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We investigate energy transfer across scales in three-dimensional compressible magnetohydrody-
namic (MHD) turbulence, a model often used to study space and astrophysical plasmas. Analysis
shows that the kinetic and magnetic energy cascades conservatively from large to small scales in
cases with varying degrees of compression. With more compression, energy fluxes due to the pressure
dilation and subscale mass flux are greater, but conversion between kinetic and magnetic energy
by magnetic line stretching is less efficient. Energy transfer between the same fields is dominated
by local contributions regardless of compressive effects. In contrast, the conversion between kinetic
and internal energy by pressure dilation is dominated by the largest-scale contributions. Energy
conversion between the velocity and magnetic fields is weakly local.

The statistical properties of turbulence underlie many
physical processes in both astrophysical and geophysical
systems. In particular, there is growing evidence is that
strongly compressible turbulence plays a role in ampli-
fication of magnetic fields[1], and possibly the produc-
tion of energetic particles [2, 3], especially near shocks
[4]. Meanwhile decades of evidence suggest that the
paradigm of the incompressible cascade is of great signif-
icance in understanding turbulence in apparently com-
pressible plasmas such as the solar wind and interstellar
medium [5–7]. While the reconciliation of these views
is often based on hierarchical arguments or assumptions
about cascade [8–10], a more fundamental perspective
requires a detailed understanding of the cascade in com-
pressible plasmas. The present paper addresses statisti-
cal properties of energy transfer across scales in the famil-
iar but less studied compressible magnetohydrodynamics
(MHD) model. The best studied case, the Kolmogorov
phenomenology of incompressible hydrodynamic (HD)
turbulence [11], assumes the locality of energy transfer
across scales. An inertial range emerges in which the
statistics are independent of the large and small scales
in the system. Energy transfer across scales in HD tur-
bulence has been well studied, and its locality has been
verified, see [12–23]. This issue is less well understood in
MHD turbulence, which involves both velocity and mag-
netic fields, several energy transfers between the different
fields, and greater opportunities for nonlocal interactions
in scale.

The energy transfer in incompressible MHD turbulence
has been extensively investigated [24–30], including use
of Fourier-space shell models [31–37] to estimate scale
to scale energy fluxes. Some results suggest that energy
transfer between the same fields is fairly local, but trans-
fer between different fields is highly non-local. Recent

work [38] employing a coarse-graining approach showed
scale locality of flux of the total energy and for the con-
version of kinetic and magnetic energy, and explained the
disagreement with the result obtained with the shell-to-
shell model [33]. However, no similar studies exist for the
compressible MHD turbulence.

In this letter we use high-resolution direct numeri-
cal simulation of mechanically forced compressible MHD
turbulence to study the energy transfer between dif-
ferent scales and fields. We introduce several energy
transfer functions with filtering approaches and analyze
their statistical properties and scale locality. A com-
parison of the energy-transfer from simulations differ-
ing only in the forcing mechanism would clearly illus-
trate the effects of compression. The numerical simu-
lation employs a hybrid compact-WENO scheme [39] in

a (2π)3 domain, with a resolution of 5123 grid points,
Reynolds number Re = 500, magnetic Reynolds num-
ber Rem = 500 and Mach number Ma = 0.3. The
velocity field can be decomposed into a solenoidal part
us and a compressive part uc, u = us + uc, where
∇ · us = 0 and ∇ × uc = 0, as well as the kinetic
energy, say Ek = Es + Ec. The large-scale force (see,
e.g., [40]) consists of holding constant in time the ve-
locity modes (and energies) in the first two wavenumber
shells 0.5 ≤ |k| ≤ 1.5 and 1.5 ≤ |k| ≤ 2.5. Writing
each of these modes as û

∗(k) = lsûs(k) + lcûc(k), we
specify the ratio rs/rc = [(l2s − 1)Es]/[(l

2
c − 1)Ec], which

determines ls and lc, thus controlling the amount of com-
pression. More details of the driving are referred to [39].
We study here two cases (see Table I): pure solenoidal
forcing (rc = 0, i.e. Run 1) and simultaneous solenoidal
and compressive forcing (rs/rc = 1/2, i.e. Run 2) cases.
The initial conditions are the same for the two cases.
The initial kinetic and magnetic energies are equal, and
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the initial cross helicity, though not exactly zero, can be
considered as negligible. No uniform magnetic field is
imposed externally.
The compressive ratio, Rc = 〈θ2〉/(〈θ2〉+〈|ω|2〉), where

θ is the dilation and ω is the vorticity, and the normal-
ized density fluctuation, δρ′/〈ρ〉 =

√
〈(ρ− 〈ρ〉)2〉/〈ρ〉 are

much larger in Run 2, which is forced with a compressive
component. Note that 〈· · · 〉 denotes a space-time aver-
age over the entire domain, and for a time in which flow
is approximately stationary (about 4 large scale turnover
times). Fig. 1(a),(b) show that the magnetic and kinetic
energies are comparable at most scales. The shear ve-
locity dominates for solenoidal forcing (see Fig. 1(a)).
The solenoidal velocity and the magnetic fields exhibit a
∼ k−5/3 spectrum, while the compressive velocity shows
a ∼ k−2 spectrum in the more compressive case (Fig.
1(b)) due to the formation of large-scale shock waves,
which are evident in Fig. 1(c) where the sharp jump
represent the large gradient of density.

TABLE I. Characteristic parameters

Cases rs rc Reλ Mt Rc δρ′/〈ρ〉

Run 1 1.0 0.0 210 0.66 0.007 0.17

Run 2 1.0 2.0 150 0.68 0.29 0.43

To investigate cross scale energy transfer, we resolve
fields both in space and in scale using a simple filter-
ing approach [19, 41]. The low-pass filtered field, which
only contains information at length scales > ℓ, is de-
fined as āℓ (x) =

∫
d3rGℓ (r)a (x+ r), where Gℓ (r) =

ℓ−3G (r/ℓ) is a filtering kernel and G (r) is a normal-
ized boxcar window function. In equations with variable
density, we apply a Favre filter (density-weighted filter)
ãℓ = (ρa)ℓ/ρ̄ℓ [42]. The filtered equations for the large-

scale kinetic energy Ẽk = ρ̄ℓ|ũℓ|
2/2 and large-scale mag-

netic energy Ēm = |b̄ℓ|
2/2 read

∂Ẽk

∂t
+∇ · Ju

ℓ = −Π
u
ℓ −Λℓ −Φℓ − T 1,ℓ

−T 2,ℓ −D
u
ℓ , (1a)

∂Ēm

∂t
+∇ · Jb

ℓ = −Π
b
ℓ + T 1,ℓ + T 2,ℓ −D

b
ℓ, (1b)

where J
u
ℓ and J

b
ℓ represent the spatial transport of en-

ergies; Πu
ℓ = −

(
ρ̄ℓτ̃

u
ℓ + τ̄

b
ℓ

)
: ∇ũℓ, where “:” is a dou-

ble dot product, τ̃
u
ℓ =

[
˜(uu)ℓ − ũℓũℓ

]
is the subscale

Reynolds stress, τ̄ b
ℓ = −

[
(bb)ℓ − b̄ℓb̄ℓ

]
+ 1

2

[
(b2)ℓ − b̄

2
ℓ

]
I

is the subscale magnetic stress, and I is the unity ten-

sor. Λℓ = ρ̄−1
ℓ τ̄

ρ
ℓ ·

[
∇ ·

(
p̄ℓI+

1
2 b̄

2
ℓI− b̄ℓb̄ℓ

)]
, where

τ̄
ρ
ℓ =

[
(ρu)ℓ − ρ̄ℓūℓ

]
is the subscale mass flux. The large-

scale forcing term is eliminated here. Πb
ℓ = −ǭℓ ·

(
∇× b̄ℓ

)

is the magnetic energy flux across scale l, and ǭℓ =[
(u× b)ℓ − ūℓ × b̄ℓ

]
is the subscale electromotive force;
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FIG. 1. Spectra compensated with k5/3 from Run 1 (a) and
Run 2 (b) for solenoidal kinetic energy Es(k), compressive
kinetic energy Ec(k) and magnetic energy Em(k). The dot-

ted lines indicate the k−5/3 and k−2 spectra. Run 2 is more
compressive. (c) Contour of density from Run 2.

Φℓ = −p̄ℓ∇·ūℓ is the pressure dilation; T 1,ℓ = − 1
2 b̄

2
ℓ∇·ūℓ

and T 2,ℓ = b̄ℓ · ∇ūℓ · b̄ℓ represent an exchange of large-
scale kinetic and magnetic energy by compression and
large-scale magnetic line stretching, respectively; Du

ℓ and
D

b
ℓ are the viscous and Ohmic dissipation terms, respec-

tively. Note that Φℓ, T 1,ℓ and T 2,ℓ incorporate informa-
tion only from scales > ℓ. Therefore, they are insensitive
to excitations at scales < ℓ and do not contribute to the
transfer of energy across scale ℓ. In contrast, Πu

ℓ , Λℓ and
Π

b
ℓ depend on fluctuations at scales < ℓ and are therefore

capable of direct transfer of energy across scales.

We show different energy fluxes in Fig. 2. The fluxes
are normalized by the total viscous and Ohmic dissipa-
tion, ǫT = 〈ǫu〉 + 〈ǫb〉 = 〈σij∂jui〉 + 〈η∂ibj∂ibj〉, where
σij = µ(∂iuj + ∂jui) −

2
3µθδij , µ is the dynamic vis-

cosity, and η is the electrical conductivity. The filter-
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ing scale is normalized by the Kolmogorov length scale

ηk =
[
〈µ/ρ〉

3
/〈ǫu/ρ〉

]1/4
. The total energy (kinetic and

magnetic energy) can be converted into internal energy
by the pressure-dilation work −〈p∇ · u〉 and the total
dissipation ǫT . A part of the large-scale total energy
〈Ẽk + Ēm〉 is transferred across scale ℓ to the small-scale
total energy by the positive flux 〈Πu

ℓ +Π
b
ℓ +Λℓ〉, which

will finally be dissipated at the dissipation scale by ǫT .
Therefore, 〈Πu

ℓ+Π
b
ℓ+Λℓ〉 ∼ ǫT , as shown in Fig. 2(a)(b).

Since the dissipation terms 〈Du
ℓ 〉 and 〈Db

ℓ〉 are small but
can not be fully neglected, 〈Πu

ℓ +Π
b
ℓ +Λℓ〉/ǫT is slightly

less than 1. There is an inertial range over which the
fluxes 〈Πu

ℓ +Π
b
ℓ〉, 〈Λℓ〉 and 〈Φℓ〉 are almost constant in

both cases. The terms 〈Πu,b
ℓ 〉 transfer energy from large

to small scale due to interaction of subscale stresses with
large-scale fields. In contrast, 〈Λℓ〉 represents interaction
of subscale mass flux with large-scale pressure gradient
and (when negative) transfers energy from small to large
scale.

Note that 〈Λℓ〉 in Fig. 2(a) is vanishingly small due to

the fact that the subscale mass flux τ̄
ρ
ℓ =

[
(ρu)ℓ − ρ̄ℓūℓ

]

is negligible in Run 1, with pure solenoidal forcing. The
pressure dilation 〈Φℓ〉 is also very small in this case.
Overall, we see that Run 1 behaves like a nearly incom-
pressible flow. In contrast, in Run 2 (Fig. 2(b)), the
rate of kinetic energy conversion into internal energy by
the pressure dilation 〈Φℓ〉 is merely 30% smaller than the
total dissipation ǫT . Therefore, in the moderately com-
pressive flow, apart from the viscous dissipation, which
is the only way to convert kinetic to internal energy in
the incompressible flow, the pressure dilation can also
effectively couple kinetic with internal energy.

The exchange between kinetic and magnetic energy is
not a conservative cascade, and 〈T 1,ℓ〉 and 〈T 2,ℓ〉 de-
crease with increasing filtering scale ℓ (see Fig. 2(c)).
The magnitude of 〈T 1,ℓ〉 related to compressions is
smaller than that of 〈T 2,ℓ〉 related to vortex structures
in both cases. The dynamo process excited by vortices
is therefore more efficient than that excited by compres-
sions, a conclusion consistent with the result [43] that co-
herent vortical motions are necessary to drive an efficient
dynamo. In comparing Run 1 and Run 2, one observes
that 〈T 2,ℓ〉 is larger in Run 1, because pure solenoidal
forcing excites more vorticity (see Table I) and thus tan-
gles the magnetic field more strongly. In contrast, 〈T 1,ℓ〉
in Run 2 is larger due to more compression.

In order to clarify the effects of compressibility on
the locality of energy flux, we only investigate the more
compressive case (see Run 2) hereinafter and compare
with the existing results in the incompressible MHD tur-
bulence (see [31–38]). For the energy flux across any
scale ℓ, if the contribution from scale ∆ ≫ ℓ is negli-
gible, the energy flux is infrared local; if the contribu-
tion from scale δ ≪ ℓ is negligible, the energy flux is
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FIG. 2. Different energy fluxes from Run 1 (a) and Run 2
(b) as a function of filtering length ℓ. The total energy flux
remains fairly constant over the inertial range. The pressure
dilation 〈Φℓ〉 and subscale mass flux term 〈Λℓ〉 are negligible
in Run 1 due to less compression. (c) the energy exchange
between kinetic and magnetic energy. The dynamo related
to vortices (i.e. 〈T 2,ℓ〉) is more efficient than that related to
compressions (i.e. 〈T 1,ℓ〉).

ultraviolet local [19]. We use the magnetic energy flux
Π

b
ℓ = −ǭℓ ·

(
∇× b̄ℓ

)
to illustrate the definition. Let

ā∆(n) be the low-pass filtered field with the filtering scale
∆(n) = (1.25)

n
ℓ, (n = 0, 1, 2, · · · ). The corresponding

high-pass filtered field is a
′
∆(n) = a − ā∆(n) . We then

obtain the contribution to the flux across scale ℓ from
scales > ∆(n) as

Π
b,>∆(n)

ℓ = −ǭℓ

(
ū∆(n) , b̄∆(n)

)
·
[
∇× (b̄∆(n))ℓ

]
, (2)

where ǭℓ

(
ū∆(n) , b̄∆(n)

)
= (ū∆(n) × b̄∆(n))ℓ − (ū∆(n))ℓ ×

(b̄∆(n))ℓ. The contribution from scales > ∆(0) = ℓ can

be further split into shells Πb,∆(n)

ℓ , (n = 0, 1, 2, · · · ),

Π
b,∆(n)

ℓ = Π
b,>∆(n)

ℓ −Π
b,>∆(n+1)

ℓ . (3)

Each shell Πb,∆(n)

ℓ is quantified by the contribution from
scales

[
∆(n),∆(n+1)

]
. Similarly, the contribution to the

flux across scale ℓ from scales < δ(n) = (1.25)
−n

ℓ can be
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written as:

Π
b,<δ(n)

ℓ = −ǭℓ (u
′
δ(n) , b′δ(n)) ·

(
∇× b̄ℓ

)
. (4)

Note that if we were to replace the last term, b̄ℓ, with
the quantity (b′δ(n))ℓ, then Eq. (4) would be guaranteed

to be vanishingly small because (b′δ(n))ℓ ∼ 0. So using b̄ℓ

directly in this term can help to figure out the ultraviolet
locality of the energy flux due to subscale stress more
clearly. Then

Π
b,δ(n)

ℓ = Π
b,<δ(n)

ℓ −Π
b,<δ(n+1)

ℓ , (5)

is the contribution from scales
[
δ(n+1), δ(n)

]
. The contri-

bution to Π
u
ℓ , Λℓ, Φℓ, T 1,ℓ and T 2,ℓ from different scale

shells can be obtained in a similar way.
Fig. 3(a) shows the normalized contribution to the

magnetic energy flux across scale ℓ from different scale

shells, 〈Πb,∆(n)

ℓ 〉/〈Πb
ℓ〉 and 〈Πb,δ(n)

ℓ 〉/〈Πb
ℓ〉. For any fixed

scale ℓ, the contribution is found to be locally maximum
along the diagonal line, which means that the magnetic
energy flux across length scale ℓ is dominated by the
contributions from scales close to ℓ. Thus the cascade
of magnetic energy due to the subscale stresses is lo-
cal. In order to get a better understanding of the trans-
fer, we choose a length-scale ℓ in the inertial range, eg.
ℓ/ηk ∼ 50, and shown in Fig. 3(b). It’s obvious that the
contributions maximize at n ∼ 0, i.e. scales ∆ ∼ ℓ and
δ ∼ ℓ, and decrease rapidly at far-away scales. Both the
infrared locality and ultraviolet locality hold for Πb

ℓ. The
cascades of kinetic energy through Π

u
ℓ and Λℓ, which are

not shown here, are local as well.
Because Φℓ, T 1,ℓ and T 2,ℓ incorporate information

only from scales > ℓ, infrared locality is quantified from
these fluxes; see Fig. 3(c). The pressure dilation 〈Φℓ〉
represents the conversion of kinetic energy to internal
energy through compression. Fig. 3(c) shows the con-
tributions due to 〈Φℓ〉 filtered at various scales, and one
sees that the largest scales (largest n), make the most
significant contributions, as in compressible HD turbu-
lence [44, 45]. With the influence of pressure dilation
mainly at the largest scales, the inertial range scaling
law is relatively free of compressive effects, and kinetic
and internal energy can decouple in the inertial range.
Finally we recall that incompressible MHD studies [33]
suggested that the exchange between kinetic and mag-
netic energy is highly non-local. In contrast, our results
show weak infrared locality of the magnetic line stretch-
ing term, T 2,ℓ and the dilation term, T 1,ℓ. Most of the
fluxes result from bands n = 0 ∼ 5, i.e. scales ℓ ∼ 3ℓ.
This disparity may emerge from methodological differ-
ences, as suggested previously [38].
In this paper, we analyze the energy transfer of com-

pressible MHD turbulence in real space. We find an ap-
parent inertial range over which conservative energy cas-
cade of the velocity and magnetic fields occurs, regardless

n
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FIG. 3. (a) The normalized contribution to the magnetic
energy flux across scale ℓ, 〈Πb

ℓ〉 from different scale shells.
The upper left part has vertical axis labeled ∆/ηk and the
lower right part has a vertical axis labeled δ/ηk. (b) The
normalized contribution to magnetic energy flux across scale
ℓ/ηk ∼ 50 from different size bands, where ∆(n) = (1.25)n ℓ

and δ(n) = (1.25)−n ℓ. (c) The normalized contribution from
different scale shells to the conversion of kinetic to internal
energy, Φℓ, and the conversion of kinetic to magnetic energy,
T 1,ℓ, T 2,ℓ. Only contributions from ∆(n) are calculated. ℓ/ηk
and ∆(n) are the same as (b). The quantities plotted here are
specifically for Run 2.

of the forcing mechanism, almost completely decoupled
from pressure dilation effects. For a higher degree of com-
pression, more kinetic energy is converted into the inter-
nal energy by the pressure dilation, presumably through
shock-like structures (see Fig. 1c). However, less vortic-
ity generated in the more compressive case leads to less
efficient magnetic dynamo by magnetic line stretching.
Kinetic and magnetic energy cascades are local, while
the conversion between kinetic and magnetic energy is
weakly local. Conversion between kinetic and internal en-
ergy by the pressure dilation occurs mainly at the largest
scales.

Although our results are based on the numerical sim-
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ulation with no background magnetic field and of mod-
erate Re number much smaller than that in many astro-
physical plasmas and laboratory situations, it represents
an important step towards understanding physical pro-
cesses such as heating and possible production of ener-
getic particles. In the case of a low collisionality plasma,
for which MHD is often used as a leading order approxi-
mation, heating and the production of entropy will occurs
mainly at small scales. The fluxes of energy through the
channels of velocity field, magnetic field and pressure di-
lation, which we have examined in some detail here, will
act as small scale drivers for kinetic processes that ab-
sorb these fluxes and energize particles. Many additional
questions arise, including for example an assessment of
the effects of background magnetic field, larger Re num-
ber and varying Mach number, and these will warrant
further study.
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