < 0. If noise is present and ς2 < 0, then (39) is

unstable even for 2D̃|c|ς2/ς1 < β̃ < 0. So, noise has a destabilizing effect if ς2 < 0. This is the scenario presented in
the inset of figure 2.
The stability of (35) when b 6= 0 depends on the stability of averaged nonlinear system (38). However the theorem

III.1 deals with only weak convergence of probability distributions and hence is not adequate to transfer the stability
properties from the averaged system to the original system (35). Neverthelss we give an account of the stability of the

averaged system (38). When the nonlinearity is destabilizing, i.e. C
(2)
b > 0, the system (35) cannot be stable. When

C
(2)
b < 0 and Cb − 1

2Cσ < 0 then the trivial solution ~ = 0 is the only equilibrium point of (38) and is stable. When

C
(2)
b < 0 and Cb − 1

2Cσ > 0 the trivial solution of (38) becomes unstable; nevertheless an invariant density exists. It
is given by (obtained by solving steady-sate Fokker-Planck equation)

p(~) =
χ

2Cb

Cσ
−1

Γ(2Cb

Cσ
− 1)

~
2(

Cb

Cσ
−1) e−~χ, χ = 2(−C(2)

b )/Cσ, (42)

where Γ is the Gamma function.
The averaging results for (35) hold on times of order 1/ε2, whereas stability concerns with times t → ∞. Never-

theless, we expect that, for small ε,

1. the invariant density from (42) is a good approximation to the steady-state density of 1
2 (x

2
1 + (x2/ωc)

2) from
(35)

2. bifurcation threshold as predicted by averaging would be good approximation to the actual bifurcation threshold
of (35).

The usefulness of the averaging results is shown in figure 3. Let the parameters be specified by the point marked by ‘∗’
in the inset of figure 2. When ε = 0, the (x1 = 0, x2 = 0) fixed point of the oscillator (35) would be stable because ‘∗’
lies below the stability boundary (solid line in figure 2). However, in presence of noise the stability boundary is shifted

by ε22D̃|c|ς2/ς1 (dashed line in figure 2). Now the fixed point loses stability; nevertheless invariant density exists.

7 note that the solution is similar to (33).
8 Note that sign(ς1) = sign( c+c̄

cc̄
) = sign( 1

c
+ 1

c̄
). Using (37) we have

c−1 + (c̄)−1 = 2(ω2
c + ω2

0) + η(eiωcr + e−iωcr) + irωce
−iωcr(η − iωck)− irωce

iωcr(η + iωck).

Employing λ = ±iωc in the characteristic equation (36) we get,

irωce
−iωcr(η − iωck)− irωce

iωcr(η + iωck) = −2βcrω
2
c ,

2η(eiωcr + e−iωcr) = (ω2
c − ω2

0)(e
iωcr + e−iωcr)2 + βciωc(e

2iωcr − e−2iωcr).

Hence c−1 + (c̄)−1 = 2(ω2
c + ω2

0) +
1
2
(ω2

c − ω2
0)(e

iωcr + e−iωcr)2 + 1
2
βciωc(e2iωcr − e−2iωcr) − 2βcrω2

c which can be simplified as

c−1 + (c̄)−1 = 2ω2
c (1 + cos2 ωcr) + 2ω2

0(1− cos2 ωcr)− βcωc(2rωc + sin 2ωcr) which is positive if βc < 0.
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FIG. 3. Cumulative distribution function (CDF) of the invariant density of 1
2
(x2

1+(x2/ω)
2) obtained from numerical simulation

of (35) with parameters specified by the point marked by ‘∗’ in the inset of figure 2 (ω0 = 1, κ = 0, η = 0.3, ε = 0.1, D̃ = 1,
b = 1, r = 2, β = −0.301). This agrees with the CDF of the density given in (42). For this case, the deterministic bifurcation

threshold is βc = −0.2987 and the predicted threshold in presence of noise is βc + ε22D̃|c|ς2/ς1 = −0.3027.

Numerical simulation is done with 3200 samples and the cumulative distribution function (CDF) of the steady-state
density of 1

2 (x
2
1 + (x2/ωc)

2) is plotted in figure 3. Also shown is the CDF arising from the averaging result (42). The

figure 3 indeed shows that the density from (42) is a good approximation to the steady-state density of 1
2 (x

2
1+(x2/ωc)

2)
from (35).
Numerical simulations in the case ς2 < 0 with ε = 0.1 show very good agreement with theoretical averaging results

for β in the range βc + 0.9ε2(2D̃|c|ς2/ς1) < β < βc. Very close to the theoretically predicted bifurcation threshold in

the presence of noise, i.e. β ≈ βc + ε2(2D̃|c|ς2/ς1), the agreement is not very good. Actual bifurcation threshold in
presence of noise (denoted by βc,noi) obtained from numerical simulations of (35), is within 10% of the theoretically

predicted value9, i.e. βc + 1.1ε2(2D̃|c|ς2/ς1) < βc,noi < βc + ε2(2D̃|c|ς2/ς1). For details of the numerical scheme see
appendix E. For the numerical simulations verifying this claim, see the supplemental file [29].

V. STRONGER DETERMINISTIC PERTURBATIONS

Here we consider systems with slightly stronger deterministic perturbations:

dx(t) = L0(Πtx)dt + εGq(Πtx)dt + ε2G(Πtx)dt+ εF (Πtx)dW (t), (43)

where W is R-valued Wiener process.
As an example, consider the noisy perturbation dx̃ = −π

2 x̃(t− 1)dt+ x̃2(t)dt+ ε2σdW of the DDE ˙̃x(t) = −π
2 x̃(t−

1) + x̃2(t). Then x(t) = ε−1x̃(t) can be put in the form (43) with L0(η) = −π
2 η(−1), F (η) = σ, G(η) = 0 and

Gq(η) = η2(0).
The effect of Gq in (43) is significant in just times of order 1/ε whereas the effects of G and F are significant in

times of order 1/ε2. So we consider only those Gq which are such that a certain kind of time averaged effect of Gq is
zero:

1

2π/ω

∫ 2π/ω

0

e−iωctΨ̂1Gq(η
~

t ) dt = 0, (44)

9 Note that the theoretical averaging results concern with limit ε → 0, but here we took ε = 0.1.
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where η~t is defined in (25). The assumption 44 is a natural one: for example, Gq which are homogenously quadratic
in η (say Gq(η) = (η(0))2) satisfy the property (44).
Writing Xε(t) = x(t/ε2), equation analogous to (20) becomes

dXε(t) =
1

ε2
L0(Π

ε
tX

ε)dt+
1

ε
Gq(Π

ε
tX

ε)dt+G(Πε
tX

ε)dt+ F (Πε
tX

ε)dW (t), t ≥ 0, (45)

Πε
0X

ε = ϕ ∈ C.

Using Ito formula, Hε(t) := h(Πε
tX

ε) satisfies

dHε(t) =
1

ε
(bq,(1)(Πε

tX
ε) + bq,(2)(Πε

tX
ε))dt+ b(Πε

tX
ε)dt+ σ(Πε

tX
ε)dW, Hε(0) = h(ϕ), (46)

where b, σ and E are same as in (22), (23), (24) respectively, and

bq,(1)(η) = E(η)Gq(πη), (47)

bq,(2)(η) = E(η)(Gq(η)−Gq(πη)). (48)

Recall that we can write the solution as Πε
tX

ε = Φz(t) + (I − π)Πε
tX

ε where z(t) := 〈Ψ,Πε
tX

ε〉. Note that the
evolution of zi(t) = 〈Ψi,Π

ε
tX

ε〉 is fast compared to the evolution of Hε and is predominantly oscillatory. Heuristically,
the zi oscillate fast along trajectories of constant h (the effect of 1

ε2L0) while at the same time diffusing slowly across
the constant h trajectories (the effect of perturbations G,Gq, F ). Hence, the effect of zi in the above coefficients b and
σ can be averaged out. Our goal is to obtain an averaging result akin to theorem III.1. However, the terms arising

from Gq should be dealt with carefully. The assumption 44 would entail that 1
2π/ω

∫ 2π/ω

0 E(η~t )Gq(η
~
t ) dt equals zero

as well10. Hence, when the oscillations are averaged, the leading order contribution of bq,(1) is zero. However, because
of the 1

ε multiplying bq,(1), higher order effects must be taken into account.

We give explicit formulae for the contributions from bq,(1) and bq,(2), using solutions of the unperturbed system
with n specific initial conditions. Atleast when Gq is purely quadratic, the averaged terms arising from bq,(k) would
be the same as what one gets from a formal center-manifold and normal-form calculation. However we do not assume
the existence of a center-manifold. The following method however has an advantage in that numerical integration can
be used to find the answers. To provide an illustration of how the method works, a simple example without delay is
worked in appendix B. To state the formulae, we need to set up some notation.

A. Notation

For ϕ ∈ C, let T̂ (t)ϕ denote the solution at time t of the unperturbed linear system (5) with initial condition

Π0x = ϕ, i.e. T̂ (t)ϕ = Πtx where x is governed by (5).
Let 1{0} : [−r, 0] → Rn×n denote the matrix valued function

1{0}(θ) =

{

In×n, θ = 0,

0n×n, θ 6= 0,
(49)

where I is the identity matrix. For a constant n × 1 vector v, one can solve the unperturbed linear system (5) with

Π0x = 1{0}v. The solution is indicated by T̂ (t)1{0}v.
Recall that π is the projection operator onto the critical eigenspace and is given by (16). Even though 1{0}v does

not belong to C (because it is not continuous), the definition π(1{0}v) := Φ〈Ψ,1{0}v〉 still makes sense11 using the
bilinear form (12). On evaluation of the bilinear form we find that

π(1{0}v) = ΦΨ̂v. (50)

The meaning of T̂ (t)π1{0}v and T̂ (t)(I − π)1{0}v should now be clear.

10 This follows from the fact that E(η~t ) =
√
2~(e−iωctΨ̂1 + eiωctΨ̂2) and Ψ̂2 is the conjugate of Ψ̂1.

11 Rigorous way to extend the space C to include the discontinuities and the decomposition of the extended space as P ⊕ Q̂ is discussed in
[11].
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Suppose G : C → Rk and let η, ξ ∈ C. Then (ξ.∇)G(η) denotes the Frechet differential of G evaluated at η in the
direction of ξ, i.e.

(ξ.∇)G(η) = lim
δ→0

G(η + δξ)−G(η)

δ
.

In a moment we would see the motivation for defining the following:

ρ(η) := inf

{

t > 0 : 〈Ψ, T̂ (t)πη〉 = 1

2

√

2h(η)

[

1
1

]}

, (51)

a(1)q (η) =

∫ ρ(η)

0

((

T̂ (s)π1{0}Gq(η)
)

.∇
)

bq,(1)(T̂ (s)πη)ds, (52)

a(2)q (η) =

∫ ∞

0

((

T̂ (s)1{0}Gq(η)
)

.∇
)

bq,(2)(T̂ (s)πη)ds. (53)

B. Averaging

Theorem V.1. In the case when F is constant and G,Gq are Lipschitz and Gq satisfies (44); the probability distri-

bution of Hε until any finite time T > 0, converges as ε → 0, to the probability distribution of a process ȟ which is
the solution of the SDE

dȟ(t) = (bH + b
q,(1)
H + b

q,(2)
H )(ȟ(t))dt + σH(ȟ(t))dW (t), ȟ(0) = h(ϕ),

where bH and σH are same as in (26) and (27) and b
q,(k)
H for k = 1, 2 are given by

b
q,(k)
H (~) =

1

2π/ωc

∫ 2π/ωc

0

a(k)q

(

η~t
)

dt, (54)

where η~t is defined in (25). The coefficients b
q,(k)
H are written more explicitly in (55)–(56).

The proof of the above result can be found in [24]. The key idea in obtaining the averaged effect of Gq is this:

Let cq,(1) be the function whose differential along the trajectory of the unperturbed system equals bq,(1) defined in
(47). Then the average effect of bq,(1) is negative of the average of ‘the differential of cq,(1) along the direction of the

perturbations’. In symbols: the function cq,(1)(η) = −
∫ ρ(η)

0
bq,(1)(T̂ (s)η)ds is such that d

dt

∣

∣

t=0
cq,(1)(T̂ (t)η) = bq,(1)(η).

The differential of cq,(1) along the direction of the perturbations is (1{0}Gq(η).∇)cq,(1)(η) which evaluates to −aq,(1)(η)
(plus an additional term whose average turns out to be zero due to assumption 44). The average effect of bq,(1) is the
average of aq,(1). Similar is the reasoning for bq,(2). For details see12 section 9 of [24]. To illustrate the above idea, a
simple example without delay is worked out in appendix B. We urge the reader to study appendix B to gain intuition

about the process of obtaining the drift coefficients b
q,(i)
H .

The term b
q,(1)
H is solely due to the critical eigenspace, and the term b

q,(2)
H arises from the interaction between stable

eigenspace and critical eigenspace. When Gq is purely quadratic, these are the same terms that arise from a formal
center-manifold calculation.
Note that H encodes information only about the critical component of the solution πΠεXε. The above results

should be augmented with a result that the stable component (I − π)ΠεXε is small. Proof of theorem V.1 and a
result to the effect that the stable component of the solution is small are presented in [24].

Remark V.1. It is clear from (48) that, if we had totally ignored the stable component, i.e. if we had set (I −
π)Πε

tX
ε = 0 at the very beginning of the analysis, we would miss the term b

q,(2)
H .

12 [24] deals with scalar systems and does not employ polar coordinates. Hence the form of expressions differ from here. However they
evaluate to same numbers as here. The key difference is: [24] writes an element η ∈ P as z1 cos(ωc·) + z2 sin(ωc·) with zi ∈ R. Here we
write as z1eiωc· + z2e−iωc· with zi ∈ C and z2 = z̄1.
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Remark V.2. The coefficients b
q,(k)
H can be written more explicitly as

b
q,(1)
H (~) =

1

2π/ωc

∫ 2π/ωc

0

dt

∫ (2π/ωc)−t

0

ds

(

2(Ψ̂Gq(η
~

t ))
∗
[

0 eiωcs

e−iωcs 0

]

Ψ̂Gq(η
~

t+s)

)

+

√
2~

2π/ωc

∫ 2π/ωc

0

dt

∫ (2π/ωc)−t

0

ds
(

(ΦesBΨ̂Gq(η
~

t )).∇
)

(Et+sGq(η
~

t+s)), (55)

b
q,(2)
H (~) =

√
2~

2π/ωc

∫ 2π/ωc

0

dt

∫ ∞

0

ds
n
∑

j=1

(Gq(η
~

t ))j

(

(T̂ (s)(I − π)1{0}ej).∇
)

(Et+sGq(η
~

t+s)), (56)

where η~t is defined in (25), and

Et := e−iωctΨ̂1 + eiωctΨ̂2, (57)

and ej denotes unit vector in the jth direction of Rn. To check how these explicit forms follow from (51)–(54) refer to

appendix C. If Gq is a polynomial, the terms in (55) can be put in Mathematica to get explicit functional dependence

on ~; otherwise numerical integration can be done at specific ~ values. For the term in (56) the integral
∫ 2π/ωc

0
can

be evaluated first using mathematica and then
∫∞
0

can be done using numerical integration. All that we would need
is the solutions of the unperturbed system with n different initial conditions (I − π)1{0}ej for j = 1, . . . , n. Since the

initial condition (I −π)1{0}ej belong to the stable space Q, the solution T̂ (s)(I −π)1{0}ej decays exponentially fast to

zero and hence then integral
∫∞
0

need not be evaluated until infinity—a reasonable large upper limit would be enough
to get a good enough approximation. An example is done next section to illustrate the above computations. Note that,
when applied in a deterministic DDE setting, the above formulas provide an alternate way to compute the effect of
center-manifold terms on the amplitude of critical mode.

C. Example

Consider the equation (28) with added quadratic nonlinearity Gq(η) = (η(−1))2:

dx(t) = −π
2
x(t− 1)dt+ ε2x3(t− 1)dt+ εσdW + εx2(t− 1)dt (58)

We apply theorem V.1. Note that bH and σH are already evaluated (see equations (29) and (30)). We continue using
the Φ and Ψ from section IVA.
Now we evaluate b

q,(1)
H and b

q,(2)
H using (54). In section VD we show by numerical simulations how the averaged

dynamics would be useful to gain information about (58).
Note that (ξ.∇)Gq(η) = 2η(−1)ξ(−1). We also write it as 2η

∣

∣

−1
ξ
∣

∣

−1
to avoid writing too many braces. Using the

formula (55), we have b
q,(1)
H (~) = 1

2π/ωc

∫ 2π/ωc

0

(

∫ (2π/ωc)−t

0 G (t, s) ds
)

dt where

G (t, s) = 2Ψ̂1Ψ̂2(e
iωcs + e−iωcs)(η~t

∣

∣

−1
)2(η~t+s

∣

∣

−1
)2 +

√
2~Et+s2(η

~

t+s

∣

∣

−1
)(Φ
∣

∣

−1
esBΨ̂)(η~t

∣

∣

−1
)2,

where η~t is defined in (25). Using Mathematica we get b
q,(1)
H (~) = −64~2/(4 + π2)2 ≈ −0.3327~2.

To evaluate b
q,(2)
H (~) using (56), we first evaluate the

∫ 2π/ωc

0
integral. We have

b
q,(2)
H (~) =

∫ ∞

0

(

1

2π/ωc

∫ 2π/ωc

0

√
2~Et+s2(η

~

t+s

∣

∣

−1
)(T̂ (s)(I − π)1{0}

∣

∣

−1
)(η~t

∣

∣

−1
)2 dt

)

ds

= − 4~2

4 + π2

∫ ∞

0

(

2π + π cos(πs) + 2 sin(πs)
)

(T̂ (s)(I − π)1{0}
∣

∣

−1
) ds.

The
∫∞
0 integral can be evaluated numerically by simulating the unperturbed system with the initial condition

(I − π)1{0}, i.e. 1{0} − ΦΨ̂. We get b
q,(2)
H (~) ≈ −0.7893~2.
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D. Verification by numerical simulations

This section illustrates the results of theorems III.1 and V.1 using numerical simulations and also shows how the
averaged ~ process can be used to gain information about the original x dynamics (recall remark II.1). For details of
the numerical scheme see appendix E.
Consider

dx(t) = −π
2
x(t − 1)dt+ ε2γcx

3(t− 1)dt+ εσdW + εγqx
2(t− 1)dt. (59)

Draw a random sample of size Nsamp with ~ values {~0i }Nsamp
i=1 . Simulate them according to

d~(t) = (bH + b
q,(1)
H + b

q,(2)
H )(~(t))dt + σH(~(t))dW, (60)

for 0 ≤ t ≤ Tend, where bH and σH are obtained from (29), (30), and b
q,(i)
H are obtained in section VC:

(bH + b
q,(1)
H + b

q,(2)
H )(~) = 2Ψ̂1Ψ̂2σ

2 − γc
3

2
(i(Ψ̂1 − Ψ̂2))~

2 − γ2q (0.3327 + 0.7893)~2, (61)

σ2
H(~) = 4Ψ̂1Ψ̂2σ

2
~.

Fix ε. Simulate (59) for 0 ≤ t ≤ Tend/ε
2 using initial history {

√

2~0i cos(ωc•)}Nsamp
i=1 .

Fix a number H∗ and let τε be the first time |x(t)| exceeds
√
2H∗ and τ~ be the first time ~(t) exceeds H∗, i.e.

τε := inf{t ≥ 0 : |x(t)| ≥
√
2H∗},

τ~ := inf{t ≥ 0 : ~(t) ≥ H∗}.

We can check whether the following pairs are close.

1. the distribution of h(ΠTend/ε2x) from (59) (where h is defined in (18)) and the distribution of ~(Tend) from (60),

2. the distribution of ε2τε and the distribution of τ~.

We took ε = 0.025, H∗ = 1.5, Tend = 2, Nsamp = 4000, and
√

2{~0i }Nsamp
i=1 = 1.2. Figures 4 and 5 answer the above

questions. Three cases are considered with σ = 1 fixed: (γq = 0, γc = 0), (γq = 0, γc = 1), (γq = 1/
√
3, γc = 0).
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0.8
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(1/
√

3,0)
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FIG. 4. Cumulative distribution function (CDF) of h(Π2/ε2x) (org) and ~(2) (avg). The numbers in brackets are (γq, γc)
values.

From the figures we can see that it is enough to study the averaged equations for h(Πtx) to get a good approximation
of the behaviour of x. The distribution of h(Πtx) (note that

√
2h gives the amplitude of oscillations) is well predicted

by the distribution of the averaged system ~; and the distribution of time taken by x to exceed a threshold
√
2H∗ is

well predicted by the time taken by the averaged process ~ to exceed H∗. Because the averaged equations do not contain
any delay, they are easier to analyse and simulate numerically.
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FIG. 5. Cumulative distribution function (CDF) of ε2τ ε (org) and CDF of τ~ (avg). The numbers in brackets are (γq, γc)

values. The CDF value at ε2τ ε = 2 indicates the fraction of the sample whose modulus exceeded
√
2H∗ before the time 2/ε2.

VI. OTHER KINDS OF NOISE

Here we consider equations of the form
{

dx(t) = L0(Πtx)dt + εσ(ξt)F (Πtx)dt, t ≥ 0,

Π0x = ϕ ∈ C, (62)

where F : C → Rn is Lipschitz, with atmost linear growth and three bounded derivatives; and ξ is a noise process
whose state space is denoted by M, and σ : M → R.
We make the following assumptions on the noise ξ.

Assumption 2. The noise ξ is a M-valued time-homogenous Markov process with transition probability function, ν,
given by

ν(t, ξ, B) = P{ξt ∈ B | ξ0 = ξ}

for B a borel subset of M. There exist a unique invariant probability measure ν̄ and positive constants c1 and c2 such
that for all t ≥ 0,

sup
ξ∈M

∫

M

|ν(t, ξ, dζ) − ν̄(dζ)| ≤ c1e
−c2t,

i.e. the transition probability density converges to stationary density exponentially fast. The function σ is bounded,
and such that

∫

M
σ(ξ)ν̄(dξ) = 0.

Other requirements are: M is locally compact separable metric space; the transition semigroup is Feller with σ(·)
in the domain of the infinitesimal generator.

For example, a finite-state continuous-time markov chain satisfies the above requirements.
The autocorrelation of the noise process ξ is denoted by R:

R(s) =

∫

M

σ(ξ)

(∫

M

σ(ζ) ν(s, ξ, dζ)

)

ν̄(dξ). (63)

For the perturbed system (62), h(Πtx) varies slowly compared to x. Changes in h(Πtx) are significant only on
times of order 1/ε2. Hence, we rescale time and write Xε(t) = x(t/ε2) where x is governed by (62). Also, we write
ξεt = ξ(t/ε2).
Using the segment extractor Πε

t defined in (19), Xε satisfies
{

dXε(t) = 1
ε2L0(Π

ε
tX

ε)dt+ 1
εσ(ξ

ε
t )F (Π

ε
tX

ε)dt, t ≥ 0,

Πε
0X

ε = ϕ ∈ C. (64)
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Write Hε(t) := h(Πε
tX

ε). Then Hε(t) satisfies

dHε(t) =
1

ε
σ(ξεt )b(Π

ε
tX

ε)dt, Hε(0) = h(ϕ) (65)

where

b(η) = E(η)F (η), (66)

where E is defined in (24).

Using the technique of martingale problem, we can prove13 the following result (a sketch of proof is given in appendix
D):

Theorem VI.1. Under the conditions on F and noise ξ listed before; the probability distribution of Hε converges, as
ε→ 0, to the distribution of the process ȟ which is the solution of the SDE

dȟ(t) = bH(ȟ(t))dt+ σH(ȟ(t))dW (t), ȟ(0) = h(ϕ),

with coefficients bH and σH given by

σ2
H(~) =

1

2π/ωc

∫ 2π/ωc

0

2 b(η~t )

(∫ ∞

0

R(s) b(η~t+s) ds

)

dt,

bH(~) =
1

2π/ωc

∫ 2π/ωc

0

(∫ ∞

0

R(s)
(

T̂ (s)1{0}F (η
~

t ).∇
)

b(η~t+s) ds

)

dt,

where η~t is defined in (25).

We urge the reader to study appendix D to gain intuition about the process of obtaining the coefficients bH and
σH . Akin to the formulas (55)–(56), the coefficient bH can be written more explicitly as

bH(~) =
1

2π/ωc

∫ 2π/ωc

0

dt

∫ ∞

0

ds

(

2R(s) (Ψ̂F (η~t ))
∗
[

0 eiωcs

e−iωcs 0

]

Ψ̂F (η~t+s)

)

+

√
2~

2π/ωc

∫ 2π/ωc

0

dt

∫ ∞

0

dsR(s)

n
∑

j=1

(F (η~t ))j

(

(T̂ (s)1{0}ej).∇
)

(Et+sF (η
~

t+s)),

where η~t is defined in (25), E is defined in (57), and ej is the unit vector in the jth direction of Rn. Similarly,

σ2
H(~) =

4~

2π/ωc

∫ 2π/ωc

0

dt

∫ ∞

0

ds (EtF (η~t ))R(s)(Et+sF (η
~

t+s))).

It would be easier to do the
∫ 2π/ωc

0
integral before the

∫∞
0

integral.

Analogous results for systems without delay are found in section 4 of [30]. Even systems with delay can be put in
the framework of [30]. Equations of the form (62) with F (0) = 0 and

∫

M
σ(ξ)ν̄(dξ) 6= 0 (i.e noise is not mean zero)

are studied in [31].

Remark VI.1. In the equation (62), we could have included the deterministic perturbations G and Gq as done in
equation (43); but the averaged drift terms arising from these would be same as in the previous sections.

13 Proof of theorem (VI.1) and a result to the effect that the stable component of the solution is small would be published in a different
article.
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A. Linear perturbations

When F (η) = L1η where L1 : C → R
n is a linear operator, the expressions for bH and σH can be more explicitly

evaluated using the autocorrelation function as follows. Let Υ be the 2× 2 matrix Υij = Ψ̂iL1Φj . Let

R0 =

∫ ∞

0

R(s)ds,

R2c =

∫ ∞

0

R(s) cos(2ωcs)ds,

R̂1 =

∫ ∞

0

R(s)e−iωcsΨ̂1L1(T̂ (s)(I − π)1{0}L1Φ1) ds,

R̂2 =

∫ ∞

0

R(s)eiωcsΨ̂2L1(T̂ (s)(I − π)1{0}L1Φ2) ds.

Then,

bH(~) = Cb~, σ2
H(~) = Cσ~

2

where

Cb =

(

(Υ11 +Υ22)
2R0 + 4Υ12Υ21R2c + R̂1 + R̂2

)

,

Cσ = 2

(

(Υ11 +Υ22)
2R0 + 2Υ12Υ21R2c

)

.

Remark VI.2. Note that if we had totally ignored the stable modes, i.e. if we set (I − π)Πε
tX

ε = 0 at the very

beginning of the analysis, we would not have the terms R̂1 and R̂2.

The Lyapunov exponent for the averaged equation

d~(t) = bH(~)dt + σH(~) dW, (67)

can be calculated to be

λavg = Cb −
1

2
Cσ = 2Υ12Υ21R2c + R̂1 + R̂2. (68)

Using singular perturbation methods and Furstenberg-Khasminskii formula, the following theorem for scalar pro-
cesses is proved in [32] and [33].

Theorem VI.2. Consider (62) with F (η) = L1(η) where L1 : C → R is linear. Let the top Lyapunov exponent of the
process x be defined by

λε := lim sup
t→∞

1

t
ln sup

s∈[t−r,t]

|x(s)|. (69)

Then λε = ε2 1
2λavg +O(ε3).

The same can be said about vector valued processes.

B. Verification by numerical simulation

Consider the system

dx(t) = −π
2
x(t − 1)dt+ εσ(ξt)x(t− 1)dt. (70)

Let ξ be a two-state symmetric markov chain with switching rate g/2, i.e.

lim
t↓0

1

t
P1→2(t) = g/2 = lim

t↓0

1

t
P2→1(t) (71)
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FIG. 6. Cumulative distribution function (CDF) of h(Π1/ε2x) (org) and ~(1) (avg).
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FIG. 7. Cumulative distribution function (CDF) of ε2τ ε (org) and CDF of τ~ (avg). The CDF value at ε2τ ε = 1 indicates the

fraction of particles whose modulus exceeded
√
2H∗ before the time 1/ε2.

where Pi→j(t) is the probability of transition from state i to state j in time t. Let σ(ξ = 1) = −σ(ξ = 2) = σ0. We
then have the autocorrelation as R(s) = σ2

0e
−gs.

We consider two cases g = 2 or g = 6 with σ0 = 1. The averaged equations are

g = 2 : d~(t) = 0.3734 ~ dt +
√
0.9873~ dW,

g = 6 : d~(t) = 0.1715 ~ dt +
√
0.4245~ dW.

Using same notation as in section VD, we fix ε = 0.025, Tend = 1, H∗ = 1, Nsamp = 4000 and
√

2{~0i }Nsamp
i=1 = 1.

The equation (70) is simulated for time Tend/ε
2 with initial history {

√

2~0i cos(ωc•)}Nsamp
i=1 . We obtain the following

figures 6 and 7 which show that the averaged system gives a good approximation of the original system. For details
of the numerical scheme see appendix E.
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FIG. 8. 1
2
λavg as a function of the delay in the perturbation (r1) and the rate of switching of the noise (g) for equation (73).

The top Lyapunov exponent λε is close to ε2 1
2
λavg by theorem VI.2. Note that both λavg < 0 (stabilization) and λavg > 0

(destabilization) are possible.

VII. DISCUSSION

Delay equations with noise perturbations as considered in section VI display interesting similarities with non-delay
systems. For example, [34] considers coupled oscillators with one of the oscillators stable, in the following form. Let

J be the symplectic matrix

(

0 1
−1 0

)

, I be the 2× 2 identity matrix and O be the 2× 2 zero matrix. Let x ∈ R4 be

governed by

ẋ(t) =

(

ω1J O
O −δI + ω2J

)

x(t) + εσ(ξ(t))

(

K M
N L

)

x(t) (72)

where K,L,M,N are 2× 2 matrices. The oscillator with frequency ω1 is coupled to the stable oscillator of frequency
ω2. [34] shows that the Lyapunov exponent of the above system can be written in terms of quantities analogous

to R0, R2c, R̂i defined in section VIA. Further they show that both stabilization and destabilization are possible
depending on the matrix coefficients K,M and N .
The delay system that we considered under the assumption 1 can be thought of as a coupled oscillator system

with one critical mode and infinitely many stable modes (the characteristic equation has a pair of roots ±iωc, and all
other roots have negative real part). The lyapunov exponent obtained in (68) suggests that both stabilization and
destabilization are possible. To illustrate this, consider

dx(t) = −π
2
x(t− 1)dt+ εσ(ξt)x(t− r1)dt (73)

with ξ a two-state symmetric markov chain with states σ(ξ) ∈ {+1,−1} and rate of switching g/2 (defined in (71)).
Theorem VI.2 says that the Lyapunov exponent λε (defined in (69)) is close to ε2 1

2λavg where λavg is evaluated in (68).

Figure 8 shows how 1
2λavg varies with the delay in the perturbation (r1) and rate of switching (g) of the two-state

markov chain. Note that both λavg < 0 (stabilization) and λavg > 0 (destabilization) are possible.
Even the white noise allows for both possibilites. As mentioned in section IVB, the lyapunov exponent λavg

corresponding to (31) equals −Re[(Ψ̂1L1Φ1)
2]. Applying to dx(t) = −π

2x(t − 1)dt + εx(t − r1)dW we find that
λavg < 0 for r1 < 0.8609 and λavg > 0 for 0.8609 < r1 ≤ 1.
The above examples raise the question whether stabilization or destabilization is possible when the noise is additive,

i.e. the coefficient F is a constant independent of the state x. To answer this question, as an example, consider (59).
The corresponding averaged equation is (60), with the averaged drift and diffusion coefficients given by (61). Note

that the diffusion σ2
H is zero only if ~ = 0 and when ~ = 0, the drift is 2Ψ̂1Ψ̂2σ

2 = 2|Ψ̂1|2σ2 > 0. Thus additive noise
destroys the fixed points and hence stabilization is not possible.
The averaging results presented in this article allow us to simplify the analysis of delay systems at the verge of

instability. The averaged dynamics does not involve any delay and hence is easier to analyse. Using numerical
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simulations we have amply demonstrated the usefulness of the theoretical results in approximating the probability
distribution of the time-delay system with that of the averaged system. In section IVC we have shown how these
results would be useful in computing an approximation to the shift of bifurcation thresholds in presence of noise.
Note that the H process only deals with the amplitude of oscillations and do not concern with the phase. In

applications where phase is also important, the following methods might be useful:

• study the individual projections zi(t) = 〈Ψi,Πtx〉 without averaging. However, to study the behaviour of x
on times of order 1/ε2, the zi processes should also be studied for times of order 1/ε2. But, the averaged H
equations need to be simulated only for times of order 1 to study the amplitude of oscillations of x on times of
order 1/ε2.

• study the slowly varying process α(t) := z1(t)
z2(t)

e−2iωct. As an example, consider the scalar process dx =

L0(Πtx)dt + εσdW with L0 satisfying assumption 1. Let zi(t) = 〈Ψi,Πtx〉 and let δt be the angle of the
complex number z1(t). Since the dynamics of zi is predominantly an oscillation with frequency ωc, the quantity
α(t) = cos(2(δt − ωct)) + i sin(2(δt − ωct)) is slowly varying. Writing αε(t) = α(t/ε2), zεi (t) = z(t/ε2) and
applying Ito formula, we find that the pair (Hε, αε) have same distribution as the equations

dHε = 2σ2Ψ̂1Ψ̂2dt+ 2σ(Ψ̂1z
ε
2 + Ψ̂2z

ε
1)dW,

dαε = σ2αε

(

Ψ̂2
2

(zε2)
2
− 2Ψ̂1Ψ̂2

Hε

)

dt+ σαε

(

Ψ̂1

zε1
− Ψ̂2

zε2

)

dW,

where zε evolve according to dzε = 1
ε2Bz

εdt + σΨ̂dW. Heuristically, on averaging the fast oscillations of zεi we

get14 that the distribution of (Hε, αε) converges as ε→ 0 to the distribution of (~, α◦)

d~ = 2σ2Ψ̂1Ψ̂2dt+ 2σ

√

Ψ̂1Ψ̂2~ dW1,

dα◦ = −(2σ2Ψ̂1Ψ̂2/~)α
◦ dt+ iσα◦

√

4Ψ̂1Ψ̂2/~ dW2. (74)

where (W1,W2) are independent R-valued Wiener processes. The phase of the oscillation of xε(t) = x(t/ε2) is
δt/ε2 = (ωct/ε

2) + 1
2argα

ε(t), the distribution of which can be approximated by the distribution of (ωct/ε
2) +

1
2argα

◦(t) where α◦ is the process from (74). Writing β◦ := 1
2argα

◦(t) = 1
2i logα

◦(t) and applying Ito formula

we find that β◦ evolves according to dβ◦ = σ

√

Ψ̂1Ψ̂2/~ dW2.

We conclude this article with one other related work in this context.
The instability in assumption 1 is not the only kind of instability possible. For example, one can have

Assumption 3. The characteristic equation (9) has zero as a simple root, and all other roots have negative real parts.

The analysis under assumption 3 is similar to the analysis in previous sections. Choose d such that ∆(0)d = 0n×1 and
d2 such that d2∆(0) = 01×n. Define Φ by the constant Φ(•) = d and Ψ by Ψ(•) = cd2 where the constant c is choosen
so that 〈Ψ,Φ〉 = 1 for the bilinear form in (12). The space C can be split as C = P⊕Q where P is the space spanned by

the constant function Φ. The projection operator is π : C → P given by π(η) = Φ〈Ψ, η〉. Define Ψ̂
def
= Ψ(0). Let T̂ and

1{0} be as defined in section VA. For the unperturbed system (5), writing Πtx = πΠtx+(1−π)Πtx = Φz(t)+(I−π)Πtx
we find that ż = 0 and ||(I −π)Πtx|| decays exponentially fast. So, defining h(η) = 〈Ψ, η〉 we find that H(t) = h(Πtx)
is a constant for the unperturbed system (note that H is same as z). Now consider equations of the form (43). Akin
to condition (44) we need to impose that

Ψ̂Gq(Φh) = 0, ∀h ∈ R. (75)

(If the above is not imposed, then the dynamics of H on times of order 1/ε converges to that of a deterministic

process15 given by Ḣ = Ψ̂Gq(ΦH).) When (75) is imposed, significant changes in H occurs only on times of order
1/ε2. So writing Xε(t) = x(t/ε2) we find that Xε has the same probability distribution as the process satisfying

14 Note that zεi are fast oscillating and hence (zεi )
2 are also fast oscillating, but 2zε1z

ε
2 = Hε is slow varying. Denoting the average by

A, we have A[(Ψ̂1zε2 + Ψ̂2zε1)
2] = Ψ̂2

1A[(z
ε
2)

2] + Ψ̂2
2A[(z

ε
1)

2] + Ψ̂1Ψ̂2Hε = Ψ̂1Ψ̂2Hε. Similarly, A[( Ψ̂1

zε
1

− Ψ̂2

zε
2

)2] = −4Ψ̂1Ψ̂2/Hε and

A[(Ψ̂1zε2 + Ψ̂2zε1)(
Ψ̂1

zε
1

− Ψ̂2

zε
2

)] = 0.
15 A stochastic limit can be obtained by strengthening the noise.



24

(45). Defining Hε(t) := h(Πε
tX

ε) and using Ito formula we get that H satisfies (46) with bq,(1)(η) = Ψ̂Gq(πη) = 0,

bq,(2)(η) = Ψ̂(Gq(η) −Gq(πη)), b(η) = Ψ̂G(η) and σ(η) = Ψ̂F (η). It can be shown that analogous result to theorem

V.1 holds with the averaged drift and diffusion coefficients given by bH(~) = Ψ̂G(Φh), σ2
H(~) = (Ψ̂F (Φ~))2, b

q,(1)
H = 0,

and

b
q,(2)
H (~) =

∫ ∞

0

((T̂ (s)(I − π)1{0}Gq(Φ~)).∇)Ψ̂Gq(Φ~)ds. (76)

For scalar systems the condition (75) would necessarily mean that Gq(Φ~) = 0 which would result in 1{0}Gq(Φ~) = 0

and hence b
q,(2)
H = 0. This means that, when (43) is scalar valued, Gq terms would have negligible effect on the

dynamics on P subspace for times of order 1/ε2.
[23] considers scalar systems satisfying assumption 3, but do not impose (75). [23] gives a method to construct higher

order corrections to the center-manifold in presence of periodic forcing and white noise. They show that having higher
order corrections in the center-manifold would improve accuracy of reconstructing the trajectories (figures 2 and 6 in
[23]). However, these corrections should be evaluated through numerical simulations of a delay equation—for example,
the correction to the center-manifold in equation 52 of [23] should be numerically simulated. In scalar equations this
task can be circumvented by employing series solutions as in equation 53 of [23]. However, for multidimensional system
this involves evaluating reasonable number of eigenvalues and eigenvectors of the linear delay system. Further, the
computations require memory for storing the history of Brownian motion for computing the convolutions (equation 55
in [23]). The extra effort required from the methods in [23] allows to reconstruct trajectories. The averaging methods
presented in our article would deal with distributions alone in the limit of small ε and cannot reconstruct trajectories.
Finally, for completeness, we consider equations of the form (62) with assumption 3. In this case it can be shown

that theorem VI.1 holds with

bH(~) =

(∫ ∞

0

R(s)ds

)

(

1{0}F (Φ~).∇
)

Ψ̂F (Φh), σ2
H(~) = 2

(∫ ∞

0

R(s)ds

)

(

Ψ̂F (Φh)
)2

. (77)
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Appendix A: Errors in [16], [17], [10].

1. Errors in [16], [17]

One of the equations considered in [17] is:

dXε(t) =
1

ε2

(

− αXε(t) + βXε(t− ε2τ)

)

dt+Xε(t)dW (t), (A1)

where W is a Wiener process16. The above system is studied as a perturbation of the linear system

ẋ(t) =
1

ε2

(

− αx(t) + βx(t− ε2τ)

)

. (A2)

Seeking solution of the form eλt/ε
2

the characteristic equation is found to be λ = −α + βe−λτ . Let the parameters
α, β, τ = τc + ε2τ2 be such that when τ2 = 0, a pair of roots ±iω are on the imaginary axis and all other roots are
with negative real part. In this scenario we have iω = −α+ βe−iωτc which on solving gives17

ω =
√

β2 − α2, β cos(ωτc) = α, β sin(ωτc) = −ω. (A3)

[17] employs multiscale analysis and for that purpose writes18

dW (t) = K0dW0(t) +K2,1 cos(
2ωt

ε2
)dW2,1(t) +K2,2 sin(

2ωt

ε2
)dW2,2(t), (A4)

where Wi are independent Brownian motions. [17] assumes that solution Xε is of the form19

Xε(t) = A(t) cos(ωt/ε2) +B(t) sin(ωt/ε2). (A5)

Here A,B vary at different scale (in the spirit of multiscale analysis) than cosine and sine.
According to [17], on one hand, applying Ito formula we have20

dXε =
1

ε2
(−ωsA+ ωcB) dt+ cdA+ sdB, (A6)

where c = cos(ωt/ε2) and s = sin(ωt/ε2). On the other hand, since Xε must satisfy (A1) we must have21

dXε =
1

ε2

(

−α (cA+ sB) + β

(

Aτ cos(
ω(t− ε2τ)

ε2
) +Bτ sin(

ω(t− ε2τ)

ε2
)

))

dt

+ (cA+ sB)(K0dW0(t) +K2,1 cos(
2ωt

ε2
)dW2,1(t) +K2,2 sin(

2ωt

ε2
)dW2,2(t)), (A7)

16 This is time-rescaled version of eq 1.1 in [17]. The analysis below appears in section 2 of [17].
17 This is eq 2.1 in [17].
18 This is eq 2.11 in [17].
19 This is eq 2.2 in [17].
20 This is eq 2.4 in [17].
21 This is eq 2.5 in [17].
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where Aτ means A(t− ε2τ).
Using τ = τc + ε2τ2 and (A3) we have

β cos(
ω(t− ε2τ)

ε2
) = (αc − ωs) + ε2ωτ2(ωc+ αs) (A8)

β sin(
ω(t− ε2τ)

ε2
) = (ωc+ αs) + ε2ωτ2(−αc+ ωs). (A9)

Using the above in (A7) and comparing the resulting equation with (A6) we have

1

ε2
(−α(cA+ sB) +Aτ (αc− ωs) +Bτ (αs+ ωc)) dt (A10)

+ ωτ2 (ω(cAτ + sBτ ) + α(sAτ − cBτ )) dt

+ (cA + sB)

(

K0dW0(t) +K2,1 cos(
2ωt

ε2
)dW0(t) +K2,2 sin(

2ωt

ε2
)dW0(t)

)

− 1

ε2
(−ωsA+ ωcB) dt− cdA− sdB = 0.

[17] then multiplies the above with c or s and integrates over a time period, while treating A and B as constants, to
get the following equations:

dA = −αd̂A− ωd̂B + ωτ2(ωAτ − αBτ )dt+AK2,0dW0 +
1

2
AK2,1dW2,1 +

1

2
BK2,2dW2

dB = ωd̂A− αd̂B + ωτ2(αAτ + ωBτ )dt+BK2,0dW0 −
1

2
BK2,1dW2,1 +

1

2
AK2,2dW2, (A11)

where d̂A means A(t)−A(t−ε2τ)
ε2 dt.

In (A11) the constants K are not yet determined. [17] determines them in the following way: [17] compares the
diffusive part of the generator for Xε and for (A,B). The diffusive part of the generator for (A,B) is

(A2∂A∂A +B2∂B∂B + 2AB∂A∂B)K2
2,0

+
1

4
(A2∂A∂A +B2∂B∂B − 2AB∂A∂B)K2

2,1

+
1

4
(B2∂A∂A +A2∂B∂B + 2AB∂A∂B)K2

2,2. (A12)

The diffusive part of the generator for x is

x2∂x∂x = (cA + sB)2(c∂A + s∂B)
2. (A13)

Averaging (A13) over one time period, [17] obtains22

3A2 +B2

8
∂A∂A +

3B2 +A2

8
∂B∂B +

1

2
AB∂A∂B. (A14)

[17] equates (A14) and (A12) to find that

K2,0 =
1

2
, K2,1 = K2,2 =

1√
2
. (A15)

Then [17] presents a figure showing that density of A(T ) cos(ωT/ε2) + B(T ) sin(ωT/ε2), with A,B simulated from
(A11), gives good approximation to the density of Xε(T ).
The above procedure is not convincing due to the following reasons:

• It is not clear whether the error in transferring from (A10) to (A11) would go to zero in some sense as ε→ 0.

22 This is eq 2.16 in [17].
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• Note that (A11) is still a delay equation and hence there would not be much advantage in simulating A,B
compared to simulating Xε. The delay itself is small O(ε2), but the difference A(t) − A(t − ε2τ) is magnified
by ε−2.

• Note that, heuristically, the LHS of (A4) is a normal random variable with variance dt; and hence, for consistency,
we must have

K2
2,0 +K2

2,1 cos
2(
2ωt

ε2
) +K2

2,2 sin
2(
2ωt

ε2
) = 1. (A16)

The above is possible only if we take |K2,1| = |K2,2| and set

K2
2,0 +K2

2,1 = 1. (A17)

But note that (A15) contradicts the consistency equation (A17). We have from (A15) that K2
2,0 +K2

2,1 =
3
4 6= 1.

We show by means of numerical simulation that the above procedure is indeed wrong.
In (A1) set α = 0, β = −π

2 and τc = 1, τ2 = 0. Then ω = π
2 and this system satisfies assumption 1. The equations

(A11) in this case becomes:

(

dA
dB

)

=
1

ε2

(

0 −ω
ω 0

)(

A(t) −A(t− ε2)
B(t)−B(t− ε2)

)

dt (A18)

+
1

2

(

1 0
0 1

)(

A(t)
B(t)

)

dW2,0

+
1

2
√
2

(

1 0
0 −1

)(

A(t)
B(t)

)

dW2,1

+
1

2
√
2

(

0 1
1 0

)(

A(t)
B(t)

)

dW2,2

Numerical simulations show that splitting W into harmonics as in (A4) is unnecessary. For this purpose, consider

(

dA
dB

)

=
1

ε2

(

0 −ω
ω 0

)(

A(t) −A(t− ε2)
B(t)−B(t− ε2)

)

dt (A19)

+

(

1 0
0 1

)(

A(t)
B(t)

)

dW2,0.

i.e. K0 = 1, K2,1 = 0 = K2,2.
We set ε = 0.05, T = 1. The initial condition is Xε(t) = cos(ωt/ε2) for t ∈ [−ε2, 0], i.e. Πε

0X
ε(θ) = cos(ωθ) for

θ ∈ [−1, 0], i.e. A(t) = 1 for t ≤ 0 and B(t) = 0 for t ≤ 0. The cumulative distribution in the figure 9 is obtained
with 2400 realizations.
Figure 9 shows that (A19) better matches the actual dynamics (A1) than (A18). But, note that (A19) is still a

delay equation and there is no advantage in simulating (A,B) compared to simulating X .

2. Errors in [10] and [18]

There are two errors in the analysis of [10] and [18], one of which is similar in nature to the previous section. We
illustrate the errors using a special case of the equation considered in [10].
[10] considers

ẍ(t) + x(t) + ηx(t − 1)− βẋ(t) =
√
2Dx(t)ξ(t), (A20)

where ξ is a white noise process with correlation E[ξ(t)ξ(t′)] = δ(t − t′). For now, lets set D = 0. The characterisitc
equation is λ2 + 1+ ηe−λ − βλ = 0. Given η, solve η cosω = ω2 − 1 for ω and get βc = −η sinω/ω. With β = βc the
system (A20) (with D = 0) satisfies assumption 1 with critical roots of the characteristic equation being ±iω. We
assume β = βc.
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FIG. 9. CDF of Xε(T ) with ε = 0.05 and T = 1. X (actual) is obtained from simulating the original dynamics (A1).
Kuske (Acos+Bsin) is A(T ) cos(ωT/ε2) + B(T ) sin(ωT/ε2) obtained from simulating (A18). Kuske altered (Acos+Bsin) is
A(T ) cos(ωT/ε2) +B(T ) sin(ωT/ε2) obtained from simulating (A19).

[10] assumes the solution is of the form

x(t, T ) = εA(T ) cosωt − εB(T ) sinωt (A21)

where T = ε2t is the slow time scale. Then,

x(t− 1, T − ε2) = x(t, T ) cosω − (sinω/ω)∂tx(t, T ) (A22)

− ε2ε
A(T )−A(T − ε2)

ε2
cos(ω(t− 1))

+ ε2ε
B(T )−B(T − ε2)

ε2
sin(ω(t− 1)).

But, [10] sets last two terms in the RHS to zero claiming A(T ) ≈ A(T − ε2) and B(T ) ≈ B(T − ε2). However, as
ε→ 0 it is easy to see that (if derivative of A and B exist) these terms go to ∂TA and ∂TB respectively.
At which ε should we ignore these and which ε should we consider it as a derivative?
Differentiating, we get

ẋ(t) = (ε2∂T + ∂t)x(t, T ) = ε2(ε∂TA cosωt− ε∂TB sinωt) + ∂tx(t, T ) (A23)

ẍ(t) = (ε2∂T + ∂t)
2x(t, T ) = ε4(ε∂2TA cosωt− ε∂2TB sinωt) (A24)

− ε22ω(ε∂TA sinωt+ ε∂TB cosωt)− ω2x(t, T )

Putting (A22), (A23) and (A24) together in (A20) and using η cosω = ω2 − 1, βc = −η sinω/ω and ignoring terms
of order more than ε3 we get that

−2ωε3(∂TA sinωt+ ∂TB cosωt) (A25)

− ε3η(∆A(T ) cos(ω(t− 1))−∆B(T ) sin(ω(t− 1)))

− ε3βc(∂TA cosωt− ∂TB sinωt) =

=
√
2Dε

(

A(T ) cosωt−B(T ) sinωt

)

ξ(t),
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where ∆A(T ) means A(T )−A(T−ε2)
ε2 etc. The corresponding equation that [10] arrives at23 is:

−ωε3(∂TA sinωt+ ∂TB cosωt) (A26)

=
√
2Dε

(

A(T ) cosωt−B(T ) sinωt

)

ξ(t),

The equation (A26) does not match with (A25) when ∆A, ∆B are set to zero, nor when they are set as actual
derivatives ∂TA, ∂TB.
[10] proceeds with (A26), multiplies with sinωt and averages over a time period to arrive at:

−ωε3 1
2
∂TA =

√
2Dε

(

A(T )Jcosωt sinωt ξ(t)K −B(T )Jsin2 ωt ξ(t)K

)

, (A27)

=
√
2Dε

1

2

(

A(T )Jsin 2ωt ξ(t)K −B(T )Jξ(t)K +B(T )Jcos 2ωt ξ(t)K

)

,

where J K is used for time-averaging.

The intermediate steps in [10] are not clear, but the end result of [10] is that D is scaled as D = ε2D̃ and three
new Gaussian process ξ0, ξ1, ξ2 are defined on slow time scale and the following are used:

Jξ(t)K = εξ0, Jcos 2ωt ξ(t)K =
ε√
2
ξ1, Jsin 2ωt ξ(t)K =

ε√
2
ξ2. (A28)

Employing this in (A27) the following is arrived at:

− ω
√

2D̃
∂TA = −Bξ0 +

1√
2
Bξ1 +

1√
2
Aξ2. (A29)

Similary, [10] multiplies (A26) with cosωt and averages over a time period and employs (A28) to arrive at:

− ω
√

2D̃
∂TB = Aξ0 +

1√
2
Aξ1 −

1√
2
Bξ2. (A30)

The equations (A29) and (A30) are respectively (16) and (17) in [10].
Now we show that the above method is not consistent with itself. From (A29) and (A30) we get

− ω
√

2D̃
(∂TA sinωt+ ∂TB cosωt) (A31)

= (−Bs+Ac)ξ0 +
1√
2
(Bs+Ac)ξ1 +

1√
2
(As−Bc)ξ2,

=: F(T ) (A32)

where s = sinωt and c = cosωt. Now E[F(T )F(T )] equals

(−Bs+Ac)2 +
1

2
(Bs+Ac)2 +

1

2
(As−Bc)2 (A33)

= (Ac−Bs)2 +
1

2
(A2 +B2).

But from (A26)

− ω
√

2D̃
(∂TA sinωt+ ∂TB cosωt) (A34)

= ε
(

Ac−Bs
)

ξ(t) =: εF(T ),

Now E[F(T )F(T )] equals (Ac − Bs)2. So the system (A29),(A30) has an extra variance of 1
2 (A

2 + B2) (see (A33))
than what is required.

23 This is equation 9 in [10]. The quantity µ defined under equation 7 of [10] is zero for the special case that we consider.
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Appendix B: An example illustrating the approach for calculation of b
q,(i)
H in theorem V.1

Consider the system without delay given by ẍ + x = εẋy, and ẏ = −y + εẋ2. Here x is oscillatory and y is stable.
The quantity H = 1

2 (x
2 + ẋ2) evolves slowly compared to x and y. Writing in state-space form z1 = x, z2 = ẋ we

have




ż1
ż2
ẏ



 =





z2
−z1
−y



+ ε





0
z2y
z22



 (B1)

and Ḣ = εb(q)(z, y), where b(q)(z, y) = z22y.
The unperturbed system is obtained by setting ε = 0 in (B1). The differential of any function f along trajectory

of unperturbed system is given by L0f where L0 = z2
∂

∂z1
− z1

∂
∂z2

− y ∂
∂y . The differential along the perturbations is

given by L1f where L1 = z2y
∂

∂z2
+ z22

∂
∂y . Note that ḟ(zt, yt) = ((L0 + εL1)f)(zt, yt).

Now let

H(z, y) = H(z)− εc(z, y) + ε2g1(z, y) + ε2g2(z) (B2)

where c, g are yet to be determined. On differentiating we get (until order ε2)

Ḣ(zt, yt) = ε
(

b(q)(zt, yt)− (L0c)(zt, yt)
)

− ε2(L1c)(zt, yt) + ε2(L0g1)(zt, yt) + ε2(L0g2)(zt, yt) +O(ε3). (B3)

Now, choose c such that L0c = b(q). Choose g1 such that (L0g1)(z, y) = (L1c)(z, y) − (L1c)(z, 0). Such a choice of
g1 is possible because, according to the unperturbed dynamics y decays to zero exponentially fast. Now, note that
(L1c)(z, 0) is a function of z alone; and the unperturbed z dynamics is ‘oscillation with constant amplitude

√
2H’.

Now, let the average of (L1c)(z, 0) along an orbit of constant H be denoted by {L1c}. This {L1c} would be a function
only of 1

2 (z
2
1 + z22) or what is the same — H. Choose g2(z) such that (L0g2)(z, 0) = (L1c)(z, 0) − {L1c}| 1

2
(z2

1
+z2

2
).

Plugging the above choices of functions in (B3) we get

Ḣ(zt, yt) = −ε2{L1c}|H +O(ε3). (B4)

Hence, for times of order O(1/ε2) we have H(zt, yt) = H(z0, y0) + ε2
∫ t

0
{L1c}|Hs

ds + O(ε). Since H differs from H
only by O(ε) (see (B2)) we can write Ht = H0 + ε2

∫ t

0
{L1c}|Hs

ds+O(ε). So, for times of order O(1/ε2), if we use

Ḣ = −ε2{L1c}|H (B5)

then the error resulted in H would be only of O(ε). Such a method is shown in [13]—we have adapted it to stochastic
delay equations in [24].
To see why the above method is useful, note that c in L0c = b(q) can be immediately solved using method of

characterisitcs. Since the solution to the unperturbed system is z1(t) = z1(0) cos t+ z2(0) sin t, z2(t) = −z1(0) sin t+
z2(0) cos t, y(t) = y(0)e−t, and b(q)(z, y) = z22y we get c(z, y) = −

∫∞
0

(−z1 sin t+ z2 cos t)
2ye−tdt. Now, (L1c)(z, 0) =

−
∫∞
0
z22(−z1 sin t+ z2 cos t)

2e−tdt. Hence {L1c}|H is

1

2π

∫ 2π

0

(

−
∫ ∞

0

z22(−z1 sin t+ z2 cos t)
2e−tdt

)∣

∣

∣

∣

(z1,z2)=
√
2H(sin s,cos s)

ds

= −H2

∫ ∞

0

1

2
(2 + cos 2t)e−tdt = −11

10
H2.

So we have Ḣ = ε2 11
10H2 + O(ε3). The reader can check using conventional center-manifold calculations that same

answer would be obtained. However the method presented here would easily adapt to multidimensional delay equations
as shown in section V.

Appendix C: Explicit evaluation of b
q,(k)
H using (51)–(54)

In this section we show how the explicit formulas (55)–(56) can be derived from (51)–(54). First we give a few
preliminaries.
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Recall that, for ϕ ∈ C, T̂ (t)ϕ denotes the solution at time t of the unperturbed linear system (5) with initial
condition Π0x = ϕ. Recall that C = P ⊕ Q where P is the space corresponding to the critical eigenvalues ±iωc.
Recalling the evolution on P defined by (17), we have that for u ∈ C2 with u2 = ū1,

T̂ (t)Φu = ΦeBtu. (C1)

Using (50) and (C1) we have for n× 1 vector v

T̂ (t)π1{0}v = ΦeBtΨ̂v. (C2)

For η~t defined in (25), we have T̂ (s)η~t = η~t+s. The z coordinates 〈Ψ, T̂ (s)η~t 〉 are given by 1
2

√
2~

[

eiωc(t+s)

e−iωc(t+s)

]

and

hence for ρ defined in (51), we can take ρ(η~t ) =
2π
ωc

− t.

Using product rule for differentiation on bq,(1) (defined in (47)) and linearity of the function E, we have for ξ, η ∈ C

(ξ.∇)bq,(1)(η) = E(ξ)Gq(πη) + E(η)(πξ.∇)Gq(πη).

Using product rule for differentiation on bq,(2) (defined in (48)) we have for ξ, η ∈ C

(ξ.∇)bq,(2)(η) =

(

(ξ.∇)E(η)

)

(Gq(η) −Gq(πη)) + E(η)(ξ.∇)Gq(η)− E(η)(πξ.∇)Gq(πη).

Since η~t (used in (54)) belongs to P , i.e. η~t = πη~t , the first term vanishes. Using linearity of differentials we have
that

(ξ.∇)bq,(2)(η~t ) = E(η~t )((I − π)ξ.∇)Gq(η
~

t ) for all ξ ∈ C. (C3)

Now we show how (56) can be derived. Using (53) in (54) we encounter the task of evaluating the differ-

ential (ξ.∇)bq,(2)(T̂ (s)η~t ) with ξ = T̂ (s)1{0}Gq(η
~
t ). Using T̂ (s)η~t = η~t+s and (C3) we get the differential as

E(η~t+s)((I − π)T̂ (s)1{0}Gq(η
~
t ).∇)Gq(η

~
t+s). It is a property of the unperturbed system that T̂ commutes with

(I − π). Defining Et = e−iωctΨ̂1 + eiωctΨ̂2 we can write E(η~t ) =
√
2~Et. So we can rewrite the differential as√

2~(T̂ (s)(I − π)1{0}Gq(η
~
t ).∇)(Et+sGq(η

~
t+s)). Writing Gq(η

~
t ) =

∑n
j=1(Gq(η

~
t ))jej and using linearity of differen-

tials we get the desired form in (56).
(55) can be similarly derived.

Appendix D: A sketch of proof of theorem VI.1

One way to characterize the probability distribution of a stochastic process Y is by an operator called the infinites-
imal generator L defined as follows: for any nice real-valued function f of the process Y ,

(Lf)(y) def
= lim

t→0

1

t
(E[f(Yt)|Y0 = y]− f(y)). (D1)

Here the ‘E’ term means “the average of f(Yt) given that the initial condition Y0 equals y”. For example, the process
whose infinitesimal generator is defined by Lf = 1

2f
′′ has the same probability distribution as the standard Brownian

motion. The process whose infinitesimal generator is defined by (Lf)(y) = b(y)f ′(y) + 1
2σ

2(y)f ′′(y) has the same
probability distribution as the process governed by the SDE, dY = b(Y )dt + σ(Y )dW with W a Wiener process.

The process whose infinitesimal generator is (Lf)(y) = b(y)f ′(y) is the ordinary differential equation Ẏ = b(Y ). The
infinitesimal generator characterizes the probability distribution of a process.
We consider the system (64)–(65) and try to find the infinitesimal generator LH of the process limε→0 Hε. For this

purpose consider the triplet process (ΠεX, ξε,Hε). It has the infinitesimal generator Lε = 1
ε2L0 + 1

εL1, where for
function f of (η, ξ, h)

(L0f)(η, ξ, h) = (Gf)(η, ξ, h) +
d

dt

∣

∣

t=0
f(T̂ (t)η, ξ, h), (D2)

(L1f)(η, ξ, h) = σ(ξ)(1{0}F (η).∇)f(η, ξ, h) + σ(ξ)b(η)
∂f

∂h
(η, ξ, h). (D3)
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Here G is the infinitesimal generator of the noise process ξ. Recall that T̂ (t)η is the solution at time t of the
unperturbed system (5) with initial condition η, and 1{0} is the matrix valued function defined in (49).
The following comments help in gaining an insight into the structure of Lε. Consider (64)–(65). If there were no

noise perturbations at all, then Hε would have remained a constant and ΠεXε would have evolved according to the
unperturbed system whose solution at time t with initial condition η is given by T̂ (t)η. Applying the definition (D1)
for this case we get the d

dt |t=0 term in (D2). If there was noise alone we would get G term in (D2). The rate of

change of Hε in (65) is σ b which explains the σb ∂f
∂h term in (D3). The other term in (D3) is due to the perturbation

coefficient σF in (64).
The problem of finding the infinitesimal generator LH of the process limε→0 Hε boils down to this (for details see

the technique of martingale problem in chapter 5 of [35]): find an operator LH such that given any nice function fH
of h alone, there exists a function f ε of (η, ξ, h) such that |fH(h)− f ε(η, ξ, h)| and |(LHfH)(h) − (Lεf ε)(η, ξ, h)| are
of order ε.

Now we show how to find LH . Formally, consider f ε(η, ξ, h)
def
= fH(h) + εf1(η, ξ, h) + ε2f2(η, ξ, h) with f1 and f2

yet to be determined. Computing Lεf ε we find

Lεf ε =
1

ε2
L0fH +

1

ε
(L0f1 + L1f0) + (L0f2 + L1f1) +O(ε). (D4)

Note that L0fH = 0 because L0 involves differentials with respect to (η, ξ) whereas fH is a constant as a function of
(η, ξ) (it is function only of h). Now, f1 can be choosen so that L0f1 + L1f0 = 0. It can be verified that f1 is

f1(η, ξ, h) =

∫ ∞

0

ds

(∫

M

(ν(s, ξ, dζ)− ν̄(dζ)) σ(ζ)

)

b(T̂ (s)η)
∂fH(h)

∂h
.

We would not be able to select f2 such that L0f2 + L1f1 = 0. However L0f2 + (L1f1 − {L1f1}) = 0 can be solved
where {L1f1} is certain kind of average. With this choice of f2, now (D4) gives |Lεf ε − {L1f1}| ∼ O(ε). Inspecting
{L1f1} gives LH . Note that L1f1 equals

∫ ∞

0

ds

(

σ(ξ)

∫

M

(ν(s, ξ, dζ) − ν̄(dζ)) σ(ζ)

)(

(1{0}F (η).∇)b(s)(η)
∂fH(h)

∂h
+ b(η)b(s)(η)

∂2fH(h)

∂h2

)

,

where b(s)(η)
def
= b(T̂ (s)η). In the above expression (i) averaging the noise ξ with respect to its invariant measure ν̄ and

recalling the definition of autocorrelation in (63), (ii) realizing that (1{0}F (η).∇)b(s)(η) = (T̂ (s)1{0}F (η).∇)b(T̂ (s)η),

and (iii) averaging the η on trajectories of constant h, we get {L1f1} as bH(h)∂fH (h)
∂h + 1

2σ
2
H(h)∂

2fH (h)
∂h2 where bH and

σH are as stated in the theorem VI.1.

Appendix E: Numerical scheme for simulations

All simulations in this paper are done with Euler-Maruyama scheme. For example, (59) with γc = 0 is simulated
as follows. Select a time step ∆. Let N = r/∆ where r is the delay in the system. Specify initial conditions at the
time points of the form j∆ for j = −N,−N + 1, . . . ,−2,−1, 0. Then, for j ≥ 0,

x|(j+1)∆ = x|j∆ +∆
(

−π
2
x+ εγqx

2
)

∣

∣

(j−N)∆
+ εσ

√
∆Nj ,

where Nj is a standard normal random variable.
For (70) we first simulate the two-state markov chain and then use

x|(j+1)∆ = x|j∆ +∆
(

−π
2
+ εσ(ξ|j∆)

)

x
∣

∣

(j−N)∆
.

The following values of ∆ are used: for section VIB ∆ = 5× 10−5; for section VD ∆ = 2× 10−5; for section IVB
∆ = 10−5; for the stationary density in figure 3 ∆ = 5× 10−6.
Further evidence for the usefulness of averaging results of section IVC is provided in the supplemental file [29].


